Modelling flow-induced vibrations of gates in hydraulic structures

Erdbrink, C.D.

Publication date
2014

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction ... 7
 1.1 Motivation ... 7
 1.2 Terminology of computational modelling .. 10
 1.2.1 Model building .. 10
 1.2.2 Model use ... 12
 1.3 Thesis aims .. 14
 1.4 Thesis set-up ... 15
2 Background ... 17
 2.1 Introduction ... 17
 2.2 Hydrodynamics: flow around a static gate ... 17
 2.2.1 General description .. 17
 2.2.2 Turbulence ... 20
 2.2.3 Hydrodynamic forces on a static underflow gate ... 21
 2.2.4 Navier-Stokes equations .. 24
 2.3 Linear vibrations .. 25
 2.3.1 Basic theory .. 25
 2.3.2 Frequency domain .. 28
 2.4 Physics of flow-induced gate vibrations .. 29
 2.4.1 Introduction to flow-induced vibrations ... 29
 2.4.2 Dimensionless parameters ... 30
 2.4.3 Causes of flow-induced gate vibrations ... 32
 2.4.4 Added coefficients .. 36
 2.4.5 Consequences of gate vibrations .. 38
 2.4.6 Myths about gate vibrations .. 39
 2.5 Generalisation and problem solving in practice .. 40
 2.6 Conclusions from the physical description .. 42
3 Physics-based numerical modelling .. 45
 3.1 Introduction .. 45
 3.2 Applying CFD for problem solving in hydraulic engineering ... 45
 3.3 Setting up a FIV model .. 49
 3.3.1 Finite element method .. 49
 3.3.2 Turbulence modelling ... 49
6.3.2 Artificial added coefficients ... 101
6.4 Results of calibrated numerical model .. 102
6.5 Combined discussion of physical experiment and FEM modelling 116
 6.5.1 Vibration mechanism ... 116
 6.5.2 Effect of flow through the ventilated gate ... 117
 6.5.3 Implementation in prototype gates .. 118
 6.5.4 Evaluation of numerical modelling .. 118
6.6 Combined conclusions of physical experiment and FEM modelling 119
6.7 Summary .. 120
6.8 Additional simulations: flow velocity and pressure of case 1 121
6.9 Additional simulations: an alternative ventilation design 122
7 Data-driven operation .. 125
 7.1 Introduction .. 125
 7.2 What quantities to measure? ... 126
 7.3 System set-up .. 127
 7.3.1 Overview of the components .. 127
 7.3.2 Machine learning module ... 128
 7.3.3 Physics-based model ... 131
 7.4 Results of experimental data classification .. 131
 7.5 Application challenges ... 133
 7.5.1 General .. 133
 7.5.2 Multiple degrees of freedom .. 134
 7.5.3 Applying machine learning in engineering 135
 7.6 Conclusions ... 136
8 Evolutionary computing for system identification 137
 8.1 Introduction ... 137
 8.2 Meta-heuristics and evolutionary computing .. 139
 8.3 Differential evolution .. 140
 8.4 Identifying self-excited vibrations using differential evolution 142
 8.4.1 Approach ... 142
 8.4.2 Results .. 143
 8.4.3 Sensitivity analysis .. 147
 8.4.4 Improving the search by including results from FFT 149
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.5</td>
<td>Discussion</td>
<td>152</td>
</tr>
<tr>
<td>8.5</td>
<td>Application of evolutionary system identification to experimental data</td>
<td>153</td>
</tr>
<tr>
<td>8.6</td>
<td>Genetic programming and symbolic regression</td>
<td>156</td>
</tr>
<tr>
<td>8.7</td>
<td>Conclusions and outlook</td>
<td>157</td>
</tr>
<tr>
<td>9</td>
<td>Inferring numerical algorithms</td>
<td>159</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>159</td>
</tr>
<tr>
<td>9.2</td>
<td>Inferring solver algorithms</td>
<td>160</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Introduction</td>
<td>160</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Background</td>
<td>162</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Method for generating computational schemes by an evolutionary algorithm</td>
<td>164</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Results and discussion</td>
<td>166</td>
</tr>
<tr>
<td>9.3</td>
<td>Conclusions</td>
<td>172</td>
</tr>
<tr>
<td>9.4</td>
<td>Reflection on the work in Chapters 8 and 9</td>
<td>172</td>
</tr>
<tr>
<td>10</td>
<td>Conclusions and perspectives</td>
<td>175</td>
</tr>
<tr>
<td>10.1</td>
<td>Collected conclusions</td>
<td>175</td>
</tr>
<tr>
<td>10.2</td>
<td>Reflection</td>
<td>176</td>
</tr>
<tr>
<td>10.3</td>
<td>Perspectives and recommendations</td>
<td>177</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>179</td>
</tr>
<tr>
<td>Publications</td>
<td></td>
<td>189</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>191</td>
</tr>
<tr>
<td>Samenvatting</td>
<td></td>
<td>193</td>
</tr>
<tr>
<td>Postscript</td>
<td></td>
<td>195</td>
</tr>
<tr>
<td>Curriculum vitae</td>
<td></td>
<td>198</td>
</tr>
</tbody>
</table>