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8 Evolutionary	computing	for	system	 	
identification7	

8.1 Introduction	

Classes	of	computational	methods	for	hydraulic	structure	dynamics	can	be	categorised	in	a	
similar	way	as	 for	general	structural	analysis,	namely	by	distinguishing	direct	and	 indirect	
methods	 in	the	 time	and	frequency	domain.	The	 forward	approach	of	Chapter	6	 is	a	direct	
method	in	the	time	domain	and	has	the	advantage	of	capturing	potential	non‐linearities,	but	
the	disadvantage	that	only	a	single	configuration	(defined	by	mass	and	stiffness	of	the	mass‐
spring	and	by	the	hydraulic	boundary	conditions)	can	be	considered	per	simulation.	This	is	
highly	 inconvenient	 if	 the	 added	 coefficients	 and	 response	 frequency	 have	 a	 mutual	
dependence	 –	 which	 was	 rightly	 assumed	 not	 to	 be	 the	 case	 in	 Chapter	 6	 because	 of	 a	
negligible	free‐surface	influence.	Frequency	domain	methods	have	been	mentioned	briefly	in	
Sections	 2.3	 and	 7.5.2.	 The	 straightforward	 extension	 to	 more	 degrees	 of	 freedom	 is	 an	
advantage	of	modal	analyses.	This	 involves	the	assumption	of	equal	damping	distributions,	
however,	and	non‐linearities	are	not	apparent	from	frequency	spectra.	An	approach	not	yet	
mentioned	is	the	impulse	response	method,	which	derives	the	response	to	an	arbitrary	time‐
varying	force	from	the	response	to	a	unit	impulse	using	Duhamel’s	convolution	integral	(e.g.	
Maymon,	1998).	This	computation	includes	the	whole	frequency	range,	but	the	obvious	catch	
is	that	the	unit	impulse	response	has	to	be	known	first.	
	
So	established	computational	methods	for	gate	vibrations	meet	with	three	obstacles:	
‐	 The	 assumption	 of	 low	 positive	 damping,	 this	 is	 convenient	 computationally,	 but	
irrealistic	in	many	scenarios.	

‐	 The	 possibility	 of	 mutual	 dependency	 between	 added	 coefficients	 and	 response	
frequency.	

‐	 The	 existence	 of	 non‐linear	 behaviour,	 caused	 for	 instance	 by	 the	 stiffness	 force	
varying	 non‐linearly	 with	 displacement	 (e.g.	 when	 the	 suspension	 consists	 of	 a	
hydraulic	 cylinder)	 or	 the	 combined	 time‐dependent	working	 of	 negative	 hydraulic	
damping	and	increased	structural	damping	at	high	amplitudes.	

	
A	fourth	practical	complication	is	that	often	only	the	gate	response	can	be	measured,	as	was	
the	 case	 in	 the	experiment	of	Chapter	5,	 and	not	 the	 flow	 forces	on	 the	gate.	This	 chapter	
therefore	 looks	 into	 a	 new	way	 of	model	 building	with	 the	 gate	motion	 represented	 as	 a	
dynamical	system.	
	
System	identification	studies	embarked	on	the	task	of	 inferring	ODE	models	a	 few	decades	
ago	 (Åström	 and	 Eykhoff,	 1971).	 However,	 the	 fixed	 structure	 acting	 as	 a	 vehicle	 for	 the	
parameter	optimization	was	usually	not	an	ODE	itself,	but	rather	an	easy‐to‐compute	basis	
function	 like	 a	 polynomial.	 Non‐linear	 system	 identification	 techniques	 for	 structural	
																																																																		
7	This	chapter	is	partly	based	on	texts	and	content	from	the	paper	“Identifying	self‐excited	vibrations	
with	evolutionary	computing”,	Procedia	Computer	Science,	Vol.29,	pp.637‐647,	2014.	ISSN	1877‐0509.	
This	will	be	presented	at	the	ICCS	2014	conference	in	June	2014.	
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dynamics	 are	 extensively	 described	 in	 Kerschen	 et	 al.	 (2006).	 There	 is	 no	 mention	 of	
heuristic	 techniques;	 the	 evolutionary	 approach	 of	 this	 chapter	 does	 not	 appear	 in	 this	
overview.	The	advent	of	modern	heuristics	and	the	steady	increase	in	computing	power	has	
enormously	 boosted	 possibilities	 for	 regression	 of	 all	 kinds	 (e.g.	 by	 artificial	 neural	
networks),	but	many	techniques	do	not	provide	clear	insights	into	the	working	of	the	system.	
In	 applied	 hydrodynamics,	 working	 with	 pitch‐black	 models	 is	 seen	 as	 an	 inconvenient	
drawback.	There	 is	always	a	desire	 to	build	 feeling	and	confidence	along	with	building	 the	
model.	
	
The	 second‐order	 ODE	 of	 motion	 together	 with	 initial	 conditions	 form	 an	 initial	 value	
problem	 (or	 Cauchy	 problem).	 Solving	 it	 numerically,	 for	 example	 with	 Runge‐Kutta	
schemes,	 is	a	 forward	problem:	 the	 time	series	yሺtሻ	 is	unknown.	 If,	on	 the	contrary,	yሺtሻ	 is	
known,	then	the	 inverse	task	of	 finding	the	ODE	that	produced	it	 is	a	system	identification	
problem,	see	Figure	8.1.	
	

	
	
Figure	8.1.	The	problem	of	finding	the	ODE	responsible	for	producing	a	given	one‐dimensional	time	series.	
The	 ODE	 can	 have	 an	 unknown	 algebraic	 structure	 and/or	 unknown	 coefficients.	 This	 scheme	 is	
reminiscent	of	the	optimization	scheme	in	Section	1.2.	
	
If	 only	 the	 numerical	 coefficients	 of	 the	 ODE	 are	 unknown,	 but	 the	 structure	 of	 the	
expression	is	known,	an	optimization	problem	in	continuous	space	(of	dimension	n	equal	to	
the	 number	 of	 coefficients)	 needs	 to	 be	 solved.	 Let	 us	 look	 at	 a	 few	 instances	 of	 ODEs	 in	
Figure	8.2.	
	
ODE	 ሷݕ										 െ ሶݕܿ  ݕ ൌ 0	 ሷݕ							 െ ሺ1ߤ െ ሶݕଶሻݕ  ݕ ൌ 0 							݂ሺݕሻݕሷ  ݕ݇ ൌ 0	
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Figure	8.2.	Vibrations	 in	 time	domain	 (upper	row)	and	phase	plane	 (lower	row).	Left	column:	constant	
negative	damping;	middle	column:	non‐linear	damping	by	Van	der	Pol	oscillator;	right	column:	non‐linear	
mass	 term.	The	 corresponding	ODE	 equations	are	written	on	 top;	 y	 is	 the	 vertical	displacement	of	 the	
mass.	The	initial	states	are	indicated	by	thick	dots.	
	
The	first	two	columns	in	Figure	8.2	show	quintessential	self‐excitation:	a	negative	damping	
constant	and	the	Van	der	Pol	oscillator.	The	latter	famous	example	has	a	non‐linear	damping	
term	and	for	high	enough	values	of	the	parameter	,	 so‐called	 ‘relaxation	vibrations’	occur	
which	show	sudden	transitions	with	short	moments	of	high	velocity	at	certain	parts	of	 the	
period.	The	third	example	in	the	right	column	of	Figure	8.2	shows	an	undamped	oscillation	
with	 a	 non‐linear	mass	 term.	 A	 standard	way	 of	 depicting	 non‐linearities	 is	 in	 the	 phase‐
plane;	a	deformed	limit	cycle	is	a	good	telltale	of	non‐linear	behaviour.	
	
The	 aim	 in	 this	 chapter	 is	 to	 explore	 evolutionary	 computing	 ሺECሻ	 for	 uncovering	 ODEs	
describing	 non‐linear,	 in	 particular	 self‐excited	 vibration	 types.	 This	 identification	
overcomes	the	first	and	the	third	obstacle	mentioned	in	this	section	and	certainly	meets	the	
criterion	 of	 fostering	 ‘Fingerspitzengefühl’.	 In	 fact,	 knowing	 the	 exact	 ODE	 reveals	 very	
useful	 information	 for	 the	 analyst	 not	 found	 from	 Fourier	 analyses:	 non‐linear	 terms	
ሺdependencies	 on	 frequencyሻ	 and	 added	 mass	 terms.	 The	 desire	 is	 to	 contribute	 to	 the	
development	 of	 a	 tool	 for	 detecting	 self‐excited	 vibrations	 before	 they	 grow	 beyond	 safe	
limits	and	cause	dangerously	high	dynamic	forces	on	the	structure.	
	
First	a	ridiculously	short	 introduction	to	heuristics	and	evolutionary	computing	 is	given	 in	
Section	 8.2.	 Then	 Section	 8.3	 zooms	 in	 on	 differential	 evolution,	 which	 is	 applied	 to	 the	
problem	of	 system	 identification	 (Section	 8.4).	 Section	8.5	 shares	 thoughts	 on	 and	 gives	 a	
proof	 of	 concept	 of	 the	 application	 of	 the	 presented	 method	 to	 the	 experimental	 data	 of	
Chapter	5.	Section	8.6	then	gives	remarks	on	genetic	programming	and	symbolic	regression	
and	Section	8.7	draws	conclusions	and	gives	an	outlook	on	future	work.	

8.2 Meta‐heuristics	and	evolutionary	computing	

In	 optimization	 there	 are	 two	 kinds	 of	methods:	 exact	methods	 that	 guarantee	 to	 find	 an	
optimal	solution,	and	heuristic	methods	that	do	not	give	this	guarantee.	The	issue	with	exact	
methods	 is	 that	 they	 become	 practically	 unusable	 for	 larger	 and	 harder	 optimization	
problems.	Heuristic	optimization	methods	were	developed	as	faster	alternatives,	but	without	
the	 assurance	 of	 returning	 the	 optimal	 solution.	 Rothlauf	 (2011)	 remarks	 that	 standard	
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heuristics	“are	problem‐specific	and	exploit	known	rules	of	thumb,	tricks	or	simplifications	
to	obtain	a	high‐quality	 solution”.	The	same	author	distinguishes	 three	classes	of	heuristic	
optimization	methods:	
‐	heuristics	(divided	in	construction	heuristics	and	improvement	heuristics)	
‐	approximation	algorithms	(which	provide	a	quality	bound	for	the	solution)	
‐	modern	heuristics,	also	called	meta‐heuristics.	

	
A	 typical	 feature	of	meta‐heuristics	 is	 the	 iterative	 improvement	of	 solutions,	while	 at	 the	
same	time	solutions	of	lower	quality	are	allowed	to	be	part	of	the	search.	This	has	to	do	with	
exploitation	 and	 exploration	 phases	 in	 the	 search.	 Meta‐heuristics	 are	 seen	 as	 general‐
purpose	techniques	that	can	be	applied	to	many	different	problems.	
	
A	 popular	 meta‐heuristic,	 evolutionary	 computing	 (EC)	 is	 a	 form	 of	 computational	
intelligence	 inspired	 by	 nature.	 Evolutionary	 algorithms	 (EAs)	 are	 stochastic	 population‐
based	search	algorithms	with	a	common	basic	loop:	the	reproduction	cycle.	A	comprehensive	
introduction	to	EC	 is	given	by	Eiben	and	Smith	ሺ2007ሻ.	 In	short,	a	population	of	candidate	
solutions	 (individuals)	 gradually	 evolves	 under	 the	 influence	 of	 one	 or	 more	 objectives	
dictated	 by	 a	 fitness	 function.	 In	 the	 reproduction	 cycle,	 successively	 parents	 are	 selected	
from	the	population	to	engage	in	variation	operations	(recombination	and	mutation),	giving	
offspring,	 from	 which	 eventually	 individuals	 are	 selected	 to	 move	 to	 the	 next	 generation	
(survivor	selection).	Figure	8.3	depicts	a	(debatable)	family	tree	of	evolutionary	algorithms.	
	

	
	

Figure	8.3.	Family	tree	of	evolutionary	algorithms,	listed	chronologically	from	left	to	right.	

8.3 Differential	evolution	

Not	 generally	 considered	 as	 one	 of	 the	 classic	 EAs,	 differential	 evolution	 (DE)	 is	 a	
competitive	 derivative‐free	 global	 optimization	 method	 introduced	 by	 Storn	 and	 Price	
(1997).	Its	distinguishing	feature	is	the	use	of	difference	vectors	in	the	mutation	operation.	
The	 global	 scheme	 of	 DE	 is	 shown	 in	 Figure	 8.4,	 adopting	 the	 terminology	 by	 Das	 and	
Sugantham	 (2011).	This	 is	 the	most	basic	 version	with	 a	mutation	based	on	 three	vectors	
and	strategy	parameters	F	and	CR.	
	

evolutionary algorithms
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Figure	8.4.	Global	scheme	of	basic	differential	evolution:	definition	of	vectors.	
	
It	has	a	natural	robustness	that	makes	it	stand	out	from	some	earlier	EAs.	 Its	performance	
has	grown	by	several	improvements	(Das	and	Suganthan,	2011),	most	notably	by	the	use	of	
parameter	 control.	 In	 this	 technique	 the	 strategy	 parameters	 change	 during	 the	 run,	 see	
Eiben	 et	 al.	 (1999).	 We	 apply	 a	 recent	 version	 of	 DE	 by	 Choi	 et	 al.	 (2013)	 that	 has	 self‐
adaptive	 parameter	 control.	 They	 call	 it	 ‘Cauchy	 DE’	 because	 the	 strategy	 parameters	 are	
varied	 by	 drawing	 from	 Cauchy	 distributions.	 The	 pseudo‐code	 of	 the	 algorithm	 is	 given	
below.	
	
	

Initialization 
-Initialize population of NP vector individuals X1,G, … , XNP,G where Xi,G = [x1,i,G, x2,i,G, … , xC,i,G] and 
where C is the number of coefficients that are being evolved, G the generation (G = 0, ... , Gmax). 
Entries xj,i,0 are uniformly random from [-1,1] for i = 1, … , NP and j = 1, … , C. 
-Initialize control parameters CRi,0 = 0.25, Fi,0 = 0.6 (acc. to Choi et al. 2013) and adaptation 
parameters CRavg,0 = CRi,0 and Favg,0 = Fi,0  
-Generate target data y(t), y’(t) and divide into training and test sets. 
 
FOR R = 1 to Rmax DO  % run loop 
    FOR G = 1 to Gmax DO % generation loop 
        FOR i = 1 to NP DO  % individuals loop 
            Main loop: Differential Evolution 
            -Determine fitness f(Xi,G) of individuals (see routine) 
            -Mutation: generate a mutant vector Vi,G = Xr1 + Fi,G*(Xr2 – Xr3) from three donor vectors Xr1, Xr2, 

Xr3 randomly selected from the individuals of generation G-1. 
            -Crossover: generate a trial vector Ui,G composed of uj,i,G (j = 1, … , C) by applying the rule IF 

rand[0,1] ≤ CRi,G-1 OR j = jrand THEN uj,i,G = vj,i,G , ELSE uj,i,G = xj,i,G-1 , where jrand is a random 
integer 1 ≤ jrand ≤ C and vj,i,G is an entry of Vi,G. 

            -Selection: determine fitness f(Ui,G) of trial vectors. IF f(Ui,G) ≥ f(Xi,G-1) THEN Xi,G = Ui,G and 
inherit associated fitness and control parameters, ELSE Xi,G = Xi,G-1 and leave fitness and 
control parameters unchanged. 

        END FOR 
        -Update control parameters Fi,G and CRi,G by adding a randomly drawn number from the Cauchy 

distribution Ca(0,0.1) to the mean value of the control parameters of all successfully evolved 
vectors. Truncate if necessary. 

        -Replace a non-fittest individual by a newly generated individual. 
    END FOR 
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vector

initialization of 
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target vector 
(parent)

3 random 
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    Post analysis 
    Compute test error of run R by solving the ODE with the winning set of coefficients and determining 

the mean absolute error of all predicted values compared to the test values. 
END FOR 
Compute mean duration and mean and min of test errors of all runs R…Rmax. 
 
 
Fitness computation 
-Insert the coefficients of each candidate vector in the fixed, assumed ODE equation structure. 
-Apply Runge-Kutta, with adaptive step-size and predetermined relative error tolerance for numerical 

integration. 
-Fitness := -1*MAE*penalty, where MAE is the mean absolute error of the training data compared to 

the result from solving the ODE with candidate coefficients. The penalty punishes candidate models 
for which the integration failed to determine values at all training times, penalty := ((size of training 
set – size of candidate set) / size of candidate set)*100 and penalty = 1 if the integration was 
completely successful. 

	

8.4 Identifying	self‐excited	vibrations	using	differential	evolution	

8.4.1 Approach	
The	aim	of	this	section	is	to	identify	vibrations	from	only	a	displacement	(output)	signal	y(t).	
That	is,	without	using	signals	of	pressures	on	the	gates	(input).	This	is	preferably	done	in	a	
way	 that	 permits	 speed‐up	 to	 practical	 time	 frames	 for	 early‐warning	 systems.	 It	 will	 be	
assumed	that	the	main	part	of	the	structure	is	already	known:	the	second	order	ODE	for	all	
vibrations	 without	 external	 forcing,	 with	 optional	 unknown	 non‐linear	 terms.	 Differential	
evolution	is	used	to	optimise	a	set	of	coefficients	of	these	ODEs.	
	
A	generated	synthetic	data	set	is	randomly	divided	into	a	training	set	and	a	test	set,	based	on	
a	chosen	percentage	of	data	to	be	used	for	training.	After	the	evolution	has	ended,	the	unseen	
target	points	are	used	to	quantify	the	predictive	power	of	the	candidate	model	by	computing	
a	test	error.	 In	order	to	compare	the	test	errors	of	different	target	data	sets,	we	normalize	
the	mean	absolute	test	error	(MAE)	as	follows:	
	

	 ,ෝ࢟ሺܧܣܯܰ ሻ࢟ ≔
1
݊
ቤ

ොݕ െ തݕ
௬ߪ

െ
ݕ െ തݕ
௬ߪ

ቤ ൌ
1
݊
1
௬ߪ
|ݕො െ |ݕ ൌ
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	,	 (8.1)

	
where	࢟ෝ	contains	the	predictions	and	࢟	the	target	values	for	testing,	ݕത	is	the	mean	of	࢟	and	
	are	paper	this	of	table	the	in	and	figures	the	in	results	All	.࢟	of	deviation	standard	the	is	௬ߪ
given	 as	 normalized	 mean	 absolute	 test	 errors	 (NMAE).	 The	 computations	 were	 done	
unparallellized	on	a	single	Intel	i7	processor,	2.93	GHz,	8	Gb	RAM.	
	
The	 numerical	 experiments	 consist	 of	 three	 parts:	 a	 validation	 case,	 the	 self‐excited	 cases	
and	a	sensitivity	analysis.	The	results	are	reported	in	Sections	8.4.2	and	8.4.3.	
The	 case	 of	 forced	 vibrations	 for	 a	 linear	 system	 with	 constant	 coefficients	 is	 used	 for	
validation:	
	

	 ሷݕ݉  ሶݕܿ  ݕ݇ ൌ ܨ sinሺ߱ݐሻ, (8.2)
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where	y	 is	the	displacement,	t	 is	time	(the	independent	variable)	and	all	other	symbols	are	
physical	constants.	Newtonian	notation	is	used	for	time	derivatives.	Together	with	the	real‐
valued	initial	conditions	ݕ	and	ݕሶ,	equation	8.2	constitutes	an	initial	value	problem	that	will	
be	solved	in	two	ways:	(i)	non‐linear	regression	on	the	analytical	solution	and	(ii)	regression	
on	a	fixed	ODE	structure:	
The	 first	 approach	uses	 the	 sum	of	 the	 general	 and	particular	 solution	of	 forced	vibration	
with	viscous	damping	as	an	assumed	equation	structure:	
	

	 ሻݐሺݕ ൌ ଵ݁మ௧ܥ sinሺܥଷݐ  ସሻܥ  ହܥ sinሺܥݐ  ሻܥ , ܥ ∈ Թ	 (8.3)

	
The	second	approach	stays	at	the	level	of	ODE:	
	

	 ሷݕଵᇱܥܺ  ଶܥ
ᇱݕሶ  ଷܥ

ᇱݕ ൌ ହܥସᇱsinሺܥ
ᇱݐሻ, ݕ ൌ ܥ

ᇱ, ሶݕ ൌ ᇱܥ , ܥ
ᇱ ∈ Թ	 (8.4)

	
For	 both	 approaches,	 the	 coefficients	 are	 initialized	 randomly	between	 ‐1	 and	1.	 They	 are	
stored	in	a	seven‐dimensional	vector	and	optimized	via	DE,	as	described	in	the	pseudo‐code	
in	Section	8.3.	A	variation	of	the	second	approach	where	only	five	coefficients	are	evolved	is	
also	considered,	where	the	initial	conditions	(IC)	are	assumed	known.	
	
Practically	 all	 non‐linear	 vibration	 problems	 defy	 full	 analytical	 treatment,	 so	 there	 is	 no	
closed‐form	equation	available	for	y(t).	For	these	problems	we	work	with	the	ODE	structure	
ሷݕ݉  ሶݕܿ  ݕ݇ ൌ 0,	 where	 mass	m	 or	 damping	 c	 are	 replaced	 by	 a	 first	 or	 second	 order	
polynomial	term	in	y	to	account	for	the	non‐linearity.	The	results	of	this	are	summarised	in	
Section	 8.4.2.	 Also,	 a	 non‐linear	 mass	 system	 and	 a	 system	 with	 time‐varying	 stiffness	
(Mathieu	equation)	are	examined.	These	are	all	unforced	oscillators	where	chaos	does	not	
play	a	role.	
	
8.4.2 Results	
Validation:	Forced	vibrations	with	constant	coefficients	
The	following	target	function	is	defined	for	the	validation	runs:	
	

	 ሷݕ2.5  ሶݕ0.35  ݕ0.3 ൌ 3.0	sinሺ2.2ݐሻ, with initial conditions ݕ ൌ 0, ሶݕ ൌ 0.25.	 (8.5)

	
Figure	8.5	(left)	shows	the	sampled	target	data‐set	and	an	example	of	a	candidate	solution.	
The	total	data	set	consists	of	465	points,	meets	the	Nyquist	criterion,	and	is	split	in	training	
and	test	data	in	different	ratios	(in	Figure	8.5	half	of	the	data	are	training	points,	and	half	are	
test	points).	Population	size	was	set	at	80	and	250	generations	were	computed.	
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Figure	8.5.	Differential	evolution	applied	to	regression	on	the	signal	of	a	forced	vibration.	Left:	the	target	
data.	In	this	example	50%	of	the	data	is	used	for	training.	Right:	The	best‐so‐far	fitness	of	three	runs,	for	
an	assumed	structure	of	the	analytical	solution	and	for	the	ODE	structure.	
	
The	 right	 plot	 in	 Figure	 8.5	 shows	 three	 examples	 of	 how	 the	 solutions	 improved	 with	
generations.	The	two	applied	expression	structures	were	laid	out	in	the	previous	section,	the	
only	necessary	addition	is	that	the	fitness	evaluation	of	the	analytical	solution	structure	runs	
differs	 from	 the	pseudo‐code	 in	Section	8.3	because	 there	 is	no	need	 to	 solve	an	ODE;	 the	
candidate	 values	 follow	 right	 away	 after	 substitution	 in	 the	 assumed	 y(t)	 expression.	 The	
resulting	coefficients	 reflect	 the	multimodality,	 since	 for	example	sin(t)	=	sin(t+2).	 It	was	
generally	 found	 that	 the	 less	 successful	 computed	 functions	 capture	 the	 low‐frequency	
damped	free	vibration	quite	well,	but	give	a	rather	poor	estimate	of	the	forced	vibration.	
	
Figure	8.6	below	gives	an	overview	of	 the	 results	based	on	10	runs	per	plotted	point.	The	
plot	on	the	left	gives	test	errors	expressed	as	NMAE,	according	to	equation	8.1.	The	plot	on	
the	right	shows	the	average	runtime	in	seconds.	
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Figure	 8.6.	 Results	 of	 evolving	 the	 forced	 vibration	 based	 on	 analytical	 solution	 structure	 and	 ODE	
structure	 as	 a	 function	 of	 the	 percentage	 of	 data	 used	 for	 training.	 Left:	 test	 errors	 (NMAE);	 right:	
computing	 time.	 IC	 stands	 for	 initial	conditions,	P	 stands	 for	population	 size.	Every	point	represents	an	
average	of	10	runs,	for	an	evolution	of	250	generations	with	a	population	of	80;	except	for	the	ODE	with	
initial	conditions,	for	which	only	five	lengthy	runs	were	made	for	each	training	data	set.	
	
The	 plots	 show	 that	 the	 analytical	 structure	 requires	 the	 least	 computation	 time,	 but	 it	 is	
significantly	 less	 accurate	 than	 the	ODE	 structure	with	 five	 evolved	 coefficients	where	 the	
initial	 conditions	are	known	 (“ODE	without	 IC”).	The	analytical	 structure	 is	more	 accurate	
than	the	ODE	case	that	also	evolves	the	two	initial	conditions	(“ODE	with	IC”).	An	attempt	to	
reduce	 the	 computation	 time	 for	 the	 ODE	 structure	 by	 using	 a	 smaller	 population	 of	 40	
(“ODE	without	IC,	P=40”)	resulted	in	higher	test	errors	and	computation	times	comparable	
to	the	analytical	runs.	The	results	show	that	including	or	excluding	the	two	initial	conditions	
makes	no	difference	 for	computation	time.	Additionally,	 the	validation	proves	 that	 there	 is	
little	overall	dependence	on	the	percentage	of	data	used	for	training.	The	test	errors	are	only	
slightly	worse	when	 less	 than	 40%	of	 the	 data	 is	 used	 for	 training.	 Computational	 factors	
related	to	the	convergence	of	the	DE	algorithm	and	the	ODE	solution	process	are	apparently	
dominant.	In	particular,	it	was	found	that	the	settings	of	relative	tolerance	that	determine	the	
number	 of	 iterations	 of	 the	 ODE	 solver	 during	 the	 error	 computation	 have	 a	 profound	
influence	on	the	standard	deviation	of	the	achieved	total	runtimes.	
	
Main	runs	
Table	8.1	shows	the	results	of	computing	coefficients	for	various	self‐excited	vibrations.	All	
computations	had	a	population	of	50	individuals	with	120	generations	computed,	and	used	
50%	of	500	data	points	for	training,	and	the	remainder	for	testing.	For	each	case	the	mean	
and	standard	deviation	of	the	NMAE	test	error	is	computed	over	25	evolutionary	runs.	
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Table	8.1.	Computation	results	based	on	normalized	mean	absolute	error	(NMAE).	#C	denotes	the	number	
of	evolved	coefficients.	For	each	case,	25	runs	of	120	generations	were	done	with	a	population	size	of	50,	
using	250	training	points	and	250	test	points.	

vibration	 target	ODE	 #C	
average	
of	NMAE	

standard	
deviation	of	

NMAE	

linear,	constant	coeff.*	 ሷݕ2.5  ሶݕ0.35  ݕ0.3 ൌ 3.0 sinሺ2.2ݐሻ	 5	 39.2∙10‐3	 69.5∙10‐3	

negative	damping	 ሷݕ െ ሶݕ0.1434  ݕ ൌ 0	 1	 3.44∙10‐3	 0.89∙10‐18	
	 	 2	 3.07∙10‐3	 1.77∙10‐18	
	 	 3**	 3.23∙10‐3	 1.88∙10‐3	

non‐linear	damping	 ሷݕ  ሺെ0.450  ݕ2.728  ሶݕଶሻݕ1.903  ݕ ൌ 0 3	 287∙10‐3	 373∙10‐3	

Van	der	Pol	oscillator	 ሷݕ െ 1.2218ሺ1 െ ሶݕଶሻݕ  ݕ ൌ 0	 2	 3.13∙10‐3	 0.42∙10‐3	
	 	 3	 3.26∙10‐3	 0.82∙10‐3	

non‐linear	mass	 ሺ1.7120 െ ݕ1.4815  ሷݕଶሻݕ0.4903  ݕ ൌ 0	 3	 3.28∙10‐3	 0.0776∙10‐3	

Mathieu	equation***	 ሷݕ  ሺ0.25  0.34sinሺ2.18ݐሻሻݕ ൌ 0	 3	 70.8∙10‐3	 25.9∙10‐3	

	
*					Based	on	the	ODE‐runs	with	50%	training	data	and	without	evolving	initial	conditions.	
**			Only	three	runs	were	made	due	to	poor	convergence	of	ODE	solver.	
***	The	Mathieu	equation	describes	not	self‐excited	but	parametrically	excited	vibrations.	

	
The	results	in	Table	8.1	show	that	the	constant	negative	damping	and	non‐linear	mass	cases	
have	 low	 test	 errors	 compared	 to	 the	 validation	 case	 of	 the	 forced	 linear	 vibration	 with	
constant	coefficients.	Moreover,	their	test	errors	show	very	little	variation.	For	the	negative	
damping	case,	it	makes	no	difference	whether	the	constant	coefficient	is	found	using	a	single	
coefficient,	C1,	or	a	 linear	 term	with	 two	coefficients,	C1+C2y,	or	a	second‐order	polynomial	
term	with	three	coefficients,	C1+C2y+C3y2.	Similarly,	the	Van	der	Pol	oscillator	shows	a	small,	
insignificant	 deterioration	when	 a	 linear	 term	 is	 added	 to	 the	C1+C2y2	 term	 that	 is	 strictly	
required.	The	poor	result	for	the	non‐linear	damping	case	is	due	to	suboptimal	convergence	
of	eight	runs	out	of	25.	Extending	the	runs	to	more	generations	will	most	likely	improve	the	
mean	NMAE.	The	 same	can	be	 said	of	 the	Mathieu	equation,	which	belongs	 to	 the	 class	of	
parametrically	excited	vibrations.	
	
The	 test	 errors	of	 the	best	 runs	 are	plotted	 in	Figure	8.7	 as	 function	of	 their	 computation	
times.	 The	 errors	 are	 the	 minima	 of	 the	 NMAE	 values	 of	 the	 25	 runs	 for	 the	 vibrations	
mentioned	 in	 Table	 8.1.	 There	 are	 two	 outliers:	 the	 negative	 damping	 evolved	 with	 a	
polynomial	term	took	much	longer	to	compute	and	the	best	run	for	the	Mathieu	equation	is	
significantly	 less	accurate.	 It	 is	remarkable	that	the	best	non‐linear	damping	run	 is	slightly	
better	than	the	other	non‐linear	cases.	
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Figure	8.7.	The	best	achieved	test	errors	(NMAE)	out	of	25	runs	as	function	of	the	computing	time		of	the	
best	runs	 for	 the	cases	 listed	 in	Table	8.1.	The	numbers	 inside	 the	 figure	denote	 the	number	of	evolved	
coefficients.	
	
8.4.3 Sensitivity	analysis	
A	sensitivity	analysis	was	done	 to	study	 the	effect	of	different	population	sizes,	number	of	
generations	and	tolerance	settings	of	the	ODE	solver.	The	results	are	summarized	in	Figure	
8.8.	The	test	errors	are	NMAE	values	over	25	runs,	as	defined	in	equation	8.1.	The	sensitivity	
analysis	 is	based	on	the	three‐dimensional	optimization	problem	of	finding	the	coefficients	
of	an	unforced	vibration	with	non‐linear	damping	term	‐0.4501+1.0283y+1.903y2.	

		 	
	
Figure	 8.8.	 Sensitivity	 analysis	 results.	 Left:	 sensitivity	 on	 population	 size	 and	 number	 of	 generations	
showing	normalized	mean	absolute	errors	(NMAE)	of	25	runs.	Right:	sensitivity	of	test	error	(NMAE)	on	
tolerances	of	ODE	solvers	 for	computing	 fitness	values	(“evaluation	tolerance”)	and	test	errors	(“testing	
tolerance”).	On	the	axes,	“1e‐2”	means	10‐2,	etc.	and	the	grey	scale	refers	to	base‐10	logarithms	of	NMAE	
values.	
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Population	size	and	number	of	generations	
The	results	show	that	a	population	size	of	50	yields	far	better	results	than	a	population	size	
of	 25	 (Figure	 8.8,	 left),	 and	 100	 generations	 score	 far	 better	 than	50	 generations.	 Further	
increases	in	population	size	and	generations	give	considerably	smaller	improvements.	
	
Solver	tolerance	
The	right	plot	of	Figure	8.8	shows	the	effect	of	different	combinations	of	termination	settings	
for	 the	 numerical	 integration	 algorithm	 used	 for	 computing	 errors	 of	 the	 candidate	 ODE	
models	 ሺ“evaluation	 tolerance”ሻ	 and	 of	 the	 winning	 model	 ሺ“testing	 tolerance”ሻ.	
Unsurprisingly,	 stricter	 ሺlowerሻ	 tolerances	 lead	 to	 more	 accurate	 results	 ሺ“‐4”	 in	 the	
colourbar	refers	to	a	NMAE	value	of	10‐4,	etc.ሻ.	The	worst	results	occur	for	a	strict	evaluation	
tolerance	 in	 combination	 with	 a	 coarse	 testing	 tolerance.	 Furthermore,	 it	 is	 seen	 that	
relatively	low	test	errors	are	found	if	the	relative	tolerance	of	the	ODE	solver	for	evaluation	
and	 testing	 are	 the	 same.	 Of	 course	 we	 need	 to	 realise	 that	 the	 lower	 the	 evaluation	
tolerance,	 the	 longer	 on	 average	 the	 runs	 are	 likely	 to	 be	 and	 that	 the	 testing	 tolerance	
should	 always	 be	 relatively	 strict	 in	 order	 to	 make	 a	 fair	 judgment.	 Based	 on	 these	
observations,	 a	 relative	 evaluation	 tolerance	 of	 10‐3	 and	 a	 testing	 tolerance	 of	 10‐5	 were	
chosen	for	the	simulations	in	the	previous	sections.	
	
Solver	algorithm	
Apart	from	the	choice	of	residual	error	as	a	model	parameter,	a	suitable	choice	of	integration	
algorithm	 is	 also	 paramount	 accuracy	 and	 runtime.	 MATLAB	 suggests	 the	 use	 of	 specific	
build‐in	ODE	solvers	for	stiff	problems	(MathWorks,	2010).	Quateroni	et	al.	 (2010)	discuss	
the	 application	 of	 different	 ODE	 solvers	 in	 MATLAB.	 From	 this,	 stiff	 solver	 ‘ode15s’	 was	
selected	 to	 compete	 with	 ‘ode45’,	 the	 standard	 solver	 that	 was	 used	 in	 all	 work	 in	 this	
chapter	 and	 the	 next.	 The	 Van	 der	 Pol	 oscillator	 was	 used	 as	 test	 problem:	 increasing	 μ	
values	make	the	problem	stiffer.	The	results	of	25	runs	for	each	solver	are	plotted	in	Figure	
8.9.	
	

					 	
Figure	8.9.	Comparing	ODE	solvers	of	MATLAB.	Left:	NMAE	test	errors	over	25	runs	plotted	as	a	function	
of	the	μ	parameter	of	a	Van	der	Pol	oscillator	test	problem	with	two	constants	in	the	non‐linear	damping	
term.	All	other	settings	were	identical	to	the	main	runs	in	Section	8.4.2.	Right:	the	standard	deviation	of	
these	errors.	
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The	results	indicate	that	for	μ	≤	1.0,	both	solvers	have	much	lower	errors	and	smaller	spread	
than	 for	μ	 >	1.0.	Moreover,	 the	 stiff	 solver	 ‘ode15s’	 has	 lower	maximum	 test	 errors	 and	a	
smaller	standard	deviation	of	errors	for	μ	>	1.0.	It	was	indeed	expected	that	the	stiff	solver	
performs	 relatively	well	 for	 increasing	μ.	 This	 probably	 becomes	 even	more	 apparent	 for	
stiffer	test	problems.	Next	to	testing	the	ODE	solvers,	this	was	of	course	at	the	same	time	a	
test	for	the	DE	algorithm	to	solve	increasingly	hard	optimisation	problems.	
	
8.4.4 Improving	the	search	by	including	results	from	FFT	
An	idea	put	forward	by	Howard	and	Oakley	(1994)	is	to	use	information	from	the	frequency	
domain	of	the	target	data	in	the	evolutionary	search.	This	section	gives	a	brief	exploration	of	
this	 idea	 within	 the	 context	 of	 the	 preceding	 numerical	 experiments.	 The	 spectral	
information	can	for	instance	be	applied	to	introduce	a	bias	at	the	initialisation	or	during	the	
search.	 Let	 us	 have	 a	 look	 how	 the	 period	 and	 stability	 of	 the	 total	 system	 relate	 to	 the	
coefficients.	
	
The	following	non‐linear	ODE	with	a	polynomial	damping	factor	is	considered:	
	

	 ሷݕ െ ሺ1ߤ െ ݕߥ െ ሶݕଶሻݕߩ  ݕ ൌ 0, (8.6)

	
which	includes	the	Van	der	Pol	oscillator	as	a	special	case.	A	few	definitions:	
	

߱0 ൌ ඥ݇ ݉⁄ 			 undamped	natural	radial	frequency,	as	before	
߱1	 	 	 natural	radial	frequency	of	the	system	as	a	whole	
1ߗ ൌ ߱1 ߱0⁄ 	 	 standardized	natural	radial	frequency	of	the	system	as	a	whole	

	
In	 equation	 8.2,	 k	 =	m	 =	 1,	 such	 that	 for	 this	 system	߱0 ൌ 1	 and	1ߗ ൌ ߱1.	 If	 a	 one‐to‐one	
relation	between	1ߗ	and	the	coefficients	μ,	ν	and	ρ	would	be	found,	then	measuring	1ߗ	would	
immediately	give	good	estimates	of	their	values.	However,	the	effect	of	non‐linear	damping	
on	 frequency	of	 free	 vibrations	 is	much	 less	 obvious	 than	 for	 non‐linearity	 in	 the	 springs.	
Two	illustrative	cases	are	treated.	
	
Case	1:	ν	=	0,	ρ	=	1	
Schmild	and	Guicking	(1980)	give	a	good	approximation	of	1ߗ	for	the	standard	unforced	Van	
der	Pol	system.	Figure	8.10	shows	three	analytically	derived	relations	mentioned	in	Schmild	
and	Guicking	(1980)	as	 lines.	Numerical	experiments	were	done	by	simply	solving	the	Van	
der	Pol	equation	numerically	and	performing	a	FFT	of	the	result,	to	find	1ߗ	(plotted	as	+’s	in	
Figure	8.10).		
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Figure	8.10.	Analytical	estimates	of	the	natural	frequency	of	the	Van	der	Pol	system.	The	values	from	the	
numerical	 experiment	 were	 achieved	 by	 solving	 the	 ODE	 over	 a	 reasonably	 long	 time	 interval	 and	
subsequently	 performing	 a	 fast	 Fourier	 transform	 with	 triangular	 windowed	 smoothing	 to	 find	 the	
dominant	frequency.	
	
Indeed,	 the	analytical	model	and	the	Schild	and	Guicking	model	coincide.	This	 implies	 that	
for	 the	 standard	 Van	 der	 Pol	 ODE,	 performing	 a	 FFT	 gives	 μ	 directly	 and	 further	
computations	are	not	necessary.		
	
Case	2:	ρ	=	1	
Now,	a	more	difficult	 case:	ݕሷ െ ሺ1െߤ ݕߥ െ ሶݕ2ሻݕ  ݕ ൌ 0.	A	series	of	experiments	was	done	
for	various	μ	and	ν.	Figure	8.11	(left)	shows	the	phase	plane	for	three	different	ν	for	constant	
μ.	Figure	8.11	(right)	gives	the	equivalent	of	Figure	8.10.	

				 	
Figure	 8.11.	 Non‐linear	 damping	 simulations.	 Left:	 μ	 =	 3,	 varying	 linear	 term	 coefficient	 ν.	 Right:	
normalized	natural	frequency	of	the	oscillator	as	function	of	μ	and	ν.	
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It	is	seen	from	Figure	8.11	(right)	that	different	(μ,	ν)‐pairs	give	identical	system	frequency.	
The	plot	shows	that	the	sign	of	ν	is	irrelevant	for	1ߗ	and	hence	cannot	be	found	from	Fourier	
analysis,	which	 is	also	true	for	the	damping	coefficient	c	 in	the	standard	 linear	ODE.	These	
findings	 suggest	 the	 following	 procedure	 for	 applying	 spectral	 information	 into	 system	
identification	computations	for	this	ODE:	
	

‐	 FFT	 on	 the	 ሺmildly	 filteredሻ	 time	 signal	 gives	 a	 number	 of	 spectral	 peaks.	 Take	 the	
highest	peak	ሺat	nonzero	frequencyሻ	as	the	dominant	system	frequency	and	plot	this	as	
a	horizontal	line	in	the	μ	versus	1ߗ െ	diagram	ሺdashed	line	in	Figure	8.12,	leftሻ.		

‐	 It	 is	 then	 deduced	 from	 this	 diagram	 that	 the	 observed	 frequency	 could	 have	 been	
generated	by	a	combination	of	(μ,	ν)‐values	according	to	all	intersections	with	the	line	
of	constant	1ߗ,	this	line	is	shown	in	Figure	8.12	ሺrightሻ.		

‐	 The	 DE	 search	 algorithm	 should	 then	 be	 adjusted	 so	 it	 biases	 values	 in	 the	
neighbourhood	of	this	line.	

	

						 	

Figure	8.12.	Estimating	coefficients	 from	spectral	 information.	Left:	plotting	measured	 frequency.	Right:	
interpolated	line	of	possible	(μ,	ν)‐values.	
	
Additionally,	It	is	useful	to	have	information	about	the	stability	of	the	system	as	a	function	of	
the	 three	 parameters,	 so	 that	 for	 instance	 candidate	 models	 in	 unstable	 regions	 can	 be	
skipped.	Figure	8.13	shows	two	Monte	Carlo	simulations	of	solution	stabilities	for	a	range	of	
μ	and	ν	values,	keeping	ρ	=	1	(left)	and	ρ	=	0	(right).	Having	this	information	before	starting	
could	improve	the	evolutionary	search.	
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Figure	8.13.	Monte	Carlo	simulations	of	stability	in	(μ,	ν)‐plane	for	ρ	=	1	(left)	and	ρ	=	0	(right).	The	ODE	
was	 integrated	over	ten	periods	with	a	relative	solver	accuracy	of	1e‐3	(‘ode45’	solver).	Light	grey	dots:	
full	time	computed	(stable),	black	dots:	solver	failed	or	solution	was	out	of	set	bounds	before	end	time	was	
reached	 (unstable).	Varying	 initial	conditions	did	not	 influence	 the	region	boundaries.	6000	 trials	were	
made	for	both	plots.	
	
Numerical	observations	of	stability	such	as	these	are	certainly	not	impossible	to	explain,	but	
generally	the	analytical	analyses	become	inconvenient.	Surely,	naive	intuition	still	has	some	
value	 in	 relatively	 easy	 cases:	 for	 ρ	 =	 0	 (Figure	 8.13,	 right),	 the	 damping	 term	 reads	
൫– ߤ  ሶݕ൯ݕߤߥ 	and	one	could	have	guessed	that,	roughly,	μ	>	0	gives	unstable	and	μ	<	0	gives	
stable	 solutions.	 If	 the	 damping	 term	 would	 have	 had	 the	 form	 ,|ݕ|ሺܨ ሶݕ| |ሻݕሶ ,	 with	 F	 a	
polynomial,	 then	a	positive	 constant	 term	of	 this	polynomial	would	always	 imply	a	 stable,	
and	a	negative	constant	an	unstable	equilibrium	position.	Schmidt	and	Tondl	(1986)	name	
this	 as	 a	 simple	example	of	 a	 self‐excited	 system	with	a	 singular	point	 in	 the	phase‐plane,	
which	 represents	 a	 single	 equilibrium	position.	 Alternatively,	 the	 stability	 analysis	 of	 self‐
excited	 oscillations	 focuses	 around	 (stable	 or	 unstable)	 limit	 cycles	 (e.g.	 Figure	 8.11,	 left).	
However,	most	non‐linear	cases	require	a	 large	toolbox	of	analytical	methods	for	revealing	
stability	 properties,	 especially	 when	 more	 than	 one	 d.o.f.	 exists	 or	 when	 external	 or	
parametric	 excitation	 is	 added.	 The	 textbooks	 by	 Schmidt	 and	 Tondl	 (1986)	 and	 Verhulst	
(1996)	provide	bridges	to	advanced	literature	on	non‐linear	vibration	analysis.	
	
8.4.5 Discussion	
It	has	been	shown	that	coefficients	sets	of	ODEs	can	be	found	from	time	series	such	that	the	
errors	between	target	and	model	are	small.	But	 to	determine	actual	values	of	 independent	
coefficients,	knowledge	of	the	physical	domain	is	required.	This	can	be	done	in	various	ways,	
e.g.	 solving	݉ݕሷ  ሶݕܿ  ݕ݇ ൌ 0	as	a	constrained	optimization	problem	by	prescribing	upper	
and	 lower	bounds	 for	m	 and	k;	 or	by	 solving	ݕሷ  ሶݕܣ  ݕܤ ൌ 0	with	ܣ ൌ ܤ	and	߱ߞ2 ൌ ߱

ଶ	
and	 applying	 available	 knowledge	 on	 the	mass	 afterwards.	 All	 knowledge	 and	 estimation	
techniques	from	Section	2.4	are	welcomed	for	formulating	constraints.	The	goal	is	to	let	the	
system	identification	focus	on	finding	the	toughest	physical	quantities.	Structural	mass	and	
stiffness	 are	 obviously	more	 easily	 estimated	 from	mechanical	 pre‐studies	 than	 hydraulic	
damping	is	from	a	hydrodynamic	pre‐study.	See	also	Section	8.6.	
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The	ODE	solver	tests	helped	to	reveal	the	dilemma	of	using	different	integration	schemes	for	
specific	problems,	versus	maintaining	robustness	–	at	the	cost	of	 longer	computation	times	
or	loss	of	accuracy.	Too	coarse	solvers	have	the	effect	that	promising	candidates	do	not	come	
out	 on	 top.	 The	 next	 chapter	 attempts	 to	make	 a	 first	 step	 at	 automated	 customisation	 of	
solver	algorithms.		

8.5 Application	of	evolutionary	system	identification	to	experimental	data	

The	 experimental	 data	 set	 analysed	 in	 Chapter	 5	 consists	 of	 response	 forces	 for	 quasi‐
stationary	 hydrodynamic	 situations	 of	 constant	 discharge,	 water	 levels	 and	 mean	 gate	
opening,	and	where	a	 certain	dynamic	equilibrium	between	hydrodynamics	and	structural	
response	has	been	achieved.	The	absence	of	excitation	signals	of	pressures	acting	on	the	gate	
makes	 it	hard	or	 impossible	 for	many	techniques	 to	 identify	 the	system.	 Ideally,	we	would	
like	to	find	the	full	motion	equation,	the	displacement	ODE,	from	the	measured	force	signal.	
Conforth	and	Lipson	(2013)	discuss	possibilities	and	examples	of	inferring	ODEs	for	systems	
with	hidden	variables,	but	do	not	give	helpful	tips	for	the	present	case.	
	
Looking	 at	 the	 acquired	 quasi‐stationary	 signals,	 these	 can	 roughly	 be	 divided	 into	 three	
groups:	 low‐level	 noise,	 regular	 high‐level	 amplitude	 oscillations	 and	 transitions	 between	
these	two.	The	irregular	noisy	signals	sometimes	display	vibrations	at	the	natural	frequency,	
but	these	typically	die	out	again	after	a	few	seconds.	This	means	that	the	present	(external)	
excitation	is	damped.	In	the	interesting	transitional	zone,	occasional	higher	amplitudes	feed	
energy	 to	 the	 oscillation.	 Here	 it	 seems	 that	 the	 damping	 consists	 of	 both	 positive	 and	
negative	 contributions,	which	may	 vary	with	 time	 and/or	with	 displacement	 (amplitude).	
Then,	at	large	amplitudes,	the	sines	have	become	very	regular;	precisely	sufficient	structural	
damping	has	been	mobilised	to	balance	the	self‐excitation	forces	so	that	the	amplitudes	are	
as	good	as	stable.	
	
For	 system	 identification	only	 the	 transitional	 signals	are	 interesting.	The	challenge	 lies	 in	
the	 fact	 that	 the	 damping	 force	 is	 always	 small	 compared	 to	 the	 other	 forces;	 and	 thus	
potential	 damping	 non‐linearities	 appear	 only	 as	 very	 slight	 deviations	 from	 the	 standard	
sine.	Moreover,	non‐linearity	in	the	inertia	term	due	to	added	mass	effects	(which	are	usually	
small)	 can	 cause	 a	 distortion.	 A	 number	 of	 preliminary	 identification	 tests	 on	 raw	
transitional	 signals	 with	 DE	 based	 on	 plausible	 equation	 structures	 (as	 investigated	 in	
Section	8.4.2)	proved	demanding.	The	 issue	with	studying	 the	 irregularities	 is	 that	a	 lot	of	
analysis	 (many	 signals,	many	parts	of	one	 signal)	 is	needed	before	meaningful	hypotheses	
come	about.	
	
Instead,	 an	 unsteady	 signal	 of	 the	 same	 experiment	 series	 is	 used	 to	 explain	 a	 possible	
application	procedure.	This	concerns	merely	a	proof	of	concept.	Without	giving	unnecessary	
details	 for	 this	 illustrative	 example,	 at	 a	 constant	 installed	 stiffness	 the	water	 levels	were	
gradually	(but	unevenly)	lowered	giving	a	changing	head	difference	and	response	frequency.	
As	 Vr	 also	 slowly	 changed,	 a	 vibration	 region	 was	 encountered	 and	 vibrations	 started	 to	
appear.	The	analysed	part	of	the	signal	F(t),	measured	at	200	Hz,	captures	10	seconds	of	a	
growth	phase	of	regular	vibrations.	The	experimental	data	is	depicted	as	dots	in	Figure	8.14.	
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Figure	8.14.	Part	of	a	support	 force	signal	(same	set‐up	as	 in	Chapter	5)	under	unsteady	hydrodynamic	
conditions.	 The	 points	 are	 measurement	 data,	 the	 line	 is	 the	 identified	 model.	 The	 support	 force	 is	
computed	from	the	equation	of	motion,	the	coefficients	of	which	were	evolved	with	differential	evolution.	
	
The	main	 issue	 is	dealing	with	the	fact	 that	the	support	 force	Fሺtሻ	was	measured	while	we	
are	 interested	 in	 the	 motion	 equation	 ሷݕ ൌ ݂ሺݕ, ሶݕ , 	.ሻݐ Some	 trial	 and	 error	 resulted	 in	 the	
following	approach:	
‐	To	find	the	initial	conditions,	an	undamped	force	signal	is	derived	with	an	amplitude	that	is	
the	 average	 amplitude	 of	 the	 first	 few	 periods	 of	 the	 target	 signal.	 Assuming	 c	 ൌ	 0	 and	
linearity,	 the	 support	 force	 is	 F	ൌ	 kAsinωt	 for	 an	 assumed	motion	 y	ൌ	Asinωt.	 This	 gives	
right	away	y0	ൌ	F0/k,	with	the	subindex	0	indicating	values	at	t	ൌ	0,	because	the	stiffness	k	
was	measured.	The	initial	velocity	ݕሶ 	and	angle	are	evolved	in	a	DE	pre‐run	with	structure	
Fሺtሻ	ൌ	C1sinሺC2tC3ሻ.	Then	C3	is	the	required	initial	angle	and	ݕሶ ൌ ଵܥ߱ ݇⁄ .	
‐	As	a	 first	 check,	 the	 system	of	 equations	 consisting	of	ݕሷ  ߱ଶݕ ൌ 0,	F	ൌ	ky,	 y0,	ݕሶ 	 can	be	
solved	 to	retrieve	an	undamped	 force	signal	with	equivalent	amplitude,	 that	should	match	
the	first	part	of	the	signal	where	damping	has	little	influence.	
‐	 Then,	 in	 the	main	 run	 the	 evolved	 initial	 conditions	 ሺy0,	 ሶݕ ሻ	 are	 used	 in	 the	 evolution	of	
coefficients	of	ODEs	ݕሷ ൌ ݂ሺݕ, ሶݕ , 	error‐based	An	theory.	from	hypothesized	structures	with	ሻ,ݐ
fitness	function	is	used	based	on	the	mean	absolute	error:	
	

	 fitness ൌ െ
1
݊
ห ଵ݂ሺݕ, ሶݕሻݐ ሺݐሻ  ଶ݂ሺݕ, ሻݐሺݕሻݐ െ ܨୣ ୶୮ሺݐሻห, (8.7)

	
where	the	f1‐term	is	the	evolved	damping	force	and	f2	is	the	evolved	stiffness	force,	Fexp	is	the	
measured	support	force	and	n	the	number	of	data	points.	
‐	For	the	pre‐run	and	the	main	run,	all	measured	points	were	used	in	training	and	hence	no	
test	errors	are	computed.	A	comparison	of	errors	ሺafter	normalisationሻ	between	pre‐run	and	
main	run	indicates	of	the	conjectured	model	structure	is	an	improvement	with	respect	to	a	
zero‐damping	model.	This	helps	to	confirm	or	refute	analytical	theories.	
	
Figure	8.14	shows	the	best	fitting	model	ሺshown	as	a	lineሻ	with	a	non‐linear	damping	term.	
The	 plotted	 line	 is	 the	 sum	 of	 the	 cimputed	 damping	 and	 stiffness	 terms.	 Two	 notable,	
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manual	 additions	 were	 necessary	 to	 adjust	 the	 model	 structure:	 the	 moment	 that	 the	
damping	 first	 becomes	 negative	 could	 not	 be	 found,	 this	 was	 therefore	 added	 as	 a	 step‐
function	Hሺtሻ,	and	a	time‐dependent	term	was	added	to	the	stiffness	to	account	for	a	slowly	
dropping	frequency	due	to	the	falling	water	levels	ሺnot	visible	with	the	naked	eye	from	the	
plotሻ.	The	evolved	ODE	is	thus:	
	

ሷݕ19.14  ݐሺܪ െ 1.4ሻሺെ12.18  4.473 ∙ 10ݕଶሻݕሶ  81360ሺ1 െ 2.986 ∙ 10ିଷܪሺݐ െ 1.4ሻݐሻݕ ൌ 0,

	 with	ݕ ൌ െ0.3368 mm and ሶݕ ൌ 5.8 mm/s. (8.8)

	
In	 this	 expression,	 only	 the	 installed	 stiffness	 ሺ81360	 N/mሻ	 has	 been	 used	 as	 domain	
knowledge.	 The	 only	 applied	 pre‐processing	 was	 subtraction	 of	 the	 moving	 average.	 The	
coefficients	are	physical;	19.14	is	the	total	vibrating	mass	in	kg,	the	negative	hydrodynamic	
damping	term	is	‐12.18	Ns/m	and	the	extra	structural	damping	entering	at	high	amplitude	is	
4.473107	Ns/m3.	How	sensible	these	values	are	is	impossible	to	say	without	further	analysis	
or	 comparison	 with	 other	 data,	 because	 all	 knowledge	 of	 the	 experimental	 conditions	 is	
already	 used.	 The	 time‐varying	 stiffness	 is	 perhaps	 unlikely	 physically;	 the	 frequency	
probably	changes	via	the	inertial	term.	These	two	terms	are	notoriously	hard	to	distinguish	
since	they	are	in	phase.	It	was	chosen	to	use	the	stiffness	here,	because	it	relates	directly	to	
the	measured	force	signal	ሺsee	remark	belowሻ.	
A	nice	consequence	of	the	method	is	that	a	hysteresis	plot	can	be	made,	see	Figure	8.15.	The	
dots	are	modelled	data	points	of	the	oscillating	force	on	the	mass.	Normally	the	elliptic	area	
gives	the	hysteresis	loss	ሺwork	done	by	damperሻ,	but	here	it	represents	energy	fed	into	the	
system.	
	

	
	
Figure	8.15.	A	 ‘deflection	versus	force’	plot	(zoomed	in)	showing	modelled	data	points	of	the	vibration	in	
the	previous	figure.	The	area	enclosed	by	the	ellipse	(no	lines	were	plotted	between	dots	for	clarity)	equals	
the	energy	fed	into	the	system.	
	
Lastly,	 two	remarks	about	the	application	of	DE.	First,	some	assumed	model	structures	are	
much	harder	to	compute,	for	example	when	a	sign(ݕሶ )‐term	is	included	for	Coulomb	damping.	
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Typically,	a	standard	run	of	80	generations	with	a	population	of	35	took	roughly	20	minutes.	
Secondly,	evolving	coefficients	that	are	indirectly	involved	in	the	computation	of	the	fitness	
was	found	very	tricky.	For	instance,	the	initial	conditions,	or	a	time‐dependent	external	force	
term	 in	 the	 motion	 equation	 are	 practically	 impossible	 to	 evolve	 when	 the	 fitness	
computation	uses	damping	and	stiffness	 forces.	Such	terms	have	 to	be	 found	 in	a	different	
way	–	here	the	solution	was	to	assume	unforced	self‐excitation	and	find	the	initial	conditions	
in	a	pre‐run.	

8.6 Genetic	programming	and	symbolic	regression	

In	 genetic	 programming	 (GP),	 introduced	 by	 Koza	 (1992),	 the	 individuals	 are	 executable	
programs	 represented	 by	 tree	 structures	 (parse	 trees)	 and	 dedicated	 to	 solving	 complex	
problems.	 It	 can	be	 applied	 very	 effectively	 to	 symbolic	 regression	 (SR),	 a	 form	of	 system	
identification	 aimed	 at	 finding	 analytical	 expressions,	 for	 example	 0.25x2–sin(3.6x),	 to	
describe	trends	in	a	numeric	dataset.	What	makes	SR	so	appealing	is	that	it	simultaneously	
strives	 to	 find	 coefficients	 and	 model	 structure	 with	 a	 minimum	 of	 presupposed	 domain	
knowledge.	Symbolic	regression	has	grown	from	a	benchmark	for	testing	new	GP	techniques	
to	 a	 competitive	 tool	 in	 scientific	 computation.	 The	 general	 caution	 in	 regression	 analysis	
and	system	identification	that	a	choice	for	a	particular	non‐linear	model	structure	is	decisive	
for	 performance	 does	 not	 hold	 for	 GP:	 the	 freedom	 of	 the	 tree	 representation	 enables	
extreme	 flexibility	and	moreover	contains	 linear	model	structures	as	special	cases	 (e.g.	 for	
polynomials,	a1x+a0	 is	a	special	case	of	∑ ܽݔ


ୀ ).	 Innumerous	authors	have	contributed	to	

the	development	of	GP	in	the	1990s	and	2000s;	Poli	et	al.	(2008)	serves	as	an	introduction	to	
literature.	
A	 recurring	 point	 of	 attention	 in	 GP	 is	 ‘bloat’,	 defined	 as	 offspring	 growing	 in	model	 size	
without	 clear	 benefit	 in	 terms	of	 fitness	 (Poli	 et	 al.,	 2008),	 can	be	 controlled	by	 somehow	
including	the	length	of	candidate	models	in	the	evolution.	The	application	of	GP	to	SR	brings	
additional	 challenges.	 To	 name	 two	 major	 subjects,	 hitherto	 without	 universally	 applied	
solutions:	determining	numerical	constants	(i.e.	coefficients)	and	dealing	with	noisy	data.	It	
was	 originally	 proposed	 to	 let	 numerical	 constants	 evolve	 in	 the	 same	 way	 as	 the	
independent	 variables.	 This	 proved	 to	 be	 an	 inadequate	 approach	 in	 practice.	 Among	 the	
numerous	improvements	is	the	use	of	differential	evolution		to	find	the	constants	(Cerny	et	
al.,	2008).	Noise	is	an	indigenous	topic	in	machine	learning;	it	is	well	known	that	determining	
numerical	 constants	 from	 noisier	 training	 data	 increases	 the	 ambiguity	 of	 model	 finding	
since	there	will	be	more	combinations	of	structure	and	constants	possible	with	comparable	
accuracies	 (Rogers	 and	Girolami,	 2012).	Generalization	properties	of	 the	 final	model	 are	a	
key	issue,	this	is	known	as	the	bias/variance	tradeoff	(Bishop,	2006).	In	GP,	the	presence	of	
noise	 tends	 to	 promote	 complexity	 of	 the	 evolved	 programs	 and	 bloat	 (Zhang	 and	
Mühlenbein,	1995;	Keijzer	and	Babovic,	2000).	The	problem	of	balancing	the	search	for	a	fit	
model	with	an	acceptable	complexity	(model	length,	number	of	terms)	is	referred	to	in	GP	as	
“accuracy	versus	parsimony”.	
	
The	 fact	 that	 GP‐based	 SR	 is	 more	 than	 a	 data	 regularization	 technique	 and	 exceeds	 the	
possibilities	 of	 preceding	 system	 identification	 approaches	 (Conforth	 and	Lipson,	 2013)	 is	
reflected	 in	 the	 term	 ‘knowledge	 discovery’.	 The	 training	 data	 is	 not	 just	 used	 to	 infer	 a	
numerical	model,	but	 to	derive	usable	domain	principles	 in	concise	mathematical	 form;	all	
imaginable	closed‐form	equations	and	ordinary	and	partial	differential	equations.	This	puts	
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the	dichotomy	between	white‐box	 and	black‐box	modelling	 on	 its	 head.	A	number	 of	 PhD	
studies	have	worked	on	SR	by	GP,	 from	a	computer	science	perspective	 (Keijzer	2001	and	
Kromberger	 2011)	 and	 from	 a	more	 applied	 perspective	 (Vladislavleva	 2008).	 An	 elegant	
demonstration	 of	 the	 power	 of	 GP	 for	 identifying	 non‐linear	 dynamical	 systems	
automatically	and	directly	from	experimental	data	was	given	by	Schmidt	and	Lipson	(2009)	
in	 a	 seminal	 double	 pendulum	 experiment.	 A	 consequence	 of	 this	 work	 and	 the	 related	
commercial	software	package	Eureqa	(Eureqa,	2011)	has	been	an	explosion	of	applications.	
	
The	 system	 identification	 efforts	 in	 this	 chapter	were	 limited	 to	 searching	 for	 coefficients	
after	fixing	the	model	structure,	a	so‐called	parametric	approach	to	regression,	according	to	
Vladislavleva	 (2008).	 The	 goal	 of	 extending	 the	 evolutionary	 algorithm	 with	 GP	 –not	 for	
finding	the	ODE	structure,	but	for	determining	the	non‐linear	terms–	would	naturally	be	to	
discover	new	model	structures	intangible	to	analysis	from	principles	(because	they	are	far‐
fetched,	or	the	involved	analysis	would	be	too	time‐consuming).	As	part	of	this	study,	a	GP	
code	was	written	 using	 gene	 expression	 programming	 (GEP),	 a	 GP	method	 introduced	 by	
Ferreira	 (2001),	 and	 tested	 on	 a	 number	 of	 benchmark	 regression	 problems.	 It	 was	 not	
applied	 to	 the	 experimental	 data,	 because	 this	would	 enable	 an	 analysis	 of	 a	maximum	of	
only	 two	 seconds	 with	 long	 computation	 times.	 Also,	 some	 trials	 were	 done	with	 Eureqa	
(Eureqa,	2011).	There	was	no	option	here	to	infer	the	motion	equation	from	the	force	signal.	
So	 this	 resulted	 in	 rather	 hard‐to‐interpret	 expressions	 (depending	 on	 selected	 building	
blocks)	 of	 F(t)	 and	 ሷܨ ሺݐሻ ൌ ݂൫ܨሶ , ,ܨ 	,൯ݐ requiring	 about	 half	 an	 hour	 to	 one	 hour	 for	 three	
seconds	of	data.	

8.7 Conclusions	and	outlook	

In	 this	chapter	 it	was	examined	how	the	differential	evolution	algorithm	can	be	applied	 to	
identify	several	vibration	 types	by	performing	regression	on	 the	coefficients	of	 the	motion	
ODE.	 Irrespective	 of	 the	 percentage	 of	 data	 used	 in	 training,	 an	 ODE	 structure	 produced	
more	accurate	results	than	an	analytical	solution	structure	of	a	forced	vibration,	but	required	
more	computational	time.	A	number	of	synthetic	self‐excited	oscillations	was	identified	with	
reasonable	 accuracy.	 The	 presence	 of	 superfluous	 non‐linear	 terms	 proved	 to	 have	 an	
influence	 on	 the	 achieved	 computation	 times,	 but	 not	 directly	 on	 test	 errors.	 Sensitivity	
analyses	exposed	the	impacts	of	tolerance	settings	of	the	ODE	solver	and	the	choice	of	solver	
algorithm	 itself.	The	search	could	benefit	 from	spectral	 information	of	 the	output	signal	 to	
reduce	 the	 search	 space,	 but	 (the	 success	 of)	 this	 process	 depends	 on	 the	 investigated	
equation	 structure	 of	 the	 non‐linear	 terms.	 The	 tests	 showed	 running	 times	 that	 are	 at	
present	too	high	for	quick	assessment	applications	in	early	warning	systems.	Speed‐up	can	
be	achieved	by	faster	coding	and	parallelization.	
	
Two	ideas	for	future	possibilities	are	given.	On	the	one	hand	GP‐based	SR	is	a	revolution	in	
how	meaningful	models	are	derived	from	data,	on	the	other	hand	this	automated	discovery	
in	no	way	exempts	scientists	from	making	thorough	interpretations	of	the	results,	as	already	
noted	by	Schmidt	and	Lipson	(2009).	
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Figure	8.16.	The	accuracy/complexity	front,	a	plot	from	Schmidt	and	Lipson	(2009).	
	
The	result	of	an	evolutionary	search	for	analytical	models	is	an	accuracy/complexity	Pareto	
front.	See	Figure	8.16;	Schmidt	and	Lipson	(2009)	refer	to	this	as	“predictive	ability	versus	
parsimony”.	They	settle	this	tradeoff	by	suggesting	the	model	at	the	inflection	point,	i.e.	right	
after	 the	 accuracy	 has	 made	 a	 jump	 and	 before	 the	 front’s	 tail	 has	 a	 steep	 increase	 in	
complexity	achieves	little	extra	accuracy.	It	would	be	interesting	to	see	if	this	choice	is	in	fact	
the	 best,	 for	 a	 variety	 of	 applications,	 in	 terms	 of	 generalisation	 and	 insight.	 What	
computational	 tools	 can	 assist	 in	making	 this	 choice	 and	 does	 the	 evolution	 benefit	 from	
this?	
	
A	second	future	question:	what	is	the	minimum	amount	of	data	(from	physical	or	numerical	
experiments)	necessary	for	automated	derivation	of	the	full	system	of	equations	of	the	fluid‐
solid	interaction,	i.e.	the	Navier‐Stokes	and	structural	equations?	A	first	answer	would	be	to	
feed	 the	 system	with	 time	 series	 of	 flow	 velocity	 and	 pressure,	 at	 the	 interface	 and	 other	
strategic	 locations,	 that	 represent	diverse	hydrodynamic	conditions.	 In	particular,	 the	data	
should	sufficiently	cover	different	ranges	(flow	regimes)	of	 the	Reynolds	number.	Training	
the	 model	 to	 recognise	 and	 describe	 different	 Reynolds	 number	 flows	 will	 be	 very	
challenging	and	rewarding	at	the	same	time.	Apart	from	the	theoretical	impact,	this	will	find	
applications	in	turbulence	modelling	in	CFD	and	e.g.	in	models	for	anomaly	detection	in	early	
warning	systems,	not	unlike	the	control	system	of	Chapter	7.	
	 	


