Comparative physiological and transcriptional analysis of weak organic acid stress in Bacillus subtilis

ter Beek, A.; Wijman, J.G.E.; Zakrzewska, A.; Orij, R.; Smits, G.J.; Brul, S.

DOI
10.1016/j.fm.2014.02.013

Publication date
2015

Document Version
Final published version

Published in
Food Microbiology

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 426, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Comparative physiological and transcriptional analysis of weak organic acid stress in *Bacillus subtilis*

Alexander Ter Beeka, Janneke G.E. Wijmanb, Anna Zakrzewskaa, Rick Orija, Gertien J. Smitsa, Stanley Brula,

Department of Molecular Biology and Microbial Food Safety (MBMFS), Netherlands Institute for Systems Biology (NISB), Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, The Netherlands

bUnilever Research and Development, Advanced Food Microbiology, Vlaardingen, The Netherlands

Abstract

The advent of ‘omics’ techniques bears significant potential for the assessment of the microbiological stability of foods. This requires the integration of molecular data with their implication for cellular physiology. Here we performed a comparative physiological and transcriptional analysis of *Bacillus subtilis* stressed with three different weak organic acids: the commonly used food preservatives sorbic- and acetic-acid, plus the well-known uncoupler carbonyl cyanide-m-chlorophenyl hydrazone (CCCP).

The concentration of each compound needed to cause a similar reduction of the growth rate negatively correlated with their membrane solubility, and positively with the concentration of undissociated acid. Intracellular acidification was demonstrated by expressing a pH-sensitive GFP derivative. The largest drop in intracellular pH was observed in CCCP-stressed cells and was accompanied by the transcriptional induction of the general stress response (GSR) and SigM regulon, responses known to be induced by acidification. Intracellular acidification was demonstrated by expressing a pH-sensitive GFP derivative. The largest drop in intracellular pH was observed in CCCP-stressed cells and was accompanied by the transcriptional induction of the general stress response (GSR) and SigM regulon, responses known to be induced by acidification. The GSR was induced by acetate, but not by sorbate in mildly-stressed cells. Microarray analysis further revealed that all three acids activate transcriptional programs normally seen upon nutrient limitation and cause diverse responses indicative of an adaptation of the cell envelope. Based on the responses observed and the utilized pH measurements, the inhibitory effect of sorbic acid seems to be more focused on the cell membrane than that of acetic acid or CCCP.

1. Introduction

In the food industry there is a notion that the novel ‘omics’ data will allow processors to come to a more mechanism based risk assessment of food preservation regimes (Brul et al., 2012). Hence such approaches will allow us to come more close to the preservation cliff edge (Rantsiou et al., 2011), thus benefiting food quality whilst ensuring at all times the desired microbiological food stability (McMeekin et al., 2010). Over-processing can be avoided and the use of preservative agents minimized. ‘Oms’ studies at the transcript level allow for genome wide assessment of the way in which microorganisms perceive the environment, including the presence of food preservatives such as weak organic acids.

Weak organic acids, such as sorbic- and acetic- acid, are well established antimicrobial agents utilized by the food industry. The acid, or its anionic salt, is used in a variety of foods and beverages as preservatives to inhibit the growth of bacteria, yeasts, and moulds (Beales, 2004; Brul and Coote, 1999; Davidson, 2001; Ter Beek and Brul, 2010). The antimicrobial activity of this class of food preservatives depends on the pK_a value of the acid and the pH of the environment. In solution, the compound exists in equilibrium between the dissociated and the undissociated state. The latter form is more lipid permeable than the anion, and is therefore able to diffuse into the cell, where a new equilibrium is formed. The resulting release of protons lowers the proton gradient and, depending on the buffering capacity of the cell, may cause lowering of the intracellular pH (pHi). Lowering the proton gradient and the possible acidification of the cytosol are thought to be the main modes of action of weak organic acids (Beales, 2004; Brul and
Coote, 1999; Davidson, 2001; Ter Beek and Brul, 2010). Furthermore, the released anion is considered to be responsible for a rise in osmolarity and to be deleterious to cytosolic enzymes (Russell, 1992; York and Vaughan, 1964). Recently, Abeel and co-workers have shown the formation of reactive oxygen species (ROS) in weak organic acid-stressed Bacillus cereus cells (reviewed in Mols and Abeel, 2011). In addition, organic acids are thought to interfere with the cell wall, the cytosolic membrane and membrane proteins, and consequently, influence the transport of nutrients (Hirshfeld et al., 2003; Sheu and Freese, 1972; Strafet al., 2009; Ter Beek and Brul, 2010). Although the general modes of action are established, differences between the effectiveness of weak organic acids are observed. For instance, the pKₐ values of sorbic and acetic acid are similar (4.76), however more acetic acid is needed to obtain similar growth-inhibitory effects (among others: Heavin et al., 2009; Lambert and Bidlas, 2007).

The SigM regulon, involved in maintaining membrane and cell wall integrity, is also induced in Gram-positive and Gram-negative bacteria, respectively) is induced upon low pH stress (Dodd and Aldsworth, 2002; Hecker et al., 2007). The SigM regulon, involved in maintaining membrane and cell wall integrity, is also induced in Bacillus subtilis at low pHₗₑₙ (Thackray and Moir, 2003). Furthermore, the induction of proton pumps, chaperones, superoxide dismutases, and the production of basic compounds by urease, decarboxylases, and deiminase are known factors contributing to (weak) acid tolerance (B Pearson et al., 1997; Cotter and Hill, 2003; Kiet et al., 2009; Mols and Abeel, 2011; Piper, 1999; Wilks et al., 2009).

In this study we set out to compare commonly used weak organic acid food preservatives in their molecular effects on, for example, spoilage bacteria. Sorbic acid and acetic acid were chosen for this analysis and compared to a classical chemical agent and weak acid that uncouples metabolism from growth: carbonyl cyanide-m-chlorophenyl hydrazone (CCCP). Since B. subtilis is well-studied, genetically accessible, and also a relevant food spoilage bacterium (Oomes et al., 2007), we selected this model microorganism for our research. Here we report the thorough comparison of the time-resolved transcriptional responses of B. subtilis subjected to mild potassium acetate (KAc) and CCCP stress, and the previously by us published data on potassium sorbate (KS) stress (Ter Beek et al., 2008).

2. Materials and methods

2.1. Bacterial strains, growth and stress conditions

B. subtilis strains were cultivated in a defined minimal medium as described previously by Neidhardt et al. (1974), as modified by Hu et al. (1999). The medium was buffered with 80 mM 3-[N-morpholino]propanesulfonic acid (MOPS) and the pH was set to 5.9, 6.4, 7.4 or 7.8 with KOH. As carbon- and nitrogen-sources 5 mM morpholino]propanesulfonic acid (MOPS) and the pH was set to 37 °C for 180 min incubation of 2-fold the starting OD₆₀₀ or less (Schuurmans et al., 2009). All conditions were tested in the microtiter plate reader at least in triplicate and biologically independent experiments were performed at least twice.

2.2. Construction of pDG148-pHluorin and transformation to B. subtilis

Standard molecular genetics techniques were used as described by Sambrook et al. (1989). Restriction enzymes, fflu DNA polymerase and T4 DNA ligase were obtained from Fermentas. Plasmids were isolated from E. coli using a QIAprep Spin Miniprep Kit (Qiagen) and DNA fragments were isolated from agarose gels with a QIAEX II Gel Extraction Kit (Qiagen).

The ratiometric pHluorin gene (GenBank accession no. AF058694) was PCR amplified using primers pHluorIN (5'-AAC CTT AAG GAC GAA CCA GGT ATG AGT AAA CAA GAA GAC C-3') and pHluorIN-3' (5'-CTC GAC TTATTT GTA TAG TTC ATC CAT GCC ATG TG-3') (Isogen Life Science) on pYES2-PCty-pHluorin (Orij et al., 2009) introducing HindIII and SalI restriction sites as well as a ribosome binding site. The pYES2–PCTy–pHluorin plasmid contains the gene coding for a functional ratiometric pHluorin without the L220F mutation described in Miesenböck et al. (1998), as well as a start and stop codon (Orij et al., 2009). The resulting 745-bp PCR product was cloned into the pCR-Blunt II-TOPO vector and transformed to competent E. coli TOP10 cells using the Zero Blunt TOPO Cloning Kit (Invitrogen). DNA sequence analysis (BaseClear) confirmed the correct DNA sequence (data not shown). Next, the TOPO vector was digested with HindIII and SalI and the fragment containing ratiometric pHluorin gene was inserted into the HindIII and SalI-digested pDG148 plasmid creating pDG148-pHluorin. Finally, both the empty and pHluorin containing pDG148 plasmids were transformed to competent 168 WT B. subtilis strain 1A700 (trpC2) cells as described previously (Kunst and Rapoport, 1995) creating strains ATB031 and ATB032, respectively.

2.3. Calibration and measurement of pHₐₙ

B. subtilis strains ATB031 and ATB032 were grown exponentially in shake-flasks in defined minimal medium of pH 6.4 containing 5 µg/ml kanamycin and 25 mM glucose. At an OD₆₀₀ of 0.2 the production of ratiometric pHluorin was induced for 2.5 h by the addition of 1 mM IPTG. The cells were maintained in the exponential phase by diluting the cultures in fresh medium containing 1 mM IPTG when necessary, such that an OD₆₀₀ of 1 was not exceeded. At an OD₆₀₀ of 0.4 the cells were centrifuged and resuspended in buffers with pH values ranging from 5.6 to 8 prepared from 0.1 M citric acid and 0.2 M K₂HPO₄. The pH₉ₑₙ and pHₐₙ were equilibrated by the addition of 1 µM valinomycin and 1 µM nigericin (Breeuwer et al., 1996). The fluorescence was measured in a SpectraMax Gemini XS microtiter plate spectrofluorometer (Molecular Devices Corp.) and the ratio of emission intensity at 512 nm resulting from excitation at 390 and 470 nm was calculated after background subtraction as described previously (Orij et al., 2005). The strain containing the empty pDG148 plasmid was used for background fluorescence. The calibration curve was determined by fitting the data of three independent biological replicates, each consisting of three technical replicates (see Fig. S1 of the Supplementary Data).
For pH\textsubscript{i} measurements during stress experiments, cells containing empty pDG148 and pDG148-pHluorin were grown exponentially and ratiometric pHluorin expression was induced with 1 mM IPTG for at least 2.5 h as described above for the calibration of pH\textsubscript{i}. At an OD\textsubscript{600} of 0.35 cells were transferred into two microtiter plate readers, measuring the fluorescence and optical density (SpectraMax Plus, Molecular Devices Corp.). At an OD\textsubscript{600} of 0.16 in the microtiter plate readers (which corresponds to an OD\textsubscript{600} of 0.4 in a 1-cm-path-length spectrophotometer), the cells were stressed with the following chemicals: KS (0.5, 1, 3, or 10 mM), KAc (5, 25, or 80 mM), and CCCP (0.25, 0.5, 0.85, or 2 μM). Cells were cultivated in the microtiter plate readers under rigorous shaking at 37 °C for 120 min. All conditions were tested in the plate readers four times, and biologically independent experiments were performed at least in duplicate.

2.4. Time-resolved transcriptome analysis using DNA microarrays

An exponentially growing culture of B. subtilis WT strain PB2 was split in two and cultured in well-controlled batch-fermentors (37 °C, pH 6.4, aeration rate: 0.5 L/min, stirring: 200 rpm) as described previously (Ter Beek et al., 2008). At an OD\textsubscript{600} of 0.2, one culture was stressed with 25 mM KAc or 0.85 μM CCCP. Samples of 20 ml were withdrawn from both the treated and control cultures at 0, 10, 20, 30, 40, and 50 min after addition of KAc or CCCP. The cells were collected as described by Ter Beek et al. (2008). Total RNA was isolated as described previously (Keijser et al., 2007). Two biologically independent experiments were performed.

The synthesis of labeled CDNA, hybridization, scanning of the DNA microarrays, as well as the microarray data extraction and processing were carried out as described by Ter Beek et al. (2008). The data was normalized using J-Express Pro 2.7 software (MolMine AS). After the processing of the microarray data 3746 (91.4%) and 3865 (89.9%) genes of the total number of 4100 genes present on the array remained for each time-point, of which 503 (12.3%) and 582 (14.2%) were found to be significantly expressed in the KAc and CCCP treatments, respectively. The degree of enrichment or depletion for a specific gene group in the given significantly up- or downregulated genes was quantitatively assessed using a hypergeometric distribution analysis (Motulsky, 1995). Gene groups were considered to be enriched or depleted when the calculated P-value was below 0.01.

The microarray data was analyzed using two complementary methods. Hierarchical clustering (Eisen et al., 1998) of specific sub-sets of significantly regulated genes was used to identify groups of genes with similar transcription profiles. This was performed in J-Express Pro 2.7 (MolMine AS) using the average linkage (WPGMA) clustering method and Euclidian distance metric. T-profiler (Boorsma et al., 2005) was used to assess the contribution of the expression of genes from specific gene classes to the total gene expression of all genes via http://www.science.uva.nl/~boorsma/t-profiler-bacillus/new/ as described by Ter Beek et al. (2008).

2.5. Microarray data accession number

The data discussed in this publication has been deposited in NCBI’s Gene Expression Omnibus (Edgar et al., 2002) and are accessible through GEO Series accession number GSE55051 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55051).

3. Results

3.1. Comparison of the growth inhibitions caused by weak organic acids

In this study, we compared the effects of weak organic acids on food spoilage and model organism B. subtilis. Besides the commonly used food preservatives sorbic- and acetic-acid (both having a pK\textsubscript{a} of 4.76), we also investigated the effects of the powerful uncoupler CCCP (pK\textsubscript{a} of 5.95). Comparing the octanol–water partition coefficient values (taken from “LOGKOW: A databank of evaluated octanol–water partition coefficients (LogP);” http://logkow.cisti.nrc.ca/logkow/) shows that CCCP is the most lipophilic compound (log K\textsubscript{ow} = 3.38), followed by sorbic acid (log K\textsubscript{ow} = 1.33). Acetic acid is the least hydrophobic compound (log K\textsubscript{ow} = −0.17). Consequently, the solubility into the membrane is expected to be the highest for CCCP and the lowest for acetic acid.

We have shown previously that the growth inhibition by sorbic acid can be mainly attributed to the undissociated form of sorbic acid (HS) (Ter Beek et al., 2008). The sorbate anion (S⁻) also contributes to the growth inhibition although to a much lesser extent. Using the same approach, we determined the pH dependence of the inhibitory effect of acetic acid and CCCP on exponentially growing B. subtilis cells in a defined medium. Increasing concentrations of either potassium acetate (KAc) in the mM range or CCCP in the mM range resulted in a decreasing growth rate when grown at a pHex of 6.4 (Fig. 1A and B). Similar qualitative trends of the growth curves were observed for all pH\textsubscript{eq} values tested (5.9, 6.4, 7.4, and 7.8), although higher concentrations of compound were needed at higher pH\textsubscript{eq} to obtain similar reductions in OD\textsubscript{600} (our unpublished data). This supports the notion that the effect of weak organic acids is mainly caused by the undissociated form (e.g. Beales, 2004; Brul and Coote, 1999). The concentrations needed to cause a similar inhibition of growth negatively correlated with the log K\textsubscript{ow} values of each weak organic acid (e.g. 0.85 μM CCCP, 3 mM KS, and 25 mM KAc were needed to inhibit the growth by 30% at a pH\textsubscript{eq} of 6.4), indicating that their solubility into the membrane has a prominent effect on the growth inhibition or is the rate-limiting step. Estimated MIC values showed similar pH\textsubscript{eq} and membrane solubility trends: higher estimated MIC values at higher pH\textsubscript{eq} and lower log K\textsubscript{ow} values (see Table S1 of the Supplementary Data). Next, we plotted the percentages of growth inhibition (G%) against the concentrations of the anion (Ac⁻ and CCCP⁻) and the undissociated (HAc and HCCCP) form of the acids (Fig. 1C–F). In contrast to the growth inhibition curves obtained for HS (Ter Beek et al., 2008), no overlap of the curves was observed for HAc and HCCCP. A full overlap implies that the inhibitory effect is determined by the amount of undissociated acid present and that this is pH independent.

3.2. Weak organic acid stress lowers the pH\textsubscript{i}

To confirm lowering of the cytosolic pH by weak organic acid stress we set out to measure the pH\textsubscript{i} in B. subtilis cells. Miesenböck et al. (1998) constructed a pH-sensitive version of GFP (ratiometric pHluorin), which allows in situ expression and direct in vivo pH measurements, without disturbing the cells. We previously showed using pHluorin that sorbic acid lowers both the cytosolic and mitochondrial pH in Saccharomyces cerevisiae (Orij et al., 2009). Here we cloned the gene coding for ratiometric pHluorin into the IPTG inducible expression vector pDG148 (Stragier et al., 1988) and transformed the resulting plasmid into WT B. subtilis cells. Fluorescent microscopy validated the expression of pHluorin in strain ATB032 (our unpublished results).

In unstressed cells we measured a pH\textsubscript{i} of 7.3 ± 0.1 when cultured in a defined minimal medium of pH 6.4, maintaining a ΔpH of around 0.9 pH unit. This pH\textsubscript{i} value lies in range of previously reported values for B. subtilis (Booth, 1985; Breeuwer et al., 1996; Kitko et al., 2009; Shioi et al., 1980; Słonczewski et al., 2009). All three tested compounds (KS, KAc, and CCCP) clearly lowered the pH\textsubscript{i} in a concentration dependent manner (Fig. 2). Note that, compared to KS or KAc, very low concentrations of CCCP (μM range) clearly lowered the pH\textsubscript{i} (Fig. 2C). The maximal pH\textsubscript{i} drop seemed to
occur already within the first minutes of stress and did not recover to control levels. Longer incubations (2 h) also did not reveal a recovery from the drop in pH\textsubscript{i} values (our unpublished results). The stresses applied did not lead to a loss in OD\textsubscript{600} and the cells continued growing albeit at a reduced rate. Depending on the concentration of weak organic acid used the growth rate was reduced between 25 and 60% (Fig. 2). Addition of the tested compounds to the medium, as well as the growth of the control cells in

Fig. 1. Growth inhibition of exponentially growing *B. subtilis* by KAc and CCCP at various pH values. (A and B) The growth of PB2 in defined minimal medium at pH 6.4 was monitored in a microtiter plate reader. The closed diamonds indicate the growth of the control experiment (no addition of KAc or CCCP). (A) Stress conditions were 10 mM (open diamonds), 20 mM (closed triangles), 40 mM (open triangles), 80 mM (closed squares), 125 mM (open squares), and 250 mM (crosses) KAc. (B) Stress conditions were 0.25 mM (open diamonds), 0.5 mM (closed triangles), 1 mM (open triangles), 1.5 mM (closed squares), 2.25 mM (open squares), and 3 mM (crosses) CCCP. The OD\textsubscript{600} was monitored during 180 min. The values represent the means of four measurements, including the standard errors. (C, D, E and F) Percentage of growth inhibition compared to the control (no addition of stress) as a function of the calculated concentration of Ac-/C\textsubscript{0} (C) or CCCP-/C\textsubscript{0} (D) and HAc (E) or HCCCP (F) molecules. Experiments were performed at pH 5.9 (closed diamonds), pH 6.4 (open diamonds), pH 7.4 (closed triangles), and pH 7.8 (open triangles). The values represent the means of minimally two biologically independent experiments each consisting of four technical replicates, including the standard errors.
Fig. 3. The comparison of the drop in pH and GI % values reveals differences between weak organic acids. The average drop in pH was calculated between 2 and 30 min after stress and plotted against the GI % caused by 0.5, 1, 3, or 10 mM KS (closed diamonds), 5, 25, or 80 mM KAc (open squares), and 0.25, 0.5, 0.85, or 2 μM CCCP (closed triangles) when cells were grown at pHx of 6.4. Values represent the average of minimally two biological independent experiments, each based on minimally two technical replicates. The error bars indicate the standard deviation.

Fig. 4. Venn diagrams showing the number of significantly regulated genes unique for each type and combination of weak organic acid stress. Shown are significantly upregulated (A) or downregulated (B) genes in at least one time-point during 50 min of stress. The percentages of the number of uniquely regulated genes are shown in brackets. For clarity: the 125 genes uniquely upregulated by KS is 48.8% of all genes upregulated by KS (125 + 63 + 33 + 35 = 256 genes). The 35 genes uniquely upregulated by only KS and CCCP is 6.8% of all genes upregulated by KS and CCCP (125 + 63 + 33 + 35 + 31 + 224 = 511 genes), etc.
itself did not affect the pH_{ex} of 6.4 during the time course of the experiment (our unpublished data).

We plotted the GI_% caused by each weak organic acid against the average drop in pH_i measured between 2 and 30 min after stress (Fig. 3). Taking the GI_% into account makes it easier to compare the effects of the three tested compounds. From Fig. 3 it can be observed that CCCP gives the highest average drop in pH_i at similar growth inhibition percentages. Although the addition of 2 μM of CCCP reduced the growth rate with ~50% and caused an average pH_i drop of 0.3 pH unit, the cells still sustained a ΔpH of ~0.6 (pH_i minus pH_{ex}). Only causing growth almost completely by the addition of 200 mM KAc or 4 μM CCCP resulted in an inverse ΔpH (our unpublished data). Noteworthy is the observation that the addition of 0.5 mM KS at a pH_{ex} of 6.4 led to a significant inhibition of the growth rate by 13%, however no reduction in the cytosolic pH was measured (Fig. 3). On the other hand, low concentrations of CCCP or KAc stress did result in a significant drop in pH_i even at lower GI_%. These observations suggest that the growth inhibitory effect of sorbic acid is not solely the acidification of the cytosol.

3.3. Overall transcriptional responses of <i>B. subtilis</i> sub-lethally stressed with weak organic acids

We analyzed the transcriptional responses of <i>B. subtilis</i> sub-lethally stressed with weak organic acids. <i>B. subtilis</i> cells were grown to early exponential-phase in a buffered medium of pH 6.4 in well-controlled batch fermentors and treated with 25 mM KAc or 0.85 μM CCCP, resulting in a growth reduction of 33% and 28%, respectively. Samples were taken at 10, 20, 30, 40, and 50 min after exposure to stress and compared to an untreated control. Since the experimental set-up of the previously published transcriptional response of <i>B. subtilis</i> upon 3 mM KS stress was similar and the growth rate was reduced by 29% (Ter Beek et al., 2008), we could directly compare the obtained data with each other. Since the tested compounds have different chemical properties, the weak organic acids may induce responses in <i>B. subtilis</i> within different time-frames. Therefore, we analyzed the transcriptome in a time-dependent manner.

The treatment of <i>B. subtilis</i> cells with KAc or CCCP resulted in the significantly different expression of 503 and 582 genes, respectively. Including the 459 differentially expressed genes in the KS treatment (Ter Beek et al., 2008), in total 1107 genes were differentially expressed in at least one time point by at least one stress. Of these 1107 regulated genes, 657 were induced and 522 repressed upon weak organic acid stress (Fig. 4) and consequently, 72 genes illustrated up- and downregulation during the time-course analyzed. The largest overlap of induced genes was seen in KS and KAc stressed cultures (14.5%). However, the downregulated genes showed the largest overlap (11.1%) between the Ccpp- and KAc-treated cells (Fig. 4). The numbers of up- and downregulated genes for each time-point, specific for each stress or combination of stress, are given in the Supplementary Data (Table S2). The significantly regulated genes were divided into 7 categories and analyzed with hierarchical clustering (Eisen et al., 1998). These categories consisted of genes uniquely regulated by (a) KS, (b) KAc, (c) CCCP, (d) KS and KAc, (e) KAc and CCCP, (f) CCCP and KS, or by (g) KS, KAc and CCCP (Fig. 5, and Fig. S2–S7 of the Supplementary Data). All expression data were analyzed and compared using T-profiler, which transforms the transcriptional data of single genes into the behavior of gene groups that reflect biological processes in the cells (Boorsma et al., 2005). All gene groups with significant T values (E < 0.05) in any time point are presented in the Supplementary Data (Tables S3–S6).

3.4. Identification of a minimal generic transcriptional response to weak organic acids

Ninety-six out of the 1107 differentially expressed genes were uniquely induced or repressed by all three acids (Fig. 5). Out of these 96 genes 33 (5.0% of all 657 induced genes) were upregulated and 48 (9.2% of all 522 repressed genes) were downregulated by all three acids (Fig. 4). Accordingly, 15 genes showed opposite expression within the expression patterns of the three weak organic acids.

Major changes in genes involved in carbon metabolism were observed (Fig. 5). Many genes negatively regulated by carbon catabolite control protein CcpA were found significantly upregulated by weak organic acid stress. Among them were acsA, encoding acetyl-CoA synthetase responsible for the degradation of acetate (Grundy et al., 1993), and the acuABC genes, involved in the activation of AcsA (Gardner et al., 2006). T-profiler analysis also revealed the significant derepression of CcpA-regulated genes, which normally occurs when the preferred carbon source (glucose, fructose, and mannose) is depleted (Deutscher et al., 2002), and induction of TCA cycle genes (Table 1). HPLC analysis showed that glucose was not depleted during the time-course of the experiment (our unpublished results).

Notable is the induction of the ureABC operon, which codes for urease (Cruz-Ramos et al., 1997) (Fig. 5). Ureasases are known to facilitate survival in acidic environments in some bacterial pathogens, through the production of basic ammonia (Collins and D’Orazio, 1993; Mobley et al., 1995). However, a urease mutant (ureC) did not show an altered phenotype upon KS (Ter Beek et al., 2008), KAc or CCCP stress when compared to the WT (our unpublished results).

Most of the arginine biosynthesis and transport genes argCB-carAB-argF and argGH were significantly downregulated by all three stresses (Fig. 5). In addition, the majority of genes belonging to the KipR regulon ycsFGI-kiplAR-ycsK (Wang et al., 1997), involved in the inhibition of the activation of sporulation, were found to be repressed by weak organic acid stress (Fig. 5). Geometric distribution analysis also showed that KS, KAc, and CCCP significantly (<p> < 0.0001) repressed the genes controlled by AhcR, the arginine metabolism regulator (North et al., 1989), and the KipR regulon.

The largest part of the unknown genes yxxG-yyFl-yxxC-yyGH-yxxG-yxxJylKLM that lay adjacent to each other in the genome was significantly downregulated by all three acids (Fig. 5). Benzoic acid and salicylic acid, two weak organic acids with a pK_δ of 4.21 and 3, respectively, and an adapted culture of pH 6 compared to pH 7 repressed most of these unknown genes (Duy et al., 2007; Kitko et al., 2009; Wilks et al., 2009). The function of these genes in response to (weak) acid stress remains to be elucidated.

3.5. Transcriptional responses indicative of intracellular acidification

Using pHluorin we demonstrated that the weak organic acids tested all three lowered the pH_i (Fig. 2). When comparing similar GI...
% CCCP caused the largest drop in pHi and KS the smallest (Fig. 3). Except for the genes encoding urease, no apparent similar responses known to be involved in the maintenance of pH homeostasis were identified (Fig. 5). However, T-profiler analysis showed the significant induction of the SigB-mediated GSR by KAc and CCCP only (Table 2). The SigB regulon is induced by many different types of stress (e.g. glucose starvation, heat, low external pH, salt, and ethanol) and provides the cell with non-specific, multiple, and preventive stress resistance (Hecker et al., 2007). Polen et al. (2003) also reported the induction of the RpoS-mediated GSR in E. coli upon acetate, propionate and CCCP stress. In addition, some SigB-regulated genes were also induced in benzoate-adapted B. subtilis cells (Kitko et al., 2009).

The SigM regulon in B. subtilis is involved in maintaining membrane and cell wall integrity and is induced by heat, ethanol, cell wall antibiotics, superoxide stress and low pH (Thackray and Moir, 2003). CCCP clearly induced genes regulated by SigM (Table 2). However, KS and KAc both did not induce this regulon. The induction of SigM by CCCP might be the result of acidification of the cytosol and/or cell envelope stress (further discussed below). Since the strongest intracellular acidification was observed in CCCP-stressed cells (Fig. 3), this observation might explain the significant induction of the SigB-mediated GSR by KAc and CCCP only (Table 2). The SigB regulon is induced by many different types of stress (e.g. glucose starvation, heat, low external pH, salt, and ethanol) and provides the cell with non-specific, multiple, and preventive stress resistance (Hecker et al., 2007). Polen et al. (2003) also reported the induction of the RpoS-mediated GSR in E. coli upon acetate, propionate and CCCP stress. In addition, some SigB-regulated genes were also induced in benzoate-adapted B. subtilis cells (Kitko et al., 2009).

Table 1

<table>
<thead>
<tr>
<th>Gene groupa</th>
<th>Stress (no. of ORFs)b</th>
<th>T-value at time (min)c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Transcription factor-regulated gene group

<table>
<thead>
<tr>
<th>AHR-C_Negative</th>
<th>KS (7)</th>
<th>1.04</th>
<th>12.63</th>
<th>-7.68</th>
<th>0.63</th>
<th>0.21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KAc (7)</td>
<td>0.81</td>
<td>-0.03</td>
<td>-3.61</td>
<td>-4.38</td>
<td>-14.61</td>
</tr>
<tr>
<td></td>
<td>CCCP (112)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Copa_Negative</td>
<td>KS (156)</td>
<td>0.16</td>
<td>3.65</td>
<td>5.13</td>
<td>10.28</td>
<td>8.25</td>
</tr>
<tr>
<td></td>
<td>KAc (110)</td>
<td>2.02</td>
<td>0.04</td>
<td>-0.36</td>
<td>0.96</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>CCCP (112)</td>
<td>17.86</td>
<td>12.46</td>
<td>10.02</td>
<td>5.30</td>
<td>7.17</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Gene groupa</th>
<th>Stress (no. of ORFs)b</th>
<th>T-value at time (min)c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Transcription factor-regulated gene group

| **A. Ter Beek et al. / Food Microbiology 45 (2015) 71–82**

a Number of ORFs within each group present in the microarray experiments is shown in parentheses, NA: not available.

b The T-values presented are calculated on the basis of two biologically independent experiments. Shown are the gene groups that have at least one significant T-value (P < 0.05) for all three stresses in the analyzed time-course. Significant T-values are shown in bold and red (positive) or in bold and green (negative). NA: not available. T-profiler requires at least 7 genes in a group in order to calculate reliable T-values (P < 0.05) (Boissinot et al., 2005). However, geometric distribution analysis showed that KS, KAc, and CCCP significantly (P < 0.001) repressed the genes controlled by AHR-C and KAc. The significant induction of the SigB-mediated GSR by KAc and CCCP only (Table 2). The SigB regulon is induced by many different types of stress (e.g. glucose starvation, heat, low external pH, salt, and ethanol) and provides the cell with non-specific, multiple, and preventive stress resistance (Hecker et al., 2007). Polen et al. (2003) also reported the induction of the RpoS-mediated GSR in E. coli upon acetate, propionate and CCCP stress. In addition, some SigB-regulated genes were also induced in benzoate-adapted B. subtilis cells (Kitko et al., 2009).

The SiM regulon in B. subtilis is involved in maintaining membrane and cell wall integrity and is induced by heat, ethanol, cell wall antibiotics, superoxide stress and low pH (Thackray and Moir, 2003). CCCP clearly induced genes regulated by SiM (Table 2). However, KS and KAc both did not induce this regulon. The induction of SigM by CCCP might be the result of acidification of the cytosol and/or cell envelope stress (further discussed below). Since the strongest intracellular acidification was observed in CCCP-stressed cells (Fig. 3), this observation might explain the
absence of the induction of the SigM regulon in KS- or KAc-treated cultures.

3.6. Weak organic acids induce (distinct & opposite) responses that all indicate changes in the cell envelope

Sorbic acid caused a clear and unique induction of the fatty acid biosynthesis genes regulated by the fatty acid and phospholipid regulator FapR (Table 2). The gene group regulated by BkdR, involved in the synthesis of precursor molecules for branched-chain fatty acids (Debarbouille et al., 1999), was also uniquely induced by KS stress. The induction of both the FapR and BkdR-regulated genes may increase the number of long-chain and branched-chain fatty acids in the membrane (de Mendoza et al., 2002; Schujman et al., 2003). On the other hand, KAc caused a significant repression of the fatty acid biosynthesis genes, which could in theory result in shorter acyl-lipids in the membrane (Table 2).

We discovered altered expression of gene groups involved in the adaptation of the cell envelope (Table 2). CCCP clearly induced genes regulated by SigM (Table 2), involved in maintaining membrane and cell wall integrity (Thackray and Moir, 2003). However, KS and KAc both did not induce this regulon. The extracytoplasmic function sigma factor SigX and SigW are also involved in the regulation of cell envelope homeostasis (Helmann, 2002). A downregulation of SigW-mediated genes was seen in KS and CCCP-stressed cells and not in an acetate-treated culture (Table 2). A SigX-mediated repression of genes was clearly observed in KS and KAc-treated cells, but not in a CCCP-stressed culture during the time-course analyzed. YvrH is another regulator involved in the homeostasis of the cell surface (Serizawa et al., 2005). Although there is overlap between the SigX regulon and that of YvrH, only KS repressed this regulon significantly (Table 2).

4. Discussion

In this study we compared the effects of different weak organic acids, a class of established preservatives in the food industry. To get to a better understanding of the modes of action of these preservatives and the elucidation of resistance mechanisms in the spoilage organism B. subtilis we performed a comparative physiological and transcriptional analysis. We linked the direct measurement of pH, with growth inhibition and transcriptional responses. As weak organic acids we tested commonly utilized sorbic- and acetic acid, and compared their effects to that of CCCP, a classical uncoupler and weak organic acid. The negative charge of the CCCP anion is delocalized over the entire molecule and therefore, it may be assumed that the anion (besides the neutral molecule) is able to diffuse into the membrane more easily than e.g. S^-. By comparison with CCCP we tried to dissect the possible uncoupling effects from other specific effects caused by sorbic and acetic acid.

The growth inhibition curves determined at different pH values revealed that the undissociated form of the acids dominated the inhibitory effect (Fig. 1), with the HS contribution to the growth inhibition being the strongest out of the three acids used (i.e. no overlap of the curves for HAc and HCCCP in Figs. 1E and F). Additionally, the anions also contributed to the reduction in growth. Evidently, the relative contribution of CCCP$^-$ and Ac$^-$ (Figs. 1C and D) is far more than that of S^- (Ter Beek et al., 2008). The antimicrobial efficacy of the acids correlated to their solubility in the membrane.

To reveal the generic and specific responses of weak organic acids, microarray technology is a powerful tool. We analyzed the transcriptional responses of B. subtilis upon mild weak organic acid stress. An overview of the transcriptional responses of B. subtilis stressed with weak organic acids is depicted in Fig. 6. The three tested compounds KS, KAc, and CCCP all induced responses normally observed upon energy/nutrient limitation, such as the relief of the carbon catabolite repression, the induction of the RelA-dependent stringent response, and the significant down-regulation of gene groups involved in nucleotide metabolism, protein synthesis and translation (Table 1). These responses indicate that the cell may experience an actual nutrient limitation. However, nutrients (glucose) in the medium were in excess. Weak organic acid stress may lead to a hampering of the uptake of nutrients, likely caused by the decrease in the proton gradient through influx of protons. In addition, weak organic acids may interfere directly with the nutrient uptake machinery or enzymes further downstream the metabolic pathway.

Repression of the KipR regulon (involved in the inhibition of the activation of sporulation) by weak organic acids may indicate the release of the “brake” on the sporulation-regulatory cascade. The transcriptome of KS-, KAc-, or CCCP-treated cells did not reveal an induction of sporulation and no increase in spore counts were detected in KS-stressed cells (Ter Beek et al., 2008). On the contrary,
our previous data show that KS stress during exponential growth delayed sporulation induced in the stationary phase by glucose exhaustion (Hornstra et al., 2009). In our previous study, inactivation of ycsF, the first gene of the KipR regulon, did not lead to altered susceptibility for KS stress (Ter Beek et al., 2008). In addition, the ycsF mutant did not show an altered phenotype upon KAc or CCCP stress when compared to the WT (our unpublished data).

The main mode of action of weak organic acids is considered to be the acidification of the cytosol (Beales, 2004; Brul and Coote, 1999; Davidson, 2001; Ter Beek and Brul, 2010). Therefore, we expressed ratiometric pHluorin in B. subtilis cells to measure the pH. Using this approach, in situ expression and direct in vivo pH measurements are possible, without disturbing the cells. Recently, similar strategies were used by Martinez II et al. (2012), who expressed pHluorin in E. coli and B. subtilis to monitor the pHi upon low pH and benzoic acid stress in individual cells, and by us to measure the pHi in germinating and outgrowing B. subtilis spores (van Beilen and Brul, 2013). Fluorescent measurements with cells expressing pHluorin showed that all three weak organic acids lower the cytosolic pH in B. subtilis (Fig. 2). Recovery of pHi after the addition of weak organic acid stress was however not observed even after longer (2 h) incubations and seemed to coincide with the (concomitant) reduced growth rate. Transductional indications of an acidification of the cytosol were observed in cultures stressed with CCCP or KAc. Both induced the GSR and only CCCP caused the activation of the SigM regulon (Table 2). When taking the GI % into account, CCCP clearly reduced the pHi, the most effective of the three stresses, followed by KAc and then KS (Fig. 3).

These findings support the distinct observed inductions of the GSR and SigM regulon. It might be possible that a threshold level of acidification inside the cell is necessary before the GSR or SigM regulon are induced, or that other (additional) stress input signals are needed. It was shown that the induction of the GSR by nutritional stress is preceded by a drop in ATP levels (Zhang and Haldenwang, 2005). This indicates that the observed induction of the GSR in CCCP- and KAc-treated cells may be the consequence of a (severe) drop in ATP and/or the pHi. On the contrary, mild KS stress did not induce the SigB-mediated GSR in B. subtilis (Ter Beek et al., 2008). The absence of the GSR in (mild) sorbic acid-stressed cells might indicate that ATP or pHi levels were not severely affected.

Acetate-stressed cells clearly seem to shift their metabolism to acetate by the upregulation of absSD (genes encoding enzymes that convert pyruvate via acetolactate to acetoin) and acsA (degradation of acetate), and the downregulation of pdhABCD (encoding the pyruvate dehydrogenase complex) (see Figs. 5 and 6 and Fig. S6 of the Supplementary Data). In this manner, the cell may diminish both the possible toxic effects caused by acetate accumulation and the acidification of the cytosol by an increased production of acetoin.

Analysis of the transcriptomic data clearly revealed that weak organic acids induce (distinct & opposite) changes in expression of genes and gene groups involved in the cell envelope (Table 2 and Fig. 6). In cells stressed with KS a clear induction of the FapR and BkdR regulons were observed, which might lead to longer and more branched acyl-lipid chains. Remarkably, acetic acid stress reduced the expression of fatty acid biosynthesis genes. The downregulation of the des gene, encoding the sole membrane-bound acyl-lipid desaturase, in CCCP- and KAc-treated cells indicates a possible decrease in the fluidity of the membrane by lowering the amount of unsaturated fatty acids in the membrane (Fig. S3 and Fig. 6). This gene is regulated by two-component system DesK/DesR and induced by cold-shock (Mansilla and de Mendoza, 2005). DesK is thought to sense the membrane fluidity (Cybulski et al., 2002). Sorbic acid did not alter the expression of this gene. The question whether a des mutant shows increased tolerance to weak organic acid stress still remains to be answered.

Several studies report on the changes in membrane composition upon weak organic acid stress, implying a possible resistance mechanism (Golden et al., 1994; Henriques et al., 1997; Ter Beek et al., 2008; Warth, 1989). The induction of plasma membrane remodeling in B. subtilis by KS was supported by the reduced sensitivity toward the fatty acid biosynthesis inhibitor cerulenin upon sorbic acid stress (Ter Beek et al., 2008). Cells respond to the addition of cerulenin with the induction of the FapR regulon (Schujman et al., 2003).

Further responses indicating adaptations in the cell envelope were the downregulation of genes mediated by SigX (by KS and KAc), SigW (by KS and CCC), and YvrH (only by KS). Extracytoplasmic function sigma factor SigX is involved in the regulation of cell surface modification as a defense against cationic antimicrobial peptides (Cao and Helmann, 2004). The observed down-regulation of SigX-regulated genes may therefore lead to an altered (presumably more negatively-charged) cell envelope composition. This will likely repel the anion more strongly.

Our results suggest that organic acid-treated cells adapt their cell envelope. Although there is overlap between the observed cell envelope-related responses, each acid seems to induce a unique profile (Table 2). Notable, several (multiple) phospholipid biosynthesis mutants also caused induction of genes regulated by SigM and repression of the YvrH and FapR regulon (Salzberg and Helmann, 2008). Experiments with B. subtilis cells stressed with sorbic acid do show changes in the lipid composition (our unpublished results).

Notable, the unknown genes yhbIJ-yhcAB were highly upregulated in KS-stressed cells and highly downregulated in KAc-stressed cells (Fig S2). A similar reversed pattern in gene expression was observed for the genes regulated by the fatty acid and phospholipid regulator FapR (Table 2 and Fig. 6). The yhbI gene encodes a possible regulator of the MarR family, and yhcA a trp repressor binding protein. Interestingly, yhcA codes for a possible multidrug resistance protein. It was shown before that the inactivation of yhcA led to a sorbic acid resistant phenotype (Ter Beek et al., 2008). Other transcriptome studies revealed that the yhbIJ-yhcABC genes were highly upregulated in benzoate-adapted cells and when fully adapted B. subtilis cultures grown at lower pH (6 or 7) were compared to cultures grown at higher pH (7 or 9) (Kitko et al., 2009; Wilks et al., 2009). It should be noted however, that these experiments were performed in rich medium, which contains various (weak) organic acids that can cause additional effects. In addition, B. cereus cells stressed with HCl, lactic acid, and acetic acid, and outgrowing spores in the presence of sorbic acid also induced yhcA (Mols et al., 2010a, 2010b; van Melis et al., 2011).

Interestingly, CCCP stress induced the gene sodA, encoding superoxide dismutase (Fig. 6 and Fig. S7). This gene is thought to be regulated by SigB (Petersohn et al., 2001). Piper (1999) showed that weak organic acid enhanced the production of ROS in S. cerevisiae. Low pH stress in B. cereus also caused ROS and the induction of superoxide dismutase (Mols et al., 2010b). Whether a sodA mutant increases the sensitivity towards weak organic acids in B. subtilis remains to be elucidated.

5. Conclusions

Our data corroborates the notion that the effect of weak organic acids depends on the undissociated acid’s level and their membrane solubility. We show that all three stresses induced responses normally seen upon nutrient limitation, indicating adaptation mechanisms against uncoupling of the proton gradient. By expressing a pH-sensitive derivative of GFP in B. subtilis cells, we show that all three weak acids cause acidification of the cytosol. More specifically, CCCP stress causes the largest drop in pH, which
supports the observed induction of both the GSR and SigM-mediated response only in CCCP-stressed cells. Interestingly, all three acids clearly induced (distinct) responses that point towards a change in the composition of the cell envelope. Our comparative study gives insight in the generic and specific transcriptional responses caused by weak acids, supporting the observed differences in growth inhibitory efficacy. The data may be used to generate input for models that provide risk assessment of food spoilage. Specific transcription profiles allow for the estimation of the likelihood of stress cross-tolerance and hence the generation of strains that are able to withstand many antimicrobial treatments and thus with the capability to become ‘super spoilers’.

The described approach illustrates the value of mechanistic ‘omics’ data for hazard characterization where it concerns the generation of population based data on transcriptional responses towards antimicrobial compounds used as food preservatives. The data provides input for mechanistic analysis of highly stress-resistant ‘super spoilers’ (see also Ter Beek and Bruil (2010)) as well as microbes that challenge microbiological food safety (Bruil et al., 2012; McMeekin et al., 2010). The limitation of the study is that such approaches yield no molecular physiological information on those organisms that become refractive to weak organic acid stress because they shut down cellular metabolism and become essentially dormant ‘persisters’ (see Zhang (2014) for a recent review on stress resistant persisters). In order to capture such generally low frequent events, the use of single cell analysis techniques is imperative. Recently Pandey et al. (2013) have developed live-imaging techniques that are now extended to allow for the visualization at single cell level of fluorescent reporter proteins useful for pH imaging as well as the action of specific stress response routes, in vegetative cells and germinating B. subtilis spores (Pandey et al. our unpublished observations; see for a broad overview of the use of fluorescence microscopy to study intracellular signaling in bacteria e.g. Kentner and Sourjik (2010)). Upon identification of key regulatory units in stress response reactions, for instance the SigB regulon, appropriate (multiple) fluorescent constructs can be generated to follow cellular stress responses (see also Hornstra et al. (2009)). Combining these approaches with appropriate direct molecular sample analysis techniques in the food chain (Sowmya et al., 2012) as well as microfluidics analysis (see e.g. Fritzsch et al. (2013) for a possible experimental approach), will allow for the generation of single cell molecular mechanistic data of relevance to the food chain. Due to the mechanistic basis, this data should yield potentially highly robust models of use to microbiological risk assessment. Such molecular genomics based approaches to the benefit of food production are currently being evaluated in the framework of formal microbiological risk assessment by the European Food Safety Authority (Pielaat et al., 2013).

Acknowledgments

ATB is supported by a grant from the Dutch Foundation for Applied Sciences (STW 10431). Dr Gero Miesenbock is thanked for providing the original ratiometric pHluorin gene, used to construct pYES2-PACT1-PHluorin, which formed the template for cloning the pHluorin gene into pDG148. We would like to express our gratitude to Floyd Witting of the Microarray Department of Amsterdam for coordinating the hybridization and scanning of the microarray slides. We acknowledge Alicia Prats Tur and Marian de Jong for their technical assistance.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.fm.2014.02.013.