Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

DOI
10.1016/j.physletb.2014.09.054

Publication date
2014

Document Version
Final published version

Published in
Physics Letters B

License
CC BY

Citation for published version (APA):
Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

ATLAS Collaboration

A R T I C L E I N F O

Article history:
Received 14 August 2014
Received in revised form 10 September 2014
Accepted 23 September 2014
Available online 28 September 2014
Editor: W.-D. Schlatter

A B S T R A C T

Measurements of fiducial and differential cross sections of Higgs boson production in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on 20.3 fb$^{-1}$ of pp collision data, produced at $\sqrt{s} = 8$ TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading lepton pair and the decay angle of the leading lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found.

Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

In 2012 the ATLAS and CMS Collaborations announced the discovery of a new particle [1,2] in the search for the Standard Model (SM) Higgs boson [3–8] at the CERN Large Hadron Collider (LHC) [9]. Since this discovery, the particle’s mass m_H was measured by the ATLAS and CMS Collaborations [10–12]. The result of the ATLAS measurement based on 25 fb$^{-1}$ of data collected at centre-of-mass energies of 7 TeV and 8 TeV is 125.36 ± 0.41 GeV. Tests of the couplings and spin/CP quantum numbers have been reported by both collaborations [11,13,14] and show agreement with the predicted scalar nature of the SM Higgs boson.

In this Letter, measurements of fiducial and differential production cross sections for the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel are reported and compared to selected theoretical calculations. The event selection and the background determination are the same as in Ref. [15], where a detailed description is given. For this measurement, an integrated luminosity of 20.3 fb$^{-1}$ of pp collisions is analyzed. The data were collected at the LHC at a centre-of-mass energy of $\sqrt{s} = 8$ TeV and recorded with the ATLAS detector [16].

The ATLAS detector covers the pseudorapidity range $|\eta| < 4.9$ and the full azimuthal angle ϕ. It consists of an inner tracking detector covering the pseudorapidity range $|\eta| < 2.5$ surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters, and an external muon spectrometer with large superconducting toroidal magnets.

Fiducial cross sections are quoted to minimize the model dependence of the acceptance corrections related to the extrapolation to phase-space regions not covered by the detector. The measured fiducial cross sections are corrected for detector effects to be directly compared to theoretical calculations.

The differential measurements are performed in several observable related to the Higgs boson production and decay. These include the transverse momentum $p_{T,H}$ and rapidity $|y_H|$ of the Higgs boson, the invariant mass of the subleading lepton pair m_{34} (the leading and subleading lepton pairs are defined in Section 3) and the magnitude of the cosine of the decay angle of the leading lepton pair in the four-lepton rest frame with respect to the beam axis $|\cos\theta^\ell|$. The number of jets n_{jets}, and the transverse momentum of the leading jet $p_{T,\text{jet}}$ are also included. The distribution of the $p_{T,H}$ observable is sensitive to the Higgs boson production mechanisms as well as spin/CP quantum numbers, and can be used to test perturbative QCD predictions. This distribution...
has been studied extensively and precise predictions exist (see e.g. Refs. [17–21]), including the effect of finite quark masses. The distribution of the $|y_1|$ observable can be used to probe the parton distribution functions (PDFs) of the proton. The distributions of the decay variables m_{34} and $|\cos \theta^*|$ are sensitive to the Lagrangian structure of Higgs boson interactions, e.g. spin/CP quantum numbers and higher-dimensional operators. The jet multiplicity and transverse momentum distributions are sensitive to QCD radiation effects and to the relative rates of Higgs boson production modes. The distribution of the transverse momentum of the leading jet probes quark and gluon radiation.

2. Theoretical predictions and simulated samples

The Higgs boson production cross sections and decay branching fractions as well as their uncertainties are taken from Refs. [21,22]. The cross sections for the gluon-fusion (ggF) process have been calculated to next-to-leading order (NLO) [23–25], and next-to-next-to-leading order (NNLO) [26–28] in QCD with additional next-to-next-to-leading logarithm (NNLL) soft-gluon resummation [29]. The cross section values have been modified to include NLO electroweak (EW) radiative corrections, assuming factorization between QCD and EW effects [30–34]. The cross sections for the vector-boson fusion (VBF) processes are calculated with full NLO QCD and EW corrections [35–37], and approximate NNLO QCD corrections are included [38]. The cross sections for the associated WH/ZH production processes (VH) are calculated at NLO [39] and at NNLO [40] in QCD, and NLO EW radiative corrections [41] are applied. The cross sections for associated Higgs boson production with a tt pair (tH) are calculated at NLO in QCD [42–45].

The Higgs boson branching fractions for decays to four-lepton final states are provided by Prophetic4F [46,47], which implements the complete NLO QCD + EW corrections and interference effects between identical final-state fermions.

The $H \to ZZ^* \to 4\ell$ signal is modelled using the POWHEG Monte Carlo (MC) event generator [48–52], which calculates separately the ggF and VBF production mechanisms with matrix elements up to NLO. The description of the Higgs boson transverse momentum spectrum in the ggF process is adjusted to follow the calculation in Refs. [19,20], which includes QCD corrections up to NLO and QCD soft-gluon resummations up to NNLL, as well as finite quark masses [53]. POWHEG is interfaced to PYTHIA8 [54] for showering and hadronization, which in turn is interfaced to Photos [55,56] to model photon radiation in the final state. PYTHIA8 is used to simulate VH and tH production. The response of the ATLAS detector is modelled in a simulation [57] based on GEANT4 [58].

The measured fiducial cross-section distributions are compared to three ggF theoretical calculations: POWHEG without the adjustments to the p_t^{H} spectrum described above, POWHEG interfaced to MINLO (Multi-scale improved NLO) [59] and HRT2 [v2.2] [19,20]. POWHEG with MINLO provides predictions for jet-related variables at NLO for Higgs boson production in association with one jet. The HRT2 program computes fixed-order cross sections for ggF SM Higgs boson production up to NNLO. All-order resummation of soft-gluon effects at small transverse momenta is consistently included up to NNLL, using dynamic factorization and resummation scales. The program implements top- and bottom-quark mass dependence up to NNL + NLO. At NNLL + NNLO level only the top-quark contribution is considered. HRT2 does not perform showering and QED final-state radiation effects are not included.

The contributions from the other production modes are added to the ggF predictions. At a centre-of-mass energy of 8 TeV and for a Higgs boson mass of 125.4 GeV, their relative contributions to the total cross section are 87.3% (ggF), 7.1% (VBF), 3.1% (WH), 1.9% (ZH) and 0.6% (tH), respectively.

All theoretical predictions are computed for a SM Higgs boson with mass 125.4 GeV. They are normalized to the most precise SM inclusive cross-section predictions currently available [60], corrected for the fiducial acceptance derived from the simulation.

The ZZ, WZ, tH and Z + jets background events are modelled using the simulated samples and cross sections described in Ref. [15].

3. Event selection

The detector level physics object definitions of muons, electrons, and jets, and the event selection applied in this analysis are the same as in Ref. [15], with the exception of the jet selection and the additional requirement on the four-lepton invariant mass described below. A brief overview is given in this section.

Events with at least four leptons are selected with single-lepton and dilepton triggers. The transverse momentum and transverse energy thresholds for the single-muon and single-electron triggers are 24 GeV. Two dimuon triggers are used, one with symmetric thresholds at 13 GeV and the other with asymmetric thresholds at 18 GeV and 8 GeV. For the dielectron trigger the symmetric thresholds are 12 GeV. Furthermore there is an electron–muon trigger with thresholds at 12 GeV (electron) and 8 GeV (muon).

Higgs boson candidates are formed by selecting two same-flavour opposite-sign (SFOS) lepton pairs (a lepton quadruplet). The leptons must satisfy identification, impact parameter, and track-based and calorimeter-based isolation criteria. Each muon (electron) must satisfy transverse momentum $p_T > 6$ GeV (transverse energy $E_T > 7$ GeV) and be in the pseudorapidity range $|\eta| < 2.7$ (2.47). The highest- p_T lepton in the quadruplet must satisfy $p_T > 20$ GeV, and the second (third) lepton in p_T order must satisfy $p_T > 15$ (10) GeV. The leptons are required to be separated from each other by $0.1 (0.2)$ when having the same (different) lepton flavours.

Multiple quadruplets within a single event are possible: for four muons or four electrons there are two ways to pair the masses, and for five or more leptons there are multiple combinations. The quadruplet selection is done separately in each channel: 4μ, 2e2μ, 2μ2e, 4e, keeping only a single quadruplet per channel. Here the first flavour index refers to the leading lepton pair, which is the pair with the invariant mass m_{12} closest to the Z boson mass [61]. The invariant mass m_{12} is required to be between 50 GeV and 106 GeV. The subleading pair of each channel is chosen as the remaining pair with mass m_{34} closest to the Z boson mass and satisfying the requirement $12 < m_{34} < 115$ GeV. Finally, if more than one channel has a quadruplet passing the selection, the channel with the highest expected signal rate is kept, in the order: 4μ, 2e2μ, 2μ2e, 4e. A J/ψ vetoes is imposed: $m(\ell, \ell^\prime) > 5$ GeV for SFOS lepton pairs. Only events with a four-lepton invariant mass in the range 118–129 GeV are kept. This requirement defines the signal mass window and was chosen by minimizing the expected uncertainty on the total signal yield determination, taking into account the experimental uncertainty on the Higgs boson mass.

Jets are reconstructed from topological clusters of calorimeter cells using the anti-kt algorithm [62] with the distance parameter $R = 0.4$. In this analysis, jets [63] are selected by requiring $p_T > 30$ GeV, $|\eta| < 4.4$ and, in order to avoid double counting of electrons that are also reconstructed as jets, $\Delta R(\text{jet, electron}) > 0.2$.

The events are divided into bins of the variables of interest, which are computed with the reconstructed four-momenta of the selected lepton quadruplets or from the reconstructed jets: the transverse momentum p_T^{rec} and the rapidity $|y^{\text{rec}}|$ of the four-lepton system, the invariant mass of the subleading lepton pair
m^{reco}_{34}$, the magnitude of the cosine of the decay angle of the leading lepton pair in the four-lepton rest frame with respect to the beam axis $|\cos^{\theta}_{\text{reco}}|$ of jets p_T^{jets}, and the transverse momentum of the leading jet p_T^j. In order to distinguish them from the unfolded variables used in the cross section bin definition, they are labelled with "reco".

4. Definition of the fiducial region

The fiducial selection, outlined in Table 1, is designed to replicate at simulation level, before applying detector effects, the analysis selection as closely as possible in order to minimize model-dependent acceptance effects on the measured cross sections.

The fiducial selection is applied to electrons and muons originating from vector-boson decays before they emit photon radiation, referred to as Born-level leptons. An alternative approach would be to correct the lepton momenta by adding final-state radiation photons within a cone of size $\Delta R < 0.1$ around each lepton (dressing). For this analysis the acceptance difference between Born and dressed-lepton definitions is less than 0.5%. Particle-level jets are reconstructed from all stable particles except muons and neutrinos using the anti-k_t algorithm with the parameter distance $R = 0.4$.

Jets are selected by requiring $p_T > 30$ GeV, $|y| < 4.4$ and $\Delta R^{(\text{jet, electron})} > 0.2$. Muons (electrons) must satisfy $p_T > 6$ (7) GeV and $|\eta| < 2.7$ (2.47). Events in which at least one of the Z bosons decays into τ leptons are removed. Quadruplets are formed from two pairs of SFOS leptons. The leptons are paired as in Section 3, including the possibility of incorrectly pairing the leptons, which happens in about 5% of the selected events for a SM Higgs boson with mass 125.4 GeV. The leading pair is defined as the SFOS lepton pair with invariant mass m_{12} closest to the Z boson mass and the subleading pair is defined as the remaining SFOS lepton pair with invariant mass m_{34} closest to the Z boson mass.

The three highest-p_T leptons in the quadruplet are required to have $p_T > 20, 15, 10$ GeV, respectively, and the lepton pairs must have $50 < m_{12} < 106$ GeV and $12 < m_{34} < 115$ GeV.

The separation between the leptons is required to be $\Delta R^{(\ell_i, \ell_j)} > 0.1$ (0.2) for same- (different-) flavour leptons. A J/ψ veto is applied: $m_{(\ell_i, \ell_j)} > 5$ GeV for all SFOS lepton pairs. Furthermore, the mass of the four-lepton system m_{4l} must be close to m_H, i.e. $118 < m_{4l} < 129$ GeV.

For a SM Higgs boson mass of 125.4 GeV, the acceptance of the fiducial selection (with respect to the full phase space of $H \rightarrow ZZ \rightarrow 4\ell'$, where $\ell', \ell'' = e, \mu$) is 45.7%. The number of events passing the event selection divided by the number of events passing the fiducial selection is 55.3%; about 1% of the events passing the event selection do not pass the fiducial selection.

5. Background estimate

The background estimates used in this analysis are described in detail in Ref. [15]. The irreducible ZZ and the reducible WZ background contributions are estimated using simulated samples normalized to NLO predictions. For the jet-related variables, the simulation predictions are compared to data for $m_{4l} > 190$ GeV where the ZZ background process is dominant; shape differences between the distributions in data and simulation are used to estimate systematic uncertainties.

The reducible $Z + \text{jets}$ and $t\bar{t}$ background contributions are estimated with data-driven methods. Their normalizations are obtained from data control regions and extrapolated to the signal region using transfer factors. The $\ell\ell + \mu\mu$ final state is dominated by $Z +$ heavy-flavour jets and the $\ell\ell + e\mu$ final state by $Z +$ light-flavour jets. The misidentification of light-flavour jets as electrons is difficult to model in the simulation. Therefore the distributions for $\ell\ell + e\mu$ are taken from data control regions and extrapolated to the signal region, where the background distributions for $\ell\ell + \mu\mu$ and $t\bar{t}$ are taken from simulated samples.

After the analysis selection about 9 background events are expected: 6.7 events from irreducible ZZ and 2.2 events from the reducible background.

The observed distributions compared to the signal and background expectations for the six reconstructed observables $p_T^{\text{reco}}_{Wt}$, $p_T^{\text{reco}}_{H}$, m^{reco}_{34}, $|\cos^{\theta}_{\text{reco}}|$, $n^{\text{reco}}_{\text{jets}}$, and $n^{\text{reco}}_{\text{jet}}$ are shown in Fig. 1. The signal prediction includes VBF, ZH, WH, $t\bar{t}H$, and the Powheg ggF calculation for a Higgs boson with $m_H = 125$ GeV and is normalized to the most precise SM inclusive cross-section calculation currently available [60].

6. Observed differential yields and unfolding

The extraction of the signal yield for the measurement of the fiducial cross section is performed through a fit to the m_{4l} distribution using shape templates for the signal and background contributions [15]. In this fit, the Higgs boson mass is fixed to 125.4 GeV and the parameter of interest is the total number of signal events. The extracted number of observed signal events in the mass window is $23.7^{+5.9}_{-5.3}$ (stat.) ± 6.0 (syst.).

In the differential cross-section measurements, given the low number of signal events expected in each measured bin i, the signal yields n^{obs}_i are determined by subtracting the expected number of background events from the observed number of events. This is done within the mass window for each bin of the observable of interest. The total number of observed events in the mass window 34 and the extracted signal yield is $25.1^{+6.3}_{-5.4}$ (stat.) $^{+0.6}_{-0.4}$ (syst.) events.

The difference between the number of signal events extracted with the two methods is mainly due to fixing the Higgs boson mass to 125.4 GeV in the fit method. As reported in Ref. [10], the best fit mass in the $H \rightarrow ZZ \rightarrow 4\ell$ channel alone is 124.5 GeV, causing smaller weights for some events in the fit.

After subtracting the background, the measured signal yields are corrected for detector efficiency and resolution effects. This unfolding is performed using correction factors derived from simulated SM signal samples. The correction factor in the i-th bin is calculated as

$$c_i = \frac{N^{\text{reco}}_i}{N^{\text{obs}}_i},$$

where N^{reco}_i is the number of reconstructed events in the i-th bin of the observed distribution and N^{obs}_i is the number of events in
Fig. 1. Data yield distributions for the transverse momentum p_T^{lept} and the rapidity $|y^{\text{reco}}|$ of the four-lepton system, the invariant mass of the subleading lepton pair m_{34}^{reco}, the magnitude of the cosine of the decay angle of the leading lepton pair in the four-lepton rest frame with respect to the beam axis $|\cos \theta^{\ast \text{reco}}|$, the number of jets n_{jets}, and the transverse momentum of the leading jet p_T^{jet}. The signal prediction includes VBF, ZH, WH, $t\bar{t}H$, and the Powheg ggF calculation for a Higgs boson with $m_H = 125$ GeV and is normalized to the most precise SM inclusive cross-section calculation currently available [60]. The hatched areas denote the systematic uncertainties on the backgrounds. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The unfolded signal yield in each bin is then converted into a differential fiducial cross section via

$$\frac{d\sigma_{\text{fid},i}}{dx_i} = \frac{n_i^{\text{sig}}}{c_i \cdot L_{\text{int}} \cdot \Delta x_i},$$

where Δx_i is the bin width and L_{int} the integrated luminosity.

The correction factors used in this analysis are obtained from simulated samples for all SM Higgs production modes, using the relative rates as predicted by the SM. The inclusive correction factor is $c = 0.553 \pm 0.002$ (stat.) ± 0.015 (syst.). The correction factors for the different production modes are 0.553 (ggF), 0.572 (VBF), 0.535 (WH), 0.551 (ZH) and 0.417 ($t\bar{t}H$). In $t\bar{t}H$ production the Higgs boson is accompanied by light- and heavy-flavour jets as well as possible additional leptons from the top-quark decays.

Since lepton isolation is applied to the reconstructed but not the...
Systematic uncertainties on the data-driven estimate of the reducible backgrounds are assigned both to the normalization and the shapes of the distributions by varying the estimation methods [15].

The systematic uncertainties on the lepton trigger, reconstruction and identification efficiencies [66,67] are propagated to the signal correction factors and the ZZ* background, taking into account correlations. For the correction factors, systematic uncertainties are assigned on the jet resolution and energy scales. The largest systematic uncertainty is due to the uncertainty in the jet flavour composition [63,68,69].

The uncertainties on the correction factors due to PDF choice as well as QCD renormalization and factorization scale variations are evaluated in signal samples using the procedure described in Ref. [15] and found to be negligible. A similar procedure is followed for most variables for the irreducible ZZ background. For the jet-related observables an uncertainty is derived instead by comparing the data with the predicted ZZ distributions for \(m_{4\ell} > 190\) GeV, after normalizing the MC estimate to the observed data yield. The systematic uncertainty is estimated as the larger of the data-MC difference and the statistical uncertainty on the data. This systematic uncertainty accounts for both the theoretical and experimental uncertainties in the modelling of the ZZ jet distributions. Systematic uncertainties due to the modelling of QED final-state radiation are found to be negligible with respect to the total uncertainty.

The correction factors are calculated assuming the predicted relative cross sections of the different Higgs production modes. The corresponding systematic uncertainty is evaluated by varying these predictions within the current experimental bounds [14]. The VBF and VH fractions are varied by factors of 0.5 and 2 with respect to the SM prediction and the t\(t\bar{t}\)H fraction is varied by factors of 0 and 5.

The experimental uncertainty on \(m_{4\ell}\) [10] is propagated to the correction factors by studying their dependence on the Higgs boson mass.

The systematic uncertainties on the theoretical predictions include the PDF and QCD scale choices as well as the uncertainty on the \(H \rightarrow ZZ^*\) branching fraction [60]. The procedure described in Ref. [70] is used to evaluate the scale uncertainties of the predicted \(n_{\text{jets}}\) distribution.

The upper edges of the uncertainty ranges in Table 2 are in most cases due to the highest bins in the \(n_{\text{jets}}\) and \(p_{T,\text{jet}}\) distributions. The background systematic uncertainties are large in some bins due to the limited statistics in the data control regions.

8. Results

The cross section in the fiducial region described in Table 1 is

\[
\sigma_{\text{tot}}^{\text{fid}} = 2.11^{+0.53}_{-0.47}\,(\text{stat.}) \pm 0.08\,(\text{syst.})\,\text{fb}
\]

The theoretical prediction from Ref. [60] for a Higgs boson mass of 125.4 GeV is 1.30 ± 0.13 fb.

The differential cross sections as a function of \(p_{T,\ell}, y_{\ell}, m_{3\ell}, |\cos\theta^{*}_{\ell}|, n_{\text{jets}},\) and \(p_{T,\text{jet}}\) are shown in Fig. 2. For all variables and bins the total uncertainties on the cross-section measurements are dominated by statistical uncertainties. POWHEG, MINLO and HRTs2 calculations of ggF, added to VBF, ZH/WH and t\(t\bar{t}\)H (see Section 2), are overlaid. The HRTs2 calculation was developed for modelling the Higgs kinematic variables and is only used for \(p_{T,\ell}\) and \(y_{\ell}\). The theoretical calculations are normalized to the most precise SM inclusive cross-section predictions currently available [61].

The p-values quantifying the compatibility between data and predictions, computed with the method described in Section 6, are shown in Table 3. No significant discrepancy is observed.
Fig. 2. Differential unfolded cross sections for the transverse momentum p_T, H and rapidity y_H of the Higgs boson, the invariant mass of the subleading lepton pair m_{34}, the magnitude of the cosine of the decay angle of the leading lepton pair in the four-lepton rest frame with respect to the beam axis $|\cos \theta^*|$, the number of jets n_{jets}, and the transverse momentum of the leading jet $p_{T, jet}$ in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel compared to different theoretical calculations of the ggF process: Powheg, Minlo and HRes2. The contributions from VBF, ZH/WH and $t\bar{t}H$ are determined as described in Section 2 and added to the ggF distributions. All theoretical calculations are normalized to the most precise SM inclusive cross-section predictions currently available [60]. The error bars on the data points show the total (stat. \oplus syst.) uncertainty, while the grey bands denote the systematic uncertainties. The bands of the theoretical prediction indicate the total uncertainty. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

9. Conclusion

Measurements of fiducial and differential cross sections in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel are presented. They are based on 20.3 fb$^{-1}$ of pp collision data, produced at $\sqrt{s} = 8$ TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The cross sections are corrected for detector effects and compared to selected theoretical calculations. No significant deviation from the theoretical predictions is observed for any of the studied variables.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Repub-
lic; DNRF, DNRSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and Avo Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GdRICES and FC, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR, MSTD, Serbia; MSSR, Slovakia; ARIES and MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

ATLAS Collaboration

Y. Yang
S. Yanush
L. Yao
W-M. Yao
Y. Yasu
E. Yatsenko
K.H. You
Wong
J. Ye
S. Ye
I. Yeletsikh
A.L. Yen
E. Yildirim
M. Yilmaz
R. Yoosoofmiya
K. Yorita
R. Yoshida
K. Yosihara
C. Young
C.J.S. Young
S. Youssef
D.R. Yu
J. Yu
M.J. Yu
J. Yu
L. Yuan
A. Yurkewicz
I. Yusufi
B. Zabinski
R. Zaidan
A.M. Zaitsev
A. Zaman
S. Zambito
L. Zanello
D. Zanzi
J. Zhong
Z. Zhao
A. Zhemchugov
J. Zhong
B. Zhou
L. Zhou
C.G. Zhu
H. Zhu
J. Zhu
Y. Zhu
X. Zhuang
K. Zhukov
A. Zibell
D. Zieminska
N.J. Zimine
C. Zimmermann
S. Zimmermann
Z. Zinonos
M. Ziolkowski
G. Zobernig
A. Zoccoli
M. zur Nedden
G. Zurzolo
V. Zutshi
L. Zwalinski

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, NY, United States
3 Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Gazi University, Ankara; (c) Istanbul Aydin University, Istanbul; (d) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
7 Department of Physics, University of Arizona, Tucson, AZ, United States
8 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
9 Department of Physics, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Bogazici University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INEN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, MA, United States
23 Department of Physics, Brandeis University, Waltham, MA, United States
24 (a) Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
32 (a) Department de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Fisica, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Hefei; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington, NY, United States
36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
37 (a) INEN Gruppo Collegato di Coesenza; Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) ACH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas, TX, United States
41 Physics Department, University of Texas at Dallas, Richardson, TX, United States
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, United States
46 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INEN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
53 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France