Modelling flow-induced vibrations of gates in hydraulic structures

Erdbrink, C.D.

Publication date
2014

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1. Introduction
 1.1 Motivation
 1.2 Terminology of computational modelling
 1.2.1 Model building
 1.2.2 Model use
 1.3 Thesis aims
 1.4 Thesis set-up

2. Background
 2.1 Introduction
 2.2 Hydrodynamics: flow around a static gate
 2.2.1 General description
 2.2.2 Turbulence
 2.2.3 Hydrodynamic forces on a static underflow gate
 2.2.4 Navier-Stokes equations
 2.3 Linear vibrations
 2.3.1 Basic theory
 2.3.2 Frequency domain
 2.4 Physics of flow-induced gate vibrations
 2.4.1 Introduction to flow-induced vibrations
 2.4.2 Dimensionless parameters
 2.4.3 Causes of flow-induced gate vibrations
 2.4.4 Added coefficients
 2.4.5 Consequences of gate vibrations
 2.4.6 Myths about gate vibrations
 2.5 Generalisation and problem solving in practice
 2.6 Conclusions from the physical description

3. Physics-based numerical modelling
 3.1 Introduction
 3.2 Applying CFD for problem solving in hydraulic engineering
 3.3 Setting up a FIV model
 3.3.1 Finite element method
 3.3.2 Turbulence modelling
3.3.3 The arbitrary Lagrangian-Eulerian mesh .. 50
4 Multi-scale model for discharge control and flow impact 55
 4.1 Introduction ... 55
 4.2 Approach and method ... 56
 4.2.1 General .. 56
 4.2.2 Configurations of multi-gated structure ... 57
 4.2.3 System model and gate control ... 58
 4.2.4 Discharge model ... 61
 4.3 CFD simulations ... 64
 4.3.1 Model set-up .. 64
 4.3.2 Analysis of simulation output: flow impact .. 66
 4.4 Model validation ... 67
 4.5 Results of test case simulations ... 69
 4.5.1 Results of system and discharge model .. 69
 4.5.2 Results of CFD simulations .. 72
 4.5.3 Results of flow analysis ... 74
 4.6 Model coupling tests ... 76
 4.7 Conclusions of this chapter ... 78
5 Physical experiment .. 79
 5.1 Preface ... 79
 5.2 Introduction ... 79
 5.3 Experimental set-up ... 81
 5.4 Definitions .. 86
 5.5 Measurement conditions and variation of parameters 87
 5.6 Results of physical experiment ... 88
 5.7 Comparison with other experimental results .. 91
 5.8 Summary ... 91
 5.9 Photographs from the experiment .. 91
6 Numerical simulation study of gate vibration .. 97
 6.1 Introduction ... 97
 6.2 Model set-up .. 97
 6.3 Selected cases and model validation .. 100
 6.3.1 Added mass validation .. 100