Modelling flow-induced vibrations of gates in hydraulic structures

Erdbrink, C.D.

Citation for published version (APA):
Contents
1 Introduction... 7
 1.1 Motivation .. 7
 1.2 Terminology of computational modelling.. 10
 1.2.1 Model building ... 10
 1.2.2 Model use ... 12
 1.3 Thesis aims .. 14
 1.4 Thesis set-up .. 15
2 Background.. 17
 2.1 Introduction ... 17
 2.2 Hydrodynamics: flow around a static gate ... 17
 2.2.1 General description ... 17
 2.2.2 Turbulence .. 20
 2.2.3 Hydrodynamic forces on a static underflow gate ... 21
 2.2.4 Navier-Stokes equations .. 24
 2.3 Linear vibrations .. 25
 2.3.1 Basic theory .. 25
 2.3.2 Frequency domain .. 28
 2.4 Physics of flow-induced gate vibrations ... 29
 2.4.1 Introduction to flow-induced vibrations ... 29
 2.4.2 Dimensionless parameters ... 30
 2.4.3 Causes of flow-induced gate vibrations ... 32
 2.4.4 Added coefficients ... 36
 2.4.5 Consequences of gate vibrations ... 38
 2.4.6 Myths about gate vibrations .. 39
 2.5 Generalisation and problem solving in practice .. 40
 2.6 Conclusions from the physical description ... 42
3 Physics-based numerical modelling .. 45
 3.1 Introduction ... 45
 3.2 Applying CFD for problem solving in hydraulic engineering .. 45
 3.3 Setting up a FIV model ... 49
 3.3.1 Finite element method .. 49
 3.3.2 Turbulence modelling .. 49
6.3.2 Artificial added coefficients ... 101
6.4 Results of calibrated numerical model .. 102
6.5 Combined discussion of physical experiment and FEM modelling .. 116
 6.5.1 Vibration mechanism .. 116
 6.5.2 Effect of flow through the ventilated gate .. 117
 6.5.3 Implementation in prototype gates ... 118
 6.5.4 Evaluation of numerical modelling .. 118
6.6 Combined conclusions of physical experiment and FEM modelling 119
6.7 Summary .. 120
6.8 Additional simulations: flow velocity and pressure of case 1 .. 121
6.9 Additional simulations: an alternative ventilation design .. 122
7 Data-driven operation .. 125
 7.1 Introduction .. 125
 7.2 What quantities to measure? ... 126
 7.3 System set-up .. 127
 7.3.1 Overview of the components .. 127
 7.3.2 Machine learning module ... 128
 7.3.3 Physics-based model ... 131
 7.4 Results of experimental data classification .. 131
 7.5 Application challenges ... 133
 7.5.1 General .. 133
 7.5.2 Multiple degrees of freedom .. 134
 7.5.3 Applying machine learning in engineering ... 135
 7.6 Conclusions ... 136
8 Evolutionary computing for system identification .. 137
 8.1 Introduction ... 137
 8.2 Meta-heuristics and evolutionary computing ... 139
 8.3 Differential evolution .. 140
 8.4 Identifying self-excited vibrations using differential evolution ... 142
 8.4.1 Approach ... 142
 8.4.2 Results .. 143
 8.4.3 Sensitivity analysis ... 147
 8.4.4 Improving the search by including results from FFT ... 149