Length scales and selforganization in dense suspension flows

Düring, G.; Lerner, E.; Wyart, M.

DOI
10.1103/PhysRevE.89.022305

Publication date
2014

Document Version
Final published version

Published in
Physical Review E

Citation for published version (APA):
Dense non-Brownian suspension flows of hard particles display mystifying properties: As the jamming threshold is approached, the viscosity diverges, as well as a length scale that can be identified from velocity correlations. To unravel the microscopic mechanism governing dissipation and its connection to the observed correlation length, we develop an analogy between suspension flows and the rigidity transition occurring when floppy networks are pulled, a transition believed to be associated with the stress stiffening of certain gels. After deriving the critical properties near the rigidity transition, we show numerically that suspension flows lie close to it. We find that this proximity causes a decoupling between viscosity and the correlation length of velocities ξ, which scales as the length l_c characterizing the response to a local perturbation, previously predicted to follow $l_c \sim 1/\sqrt{z_c - z} \sim \eta^{1/2}$, where η is the dimensionless particle pressure, z is the coordination of the contact network made by the particles, and z_c is twice the spatial dimension. We confirm these predictions numerically and predict the existence of a larger length scale $l_\gamma \sim \sqrt{\eta}$ with mild effects on velocity correlation and of a vanishing strain scale $\delta \gamma \sim 1/\rho$ that characterizes decorrelation in flow.

DOI: 10.1103/PhysRevE.89.022305

PACS number(s): 64.60.-i, 47.57.E-, 63.50.-x

I. INTRODUCTION

Although the emergence of rigidity is generally associated with the breaking of a continuous symmetry, amorphous materials acquire rigidity without such a symmetry change, by jamming in a random configuration. Non-Brownian suspensions of hard particles are a particularly interesting example of this phenomenon, where the control parameter is the anisotropy of the applied stress [1]. As the stress anisotropy is reduced and the solid phase is approached, the dynamics is reminiscent of critical phenomena. Correlated motion, or eddies, appear in the flow, whose characteristic length scale ξ seems to diverge [2]. Concomitantly, rheological properties are singular [1,3], as characterized most accurately in suspensions [4,5] where the viscosity η scales with the distance to jamming. Finally, a vanishing strain scale $\delta \gamma$ at which the structure reorganizes can be identified in experiments in which the direction of shear is reversed [6]. Understanding these properties at a microscopic level remains a challenge. A visually attractive image in sheared granular materials is that the dynamics is governed by the buckling of force chains, where stress is concentrated [7]. In another view dissipation is dominated by the formation of large eddies: Assuming that the latter act as regions where particles move as blocs, particle velocities are amplified as ξ increases, increasing dissipation and leading to a viscosity $\eta \sim \xi^2$ [8].

To quantify and discuss the validity of these views, we consider the affine solvent model (ASM) [8–13] where hard particles cannot overlap and where they receive a drag force proportional to their nonaffine velocity, i.e., their velocity with respect to an affinely moving fluid background. The ASM captures the existence of a diverging length scale [8,10,11], a vanishing strain scale [14], and displays singular rheological properties [10,12] similar to experiments [4]. In this model an analogy was derived between the rheological properties of hard particles and the elasticity of a network made of identical springs, corresponding to the contacts between particles [12]. Using this analogy, it was shown that if contact networks in flow were random, one would have $\eta \sim \xi^2 \sim 1/(z_c - z)$ [15], consistent with the idea that the length of eddies controls the viscosity. However, contact networks in flow are not random [12,16], but self-organize in configurations that are much harder to shear. The length scale l_c characterizing the response of the flow velocity to a local perturbation was predicted to be insensitive to this self-organization and to follow $l_c \sim 1/\sqrt{z_c - z}$ [15], while a simple assumption on the geometry of contact networks led to the prediction that $\eta \sim (z_c - z)^{-2.7}$, consistent with observations [16]. It is presently unclear if the length scale ξ describing velocity correlations is affected by this self-organization and is distinct from l_c and if the viscosity is tied to ξ. The relationship between self-organization and the vanishing strain scale at which configurations reorganize also remains not understood.

Here we shall argue that flow self-organizes into configurations where the buckling of force chains is very strong, leading to particle velocities and a divergence of the viscosity much larger than what is naively expected from the size of the eddies ξ, which we find to scale as l_c. A simple illustration of the buckling mechanism is a nearly straight chain of rigid rods immersed in a viscous fluid, compressed at its two ends, as shown in Fig. 1(e). As we shall see, under certain circumstances when the line is almost straight, the motion of the rods (and thus the dissipation) can be huge while velocity correlations are short ranged. We shall generalize the notion of buckling to floppy (undercoordinated) networks of rigid rods where the dynamics drive the system away from a configuration in which contact forces are balanced. Generically, floppy networks with $z < z_c$ are unstable and cannot balance contact forces. However, as anticipated by Maxwell [17] and discussed by Calladine [18], certain floppy configurations can satisfy force balance. A simple way to generate such configurations is to pull on a floppy network until it jams [see, for example, a sheared network of rigid rods in Fig. 1(a) and the simpler case of a linear chain under extensional flow in Fig. 1(d)]. It has been proposed [19–23] that this phenomenon generates the stress stiffening of biopolymer
networks [24] responsible for the nonlinear response of certain biological tissues. This strain-induced jamming (SIJ) transition is the reverse process of what we will refer to here as the buckling transition. Apart from the case of certain crystals [25], these transitions are not well understood theoretically, even in simple models. In this paper we derive the scaling properties of the dynamics near these transitions, starting with the case of a line and extending our results to networks. A surprising result is that critical properties of SIJ depend on initial conditions, whereas its reverse process, the buckling transition, is universal. We then study the relationship between dense suspension flows and floppy networks pulled near jamming. We show numerically that configurations in suspension flows indeed lie very close to the buckling transition, as illustrated in Fig. 1(c), and use this result to make several predictions for dense flows.

II. ONE-DIMENSIONAL CHAIN

The case of a one-dimensional chain already illustrates the difference between the dynamics under pulling toward jamming (the SIJ transition) and pushing away from it (buckling). It also captures several critical dynamical properties that also apply to flow. We first consider the SIJ transition of a linear chain of N massless nodes (particles) connected by rigid rods of size a_0, immersed in a two-dimensional fluid of viscosity $η_0$, whose velocity profile corresponds to an extensional flow $\vec{V}_e = γ(x\hat{x} - y\hat{y})$, where $γ$ is the strain rate. This flow induces a drag force on the particles $\vec{F}_{dug} = η_0(\vec{V}_e - \vec{V}_f)$, where \vec{V}_f corresponds to the velocity of particle i. If τ_0 is the tension in the rod $α$, balancing drag and contact forces read

$$η_0(\vec{V}_e - \vec{V}_f) = \tau_0n_{ii} + \tau_αn_{ii+1},$$

where n_{ij} is the unit vector going from node i to j and $α$ links the nodes $i-1$ and i. To obtain dimensionless expressions we define the strain $γ ≡ τ_0/γ_0$, velocities $\vec{V} = \vec{V}/γ_0η_0$, and tensions $τ ≡ τ/γ_0η_0$. Introducing the angles $θ_α$ made by the rod $α$ and the horizontal x axis, as illustrated in the inset of Fig. 1(d), we can rewrite Eq. (1) by taking the difference of forces between two adjacent nodes and projecting it along the unit vector parallel to n_{ij} and along the unit vector perpendicular to n_{ij}.

$$f_{ext} = τ_α + 2γτ_α - τ_{α-1} + γτ_{α-1},$$

$$θ_α + f_{ext} = τ_{α-1} \sin(Δθ_{α-1}) + τ_{α-1} \sin(Δθ_{α}),$$

where $Δθ_α ≡ θ_α - θ_{α-1}, f_{ext} ≡ \cos(θ_α), and f_{ext} ≡ \sin(θ_α)$. Since the rods are rigid, the radial relative velocity a_0 of the nodes vanishes in Eq. (3). The extensional flow stretches the chain until it undergoes a strain-induced jamming transition when $θ_0 = 0$ for all $α$, i.e., it becomes a straight line. Appendix A shows that near the transition the relative fluctuations of tension are negligible. Equation (2) then implies

$$τ ≅ (τ) = -(Δθ^2)^{-1},$$

where $(\cdots) ≡ \frac{1}{N} \sum_k (\cdots)$. Using this result in Eq. (3) yields

$$\dot{θ}_α = (θ_{α-2} - 2θ_α + θ_{α+1})/(Δθ^2).$$

Equation (5) is a diffusion equation with a time-dependent diffusion constant. It implies that as the transition is approached, short-wavelength fluctuations of the chain vanish first, as seen in Fig. 1(d). Thus a time-dependent length scale l_{corr} (measured in units of a_0) characterizes the shape and most of the dynamics occur on that length scale.

Equation (5) can be solved by introducing the Fourier decomposition $θ_α(t) = \frac{1}{N}\sum_{k=0}^{N-1} \theta_k(t)e^{i2πkt/N}a_0$, leading to a closed equation for $(Δθ^2)$,

$$\langle Δθ^2 \rangle = \frac{4}{N^2} \sum_k |\theta_k(0)|^2 \exp (-2v_k \int_0^t \frac{dτ}{\langle Δθ^2 \rangle}) \sin(πk/N)^2,$$

where $v_k = 2[1 - \cos(πk/N)]$. Equation (6) depends on the initial angles $θ_k(0)$. To illustrate this dependence, we consider random initial conditions whose Fourier components are independent and present a well-defined second moment $|\theta_k(0)|^2/N = g(k)$, where the overbar denotes averaging over the distribution of initial conditions in the thermodynamic limit. We consider the family of initial conditions defined as $g(k) = e^2c_μ \sin(πk)^2$, with $μ$ a non-negative even exponent.
and c_μ a normalization constant such that $\int_0^1 g(k)dk = e^2$, where e is the average amplitude of the initial angles. Further, $\mu = 0$ implies $g(k) = e^2$, meaning that the chain is initially a random walk. For $\mu \to \infty$, one gets $g(k) = e^2 \delta(k - \frac{1}{2})$, which corresponds to a crystal with long-range order. For the given initial conditions, one can solve the asymptotic behavior of Eq. (6) in the thermodynamic limit to obtain

$$\langle \Delta \theta^2 \rangle \propto (\gamma_c - \gamma)^{(3+\mu)/(1+\mu)},$$

$$\langle V^2 \rangle = \tau \propto (\gamma_c - \gamma)^{-(3+\mu)/(1+\mu)},$$

$$\langle \dot{\theta}^2 \rangle \propto (\gamma_c - \gamma)^{-1},$$

where $\gamma_c = e^2/2$. The equality in Eq. (8) stems from balancing the invested work per unit time per unit length $\eta_0 \sum \tilde{V}_i^2/a_0 N = \eta_0 \gamma^2 a_0 \langle V^2 \rangle$ with the dissipation rate per unit length $\tilde{f} \dot{\gamma} = \eta_0 \gamma^2 a_0 \tau$. The scaling of these quantities results from Eqs. (4) and (7). Equation (9) can be obtained from the simple geometrical consideration that the additional horizontal strain needed to reach the transition is $\gamma_c - \gamma = 1 - (\cos(\delta_{\theta}))$. The results are (i) initial conditions affect the critical properties and (ii) relative velocities, which are of the order of $\dot{\theta}$ [Eq. (9)], and absolute velocities V [Eq. (8)], do not scale in the same way in general, except for $\mu = \infty$. The prediction for the scaling of $\langle V^2 \rangle$ is tested in Fig. 2(b).

The diffusive dynamics imply that a length scale l_{corr} grows with strain. This length is picked up by velocity correlations, which can be obtained from Eqs. (5) and (7):

$$C(n) \equiv \langle \tilde{V}_i \cdot \tilde{V}_{i+n} \rangle \sim \left(\frac{n}{l_{corr}} \right)^{2+\mu} e^{-\sigma(n/l_{corr})^2},$$

$$l_{corr} \sim \left(\frac{1}{\langle \Delta \theta^2 \rangle} \right)^{1/2} \sim (\gamma_c - \gamma)^{-1/(1+\mu)},$$

in good agreement with the results of Fig. 2(e).

A second and larger length scale diverges near the transition and can be identified from the response to a local perturbation, defined as follows: At some time the driving flow is stopped and one single contact β is elongated at some rate, leading to a dipole of force of amplitude τ_0 on the two nodes adjacent to β. The response to such a local perturbation is described by Eq. (2), where the external force f_{ext} is now $f_{\alpha} = \delta_{\alpha,\beta} \tau_0$. Equation (2) can be written in matrix form using the bra-ket notation $\langle \alpha | \beta \rangle = -N \tau_0$, where $\langle \alpha | \tau \rangle = \tau_\alpha$, $\langle \alpha | \beta \rangle = \delta_{\alpha,\beta}$ and the N matrix is given by

$$N_{\alpha \beta} = 2 \delta_{\alpha,\beta} - \cos(\theta_\alpha - \theta_\beta)(\delta_{\beta,\alpha+1} + \delta_{\beta,\alpha-1}).$$

Inverting the N matrix is difficult in general. However, close to the critical point Appendix A shows that N can be approximated by its average value $N_{\alpha} \equiv \langle N_i \rangle$. Translational invariance implies that the eigenvectors of N_{α} are plane-wave modes, with eigenvalues $\omega_q^2 = 2[1 - (\gamma_c - \gamma)^2/2 \cos(2\pi q/N)]$, where q is the wave number. The point response then reads

$$\tau_n = -\tau_0 \langle \beta + n | N^{-1}_{\alpha} | \beta \rangle \sim \tau_0 \sum_q e^{2\pi q n \omega_q^2} \sim \tau_0 e^{-|n|/l},$$

where n is the distance to the perturbation and

$$l_\tau = 1/\sqrt{\langle \Delta \theta^2 \rangle} \sim (\gamma_c - \gamma)^{-(3+\mu)/(2+2\mu)}$$

is measured in units of a_0. Our third key result is thus that the SIJ transition in the linear chain is characterized by two length scales: l_{corr}, which characterizes the velocity correlations, and l_τ, which characterizes the response to a local perturbation. These length scales are tested numerically in Figs. 2(c)–2(e).

Buckling. The dynamics described by Eq. (5) are formally reversible. However, we find that if the strain rate is reversed at some strain γ_f smaller than but close to γ_c, the observed trajectory is not reversible, as shown in Figs. 2(a) and 2(b). Instead, in this backward evolution the dynamics become dominated by high spatial frequencies of the structure and are well described by Eqs. (7)–(9) and (13) with $\mu = \infty$ and some effective critical strain $\gamma_c < \gamma_c$, as shown in Appendix B.
independent of the initial conditions: In contrast with the forward process, the reverse process is universal.

These results stem from the simple fact that when time is reversed, the tension in the rods changes sign (i.e., becomes compressive) and the diffusion coefficient of Eq. (5) becomes negative, which results in the amplification of high-frequency noise. Physically, this means that upon reversing the strain rate, the chain buckles on the smallest available length scale, leading to the universal results $\langle d\theta^2 \rangle = \gamma_c - \gamma_f$, where $\gamma_c - \gamma_f \propto \langle d\theta(\gamma_f)^2 \rangle$, as shown in Appendix B.

III. NETWORKS

Our results on the linear chain apply more generally to networks of N_c rigid rods connecting N nodes in spatial dimension d, immersed in a flowing solvent [see an example in Fig. 1(a)]. Unlike the case of the linear chain, in networks the coordination $z = 2N_c/N$ can be manipulated. Varying this parameter allows us to study the interplay between the rigidity transition that occurs in disordered isotropic networks when springs are added up to z_c, which is known to be associated with a diverging length scale $l_c \sim 1/\sqrt{z}\delta z$ [15], and the SJJ transition. We consider floppy networks having $z_c \equiv z_c - z > 0$; it has been shown that when deformation is imposed on such networks, they eventually undergo a SJJ transition at some strain $\gamma_c \sim \delta z$ [20]. At γ_c, the velocities diverge, which implies a divergence of the stress and tension, as in the linear chain case. We focus on the buckling process.

As in the case of the linear chain [compare Fig. 3(a) with Fig. 2(a)], a time-reversed diffusive process is the source of the irreversibility upon the backward dynamics. We thus expect this process to follow the same dependence on strain as the buckling of a linear chain, in particular that the dimensionless shear stress $\sigma \equiv \sigma/\omega_0 \eta \gamma_f$ (which plays the role of the dimensionless tension τ for the chain) follows $\sigma \sim C(\delta z)/(\gamma_c - \gamma_f)$ or, equivalently, $d\sigma/d\gamma \sim -\sigma^2/C(\delta z)$, where $C(\delta z)$ is some function whose derivative is left for future work. These predictions are tested numerically in random networks of rigid rods under simple shear with the driving flow $\vec{V}_t = \gamma \gamma_f \hat{\kappa}$ (see Appendix D for numerical methods). Results are shown in Fig. 3(b), which supports that $C(\delta z) \sim 1/\delta z^{0.5}$.

A. Spectrum

In the buckling process, we expect that the structural length scale l_{corr} plays no role, as for the linear chain. We are thus left with two length scales at play: the length l_c associated with the SJJ transition and l_f associated with the rigidity transition. To disentangle the role of these, it is convenient to extend the definition of the linear operator N' introduced for the chain in Eq. (12) to higher-dimensional networks. Following Calladine [18], we first introduce the operator S of dimension $N_c \times N d$, with components $S_{\alpha k} = \langle \delta_{i,k} - \delta_{i,k}\eta_i \rangle$, where α labels the rod connecting the node i with node j. It is easy to check that $S^T \bar{V} \equiv \bar{F}_d$ is the set of unbalanced forces appearing on the nodes if the rod contact forces are \bar{F}, whereas $S|\bar{V}|$ is the rate at which rods change length if nodes were moving with a velocity $|\bar{V}|$ [18]. In our notation $\bar{V}_t = (i|\bar{V}|)$. If a fluid with a velocity field \bar{V}_t is creating a drag force $|\bar{F}_d| = \eta_0|\bar{V}_t| - |\bar{V}|$ on the nodes, it is easy to show (see [12] or Appendix C) that the contact forces $|\tilde{\bar{F}}|$ appearing on the rods follow

$$-\eta_0 S|\tilde{\bar{F}}| = N'|\tilde{\bar{F}}|,$$

where $N' \equiv S S^T$ and N' is symmetric and can be diagonalized $N' = \sum_{\omega} \omega^2 \langle \phi(\omega) \rangle \langle \phi(\omega) \rangle$. Equation (14) shows that the contact forces, and hence the stress, can diverge only if there are modes approaching zero frequency in N'. The spectral density $D(\omega)$ in isotropic random floppy networks can be computed theoretically; it presents a gap at some frequency $\omega_* \sim \delta z$, above which it plateaus, as shown in Fig. 4, and the characteristic scale of the modes at ω_*^{+} is $l_c \sim 1/\sqrt{\delta z}$ [15].

As the anisotropy increases additional features must enter in the spectrum. At γ_c, a set of self-balancing rod forces $|\phi(\omega)|$ appears, which constitutes a zero mode of N'. Additional modes denoted by $|\phi_{\alpha k}(\omega)|$ must be present below ω_*, which correspond approximately to plane-wave modulations of $|\phi(\omega)|$ [16]: $\langle \phi_{\alpha k}(\omega) \rangle \approx \langle \phi(\omega) \rangle \exp(i2\pi \bar{r}_a \cdot \hat{k})$, where \bar{r}_a is the position of contact α. Their frequency follows $\omega(k)^2 \approx \langle \phi_{\alpha k}(\omega) \rangle |N'|/\phi_{\alpha k}(\omega) \approx A k^2$, where A is a constant, leading to a Debye density of states below ω_* with $D(\omega) \sim \omega^{d-1}$. In our finite-size simulations only a few such modes can be visualized; an example is indicated by an arrow in Fig. 4(a).
When buckling occurs as γ decreases below γ_c, contact forces are not balanced anymore and the minimal eigenvalue ω_{min}^2 of N rises from zero as $1/\sqrt{\sigma}$ (at constant γ) upon buckling, for which $\sigma \to \infty$. Notice that $D(\omega)$ displays modes between ω_{min} and ω^* indicated by the arrow; these are plane-wave modulations of the minimal mode and thus scale like $1/L$.

We can now consider the point response of networks, obtained by changing the length of a single rod β at a rate of l_0/γ at a fixed strain γ. This procedure corresponds to replacing $S(\nabla \hat{V})$ by $\nabla^2(\beta)$ in Eq. (14), giving rise to the rod forces $|\tau| = \eta_l l_0^2 N^{-1} |\beta|$. Consequently, the dimensionless force $\tau_\| = \eta_l l_0 / \eta_0$ in a rod α due to elongating the rod β is given by $\langle |\tau| \rangle = \langle |\alpha| N^{-1} |\beta| \rangle$. Using an eigenvalue decomposition of the N operator, we identify and collect separately the contributions to $\langle |\tau| \rangle$ stemming from modes having frequencies $\omega > \omega^*$ and $\omega < \omega^*$, denoted in the following by $\langle |\tau| \rangle_+$ and $\langle |\tau| \rangle_\text{min}$. The modes above ω^* are statistically equivalent to those of undeformed random networks, for which it is known that $\langle |\tau| \rangle_+ \sim e^{-r/l_c}$ [15] with an additional algebraic prefactor of r that depends on the spatial dimension, where $r = \|r_\| - r_\beta\|$. For $l_c \sim \delta\zeta^{-1/2}$.

The contribution stemming from the modes below ω^* can be calculated using the modes $|\phi_{\omega}(k)\rangle$ introduced above, leading to

$$\langle |\tau| \rangle_\text{min} = \sum_{\alpha(k)<\alpha^*} \langle \phi_\alpha | \beta \rangle \langle \phi_\alpha | \phi_\alpha \rangle e^{-|\tau_\alpha - \tau_\beta|}.\]$$

FIG. 4. (Color online) Spectral density $D(\omega)$ of the N operator for two-dimensional networks of size $N = 4096$, measured numerically for $\delta\zeta = 0.4$ at various stresses, as indicated in the legend. In undeformed networks a gap is observed in $D(\omega)$ up to a frequency $\omega^* \sim \delta\zeta$ [15]. Above ω^*, $D(\omega)$ remains effectively unchanged under the deformation, whereas below ω^* a single mode of frequency ω_{min} rises from zero as $1/\sqrt{\sigma}$ (at constant γ) upon buckling, for which $\sigma \to \infty$. Notice that $D(\omega)$ displays modes between ω_{min} and ω^* indicated by the arrow; these are plane-wave modulations of the minimal mode and thus scale like $1/L$.

Using $\sum_{\beta} \langle \phi_\alpha | \beta \rangle^2 = 1$, one can express the average of these norms in the thermodynamic limit in terms of $D(\omega)$, leading to $\langle \tau_\| \rangle = \frac{1}{\delta\zeta^3}$ and $\langle \tau_\| \rangle^2 \sim \omega_{\text{min}}^2$. We conclude that if $\delta\zeta < \omega_{\text{min}}/(d-3)$, the response to a local perturbation has an initial exponential decay on the scale l_c, which then crosses over to a much slower decay on the scale l_s for larger distances. However, close enough to the buckling transition, i.e., if $\omega_{\text{min}}/(d-3) < \delta\zeta$, the response in force is entirely controlled by l_s.

The dimensionless velocity field $|V| = \frac{\delta\zeta}{\eta_l} |\hat{V}|$ in response to the same perturbation can also be calculated. This response must also have two terms decaying exponentially with length scales l_s and l_c, but the relative amplitudes of these terms turn out to differ from that of the force response. To determine the amplitude of each contribution, we estimate, as for the force response (16), their respective roles in the total norm of the velocity field $\langle V | V \rangle = \langle |\beta| N^{-1} |\beta| \rangle V_\|^2 + V_\|^2$. We find $\langle V_\|^2 \sim 1/\delta\zeta$ and $\langle V_\|^2 \sim \ln(\omega_0/\omega_{\text{min}})$ in $d = 2$, or $\langle V_\|^2 \sim \delta\zeta^{d-2}$ in larger dimension. Thus, in terms of velocities for $d > 2$, the dominant response always decays as l_s, and l_c can only be observed far from the deformed contact. Both the length scale and the amplitude of the response are in excellent agreement with the numerics (see Fig. 5) that reflect both the presence of strain-independent length l_s and a diverging length l_c.

Velocity correlations near the buckling transition are associated with the properties of the minimal mode $|\phi_\alpha\rangle$, which are analytically hard to access. However, large networks can be simulated, allowing us to measure correlations adequately. We find that the correlations of velocities under shear are very similar to the velocity response to a point perturbation, as shown in Appendix E: They present an initial decay on the length l_c, followed by a decay of much milder amplitude on the length l_s, which is visible only for $r > l_s$. Thus networks near buckling present a clear decoupling between the dimensionless stress (diverging near buckling) and velocity correlations, mainly governed by l_s, which is independent of the distance to the buckling transition.
1. The slope of the stress during the relaxation segments depends on the stress itself as \(r/l_r \) relaxes between collisions, as shown in Fig. 6(a). We make the hypothesis that the smooth motion in between collisions is dominated by the proximity of a buckling transition, leading to a decoupling between viscosity and the velocity correlation length. According to this hypothesis, our results on constructed networks near their buckling transition must apply to flow: No structural length \(l_{corr} \) should play a role, but the two lengths \(l_c \) and \(l_r \sim 1/\omega_{min} \) should enter in velocity correlations, whereas \(\sigma \sim C'(\delta z)/(\gamma - \gamma_c) \) and \(\omega_{min} \sim C_p'(\delta z)/\sqrt{\sigma} \). The functions \(C'(\delta z) \) and \(C_p'(\delta z) \) can in principle differ from \(C(\delta z) \) and \(C_p(\delta z) \) introduced for networks because aspects of the respective networks are different: In flow (i) contact forces must be positive and (ii) near jamming the contact network has a nonvanishing anisotropy, i.e., the shear component of the stress does not vanish and \(\sigma \sim p \) [12]. Both facts are in contrast to our constructed networks, for which forces can be negative and for which the anisotropy vanishes even at \(\gamma_c \) as \(\delta z \to 0 \) [20]. From these considerations, together with the additional hypothesis that nonaffine displacements and relative displacements between particles in contact are of the same order, it is straightforward to show (see Appendix C) that \(C'(\delta z) \sim \delta z^0 \) and \(C_p'(\delta z) \sim \delta z^0 \). These results imply that \(d\sigma/d\gamma \sim -\sigma^2 \), as confirmed numerically in Fig. 7(b) (see Appendix D for details about numerical methods). These predictions can also be tested by replacing contacts between particles in flow at some instant of time by rigid rods and by shearing the resulting network backward, until a SIJ transition occurs. We predict a transition for a backward strain of amplitude \(\delta \gamma \equiv \gamma - \gamma_c \sim 1/\sigma \), as illustrated in Fig. 6(b). This result is checked in Fig. 7(a). Since observations in flow indicate \(\sigma \sim \delta z^{-2.7} \) [12], we get \(\delta \gamma \sim \delta z^{2.7} \ll \delta z \). These results support the hypothesis that suspension flows lie much closer to a buckling transition than isotropic random networks for which \(\delta \gamma \sim \delta z \). It also yields a characteristic strain scale \(\delta \gamma \sim 1/\sigma \sim 1/p \), in agreement with the numerical observation that particle velocities decorrelate on that strain scale [14].

Our scenario imposes that the spectrum of \(\mathcal{N} \) presents a minimal mode at a frequency \(\omega_{min} \sim 1/\sqrt{\sigma} \), as previously...
Some of these results could help distinguish which processes control the nonlinear behavior of floppy gels. On the one hand, although our models are much simpler than gels of biopolymers, we expect our prediction that the nonaffine displacements of the network nodes spike when stiffening occurs to be robust; in fact, this was observed numerically in models that include bending elasticity [19] and has been recently related to the SjJ transition [21]. This prediction could be used to test when this scenario is responsible for the observed shear stiffening of these materials or when nonlinearities of the individual fibers are instead responsible, as initially proposed [27]. On the other hand, the presence of weak interactions (e.g., bending) was shown to affect qualitatively some aspects of the elastic response in floppy materials [15] and should be included in the future to obtain a description of the SjJ transition that applies quantitatively to gels.

Most importantly, we have argued that this same transition plays a role in simple models of suspensions flows (where weak interactions are absent), thus building a bridge between two quite distinct classes of materials. This approach has allowed us to characterize quantitatively the buckling of force chains and to propose a different perspective on the self-organization characterizing these driven materials. Our approach predicts a rather subtle scenario with a vanishing strain scale and two diverging length scales, whose dominant one diverges weakly as $l_c \sim 1/\sqrt{\delta z} \approx \rho^{-0.18}$ and is decoupled from the divergence of the viscosity. Our numerical observations strongly support this prediction. Our exponent for the divergence of l_c is smaller than early numerical estimates [8,10]. However, these numerics were performed in relatively small systems and the length was measured as a function of ϕ instead of ρ, which considerably increases finite-size effects. Although the presence of hydrodynamic interactions complicates the extraction of length scales from velocity correlations [28], measurements of the response to local perturbations, as well as studies of the nonlocal rheology [29,30], should enable us to test our predictions experimentally.

ACKNOWLEDGMENTS

We thank Eric DeGiuli for constructive comments on the manuscript. This work was supported by the Sloan Fellowship, National Science Foundation Grant No. DMR-1105387, Petroleum Research Fund Grant No. 52031-DNI9, and the MRSEC Program of the National Science Foundation Grant No. DMR-0820341. G.D. acknowledges partial support from CONICYT PAI/Apoyo al Retorno Grant No. 82130057.

APPENDIX A: PERTURBATION EXPANSION

In order to find an expression for the evolution we need to solve the force balance equation (2), which can be written as

$$\mathcal{N}(\tau) = -|\langle v_i \rangle|,$$

where $\langle |\langle v_i \rangle| \rangle = f_{\text{ext}} \equiv \cos(2\theta_d)$ and the \mathcal{N} matrix is defined in Eq. (12). In the linear chain the critical point corresponds to

FIG. 7. (Color online) Hard-particle suspensions modeled by the ASM simulated as in [12]. (a) Distance in strain $\delta \gamma$ to the SjJ point (as explained in the text) vs the stress σ. (b) Scaling of $-\delta \gamma$ vs σ for hard-particle systems under shear flow. (c) Average velocity response to a local perturbation $V(r)$ vs the distance r to the perturbation. (d) Average response $V(r)$ vs the rescaled distance r/l. (e) Velocity correlation $C(r) \equiv \langle \vec{V}_i \cdot \vec{V}_j \rangle/V_i$ vs the distance r between particles i and j. (f) Velocity correlations $C(r)$ vs the rescaled distance r/l.

observed [12] and argued for [16]. Thus, following our results of the previous section on networks, we expect both the response to a local perturbation and the velocity correlations to be characterized by two length scales: $l_r \sim 1/\sqrt{\delta z}$ and a much larger $l_c \sim \sqrt{\phi} \sim \sqrt{\rho}$, that should govern correlations only for $r \gg l_r$. Figure 7 confirms our central result that both the response to a point perturbation and velocity correlations decay as e^{-r/l_r}, as expected for $r \lesssim l_r$. For $r \gg l_r$, however, the characteristic decay length should be l_c, but this prediction is hard to test numerically as our system sizes are limited.

V. CONCLUSION

We have shown that the strain-induced jamming transition is akin to a critical point, but of a curious kind: When this transition is approached, exponents depend on the initial conditions and two length scales diverge. When going away from this transition, the associated buckling behavior becomes universal and only one singular length scale plays a role.
a line (i.e., $\theta_0 = 0$ for all α), signaling that the natural small parameter should be small angles. A standard perturbation analysis around the critical point cannot be carried out because it is singular. Therefore, we introduce the parameter κ and write the N matrix as $N = N_e + \delta N_e$, where

$$\langle \alpha | N_e | \beta \rangle = 2\delta_{\alpha,\beta} - (1 - \kappa)\delta_{\alpha,\beta+1} - (1 - \kappa)\delta_{\alpha,\beta-1}, \quad (A2)$$

and κ will be chosen to remove the singularity. Equation (A1) then reads $N_e | \tau \rangle = -|\psi_1 \rangle - \delta N_e | \tau \rangle$, for which a solution can be formally written as a series

$$| \tau \rangle = -N_e^{-1} | \psi_1 \rangle + N_e^{-1} \delta N_e N_e^{-1} | \psi_1 \rangle$$

$$-N_e^{-1} \delta N_e N_e^{-1} \delta N_e N_e^{-1} | \psi_1 \rangle + \cdots. \quad (A4)$$

To calculate the contribution of the higher-order terms in the expansion (A4) we use the eigenvectors and eigenvalues of N_e, which are given by

$$\langle \alpha | \psi_q \rangle = \frac{e^{i 2\pi q \alpha / N}}{\sqrt{N}}, \quad \omega_q^2 = 2[1 - (1 - \kappa) \cos(2\pi q / N)],$$

respectively. Here q is an integer in the interval $[0, N - 1]$ and the contraction

$$\langle \psi_q | \delta N_e | \psi_1 \rangle = \langle e^{2\pi i/\mu} + e^{-2\pi i/\mu} \rangle \left(\frac{1}{2N} \Delta_{\alpha-\kappa} - \kappa \delta_{\alpha,l} \right),$$

where $\Delta_{\alpha} = \sum_{\alpha=0}^{N-1} (\theta_{\alpha} - \theta_{\alpha+1})^2 e^{\pm 2\pi i q \alpha / N}$ is the Fourier transform of $(\theta_\alpha - \theta_{\alpha+1})^2$. In the thermodynamic limit $|\Delta|/N$ is singular at $q = 0$ due to the nonzero mean of the real-space function. This singularity is precisely what we need to remove by taking

$$\kappa = \Delta_{\alpha=0} = \frac{1}{2N} \sum_{\alpha=0}^{N-1} (\theta_\alpha - \theta_{\alpha+1})^2 = (\Delta \theta^2) / 2.$$

The minimal frequency $\omega_0^2 = 2\kappa$ is given by the mean square of the angle differences between neighboring nodes. Then N_e corresponds precisely to the average $\langle N \rangle$, where the spatial average is taken over the coefficients of the N matrix.

Close to the critical point θ_0 can be considered small and $|\psi_1 \rangle \approx \sqrt{N} | \psi_0 \rangle$; therefore, the first term in the series (A4) leads to a constant tension $\tau_0 = -1 / (\Delta \theta^2)$, which corresponds to the average tension $| \tau \rangle$. In order to get an asymptotic expansion, the square of the average tension $| \tau \rangle^2 = \langle | \psi_1 | N_e^{-1} \delta N_e N_e^{-1} | \psi_1 \rangle$ must be larger than the amplitude of the fluctuations. From the expansion (A4) the amplitude of the first correction to the average is given by

$$\delta^2 = \langle | \psi_1 | N_e^{-1} \delta N_e N_e^{-2} \delta N_e N_e^{-1} | \psi_1 \rangle. \quad (A5)$$

The approximation is valid only if the ratio of the fluctuations’ amplitude over the average amplitude satisfies

$$\frac{\delta^2 | \tau \rangle^2}{\langle \tau \rangle^2} \leq \sum_{q \neq 0} \frac{\langle | \psi_q | \delta N_e | \psi_0 \rangle^2}{\omega_q^2} \ll 1. \quad (A6)$$

A straightforward calculation leads to the expression for the overlap

$$\langle | \psi_q | \delta N_e | \psi_0 \rangle^2 = \frac{16}{N^3} \cos \left(\frac{\pi q}{N} \right)^2 \sum_{k_1,k_2} \theta_{k_1-q} \theta_{k_2} \theta_{k_1+q} \theta_{k_2},$$

$$\times \sin \left(\frac{\pi k_1 - q}{N} \right) \sin \left(\frac{\pi k_2}{N} \right)$$

$$\times \sin \left(\frac{\pi k_1 + q}{N} \right) \sin \left(\frac{\pi k_2}{N} \right).$$

The final result depends on the distribution of the initial conditions for the angles $\theta_0(t)$. Considering distributions with small or no higher-order cumulant, the distribution can be taken as Gaussian. In this case the thermodynamic limit of the ratio $\frac{\delta^2 | \tau \rangle^2}{\langle \tau \rangle^2}$ is given by

$$\frac{\delta^2 | \tau \rangle^2}{\langle \tau \rangle^2} \approx 32c^2 \int_0^1 d k d q \omega_q^4 \cos(\pi q)^2 \sin[\pi(k - q)] \sin(\pi k)^{\mu + 2} \exp \left(-2(v_k + v_{k-q}) \int_0^\gamma \frac{d \tau}{(\Delta \theta^2)} \right). \quad (A7)$$

where we used $q / N \to q$ with $q \in [0, 1]$. Equation (A7) results from the diffusion equation (5) and the statistical space homogeneity of the system. Notice that for the case of an initial distribution given by random independent angles $\theta_0(t)$, expression (A7) is exact since it is Gaussian distributed. Finally, an upper bound can be obtained for Eq. (A7), taking $q = 0$, except at the denominator ω_q^4, which reads

$$\frac{\delta^2 | \tau \rangle^2}{\langle \tau \rangle^2} \leq \langle \Delta \theta^2 \rangle^{(1+\mu)/(6+2\mu)} \sim (\gamma_c - \gamma)^{1/2}.$$
with the Fourier components \(\xi_k = \sum_{a=0}^{N-1} \xi_a e^{-i2\pi ka/N} \). The self-consistent expression (6) is now given by

\[
\langle \Delta \theta^2 \rangle = \frac{4}{N} \sum_k g(k) \left(2\gamma' v_k \int_{\theta_0}^{\gamma' v_k} \frac{d\tau}{\langle \Delta \theta^2 \rangle} \right) \sin(\pi k/N)^2 \\
+ \frac{\sigma^2}{N} \sum_k \int_{\theta_0}^{\gamma' v_k} \left(2\gamma' v_k \int_{\theta_0}^{\gamma' v_k} \frac{d\tau}{\langle \Delta \theta^2 \rangle} \right) \sin(\pi k/N)^2du.
\]

(B3)

In this expression we average over the noise \(\xi \) and over the initial conditions \(\langle \theta(t_0)^2 \rangle / N = g(k) \). In deriving Eq. (B3) we have assumed that \(\langle \Delta \theta^2 \rangle \) is self-averaging, which implies that it is not correlated with \(\xi_k \) or \(\theta_k(t_0) \) in the thermodynamic limit \(N \to \infty \). In this limit we can replace \(\frac{1}{N} \sum \rightarrow \int \) and \(k/N \rightarrow k \). Considering \(g(k) = e^{2\mu} |\sin(\pi k)|^\mu \), Eq. (6) reads

\[
\langle \Delta \theta^2 \rangle = e^{2\mu} c_\mu \int_0^1 \left(2\gamma' v_k \int_{\theta_0}^{\gamma' v_k} \frac{d\tau}{\langle \Delta \theta^2 \rangle} \right) \sin(\pi k)^{\mu+2}dk \\
+ \frac{\sigma^2}{2} \int_0^1 \left(2\gamma' v_k \int_{\theta_0}^{\gamma' v_k} \frac{d\tau}{\langle \Delta \theta^2 \rangle} \right) \sin(\pi k)^2dk du.
\]

(B4)

A bound for the contribution of the noise can be calculated by extending the lower limit of integration in the exponent from \(u \rightarrow \theta_0 \). This bound shows that the term induced by the noise can be neglected in the evolution for times \(t \ll \tau_{\text{noise}} \).

\[
\langle \Delta \theta^2 \rangle = 4 \int_0^1 g(k) \left[2\gamma' v_k \left(\int_0^{\gamma' v_k} \frac{d\tau}{\langle \Delta \theta^2 \rangle} - \int_{\gamma' v_k}^{\gamma' v_k} \frac{d\tau}{\langle \Delta \theta^2 \rangle} \right) \right] \sin(\pi k)^2dk + e^{2\mu} \int_0^1 \left(-2\gamma' v_k \int_{\gamma' v_k}^{\gamma' v_k} \frac{d\tau}{\langle \Delta \theta^2 \rangle} \right) \sin(\pi k)^2dk. \tag{B5}
\]

Initially, the backward evolution is dominated by the reversible term, assuming that the noise amplitude \(\sigma^2 \ll \langle \Delta \theta^2 \rangle \). Then the first term on the right-hand side of Eq. (B5) is proportional to \(e^{-4/(1+\mu)} a_\mu (\gamma_c - \gamma)^{3+\mu}/(1+\mu) \), where \(\gamma = \gamma(t_f - t) \) for \(t > t_f \) and \(a_\mu \) is a constant that only depends on \(\mu \) (\(a_\mu \) can be expressed in terms of \(\Gamma \) functions). We now estimate the time \(\tau_{\text{noise}} \) at which the noise term becomes of the same order of the reversible term:

\[
e^{-4/(1+\mu)} a_\mu (\gamma_c - \gamma)^{3+\mu}/(1+\mu) \sim 4e^{2} \int_0^1 e^{-2\nu_\mu(\rho(t))} \sin(\pi k)^2dk, \tag{B6}
\]

where \(\rho(t) = \int_{t_f}^{\gamma' v_k} \frac{d\tau}{\langle \Delta \theta^2 \rangle} \). In this regime, while \(t \ll \tau_{\text{noise}} \) we can calculate \(\rho(t) \) using the reversible evolution of \(\langle \Delta \theta^2 \rangle \). In terms of the dimensionless strain \(\gamma \) one gets

\[
\rho(t) = \rho(\gamma) = \frac{e^{4/(1+\mu)}(\mu + 1)}{2a_\mu (\gamma_c - \gamma f)^{2/(1+\mu)}} \times \left[1 - \left(\frac{\gamma_c - \gamma_f}{\gamma_c - \gamma_f} \right)^{-2/(1+\mu)} \right]. \tag{B7}
\]

The crossover strain \(\gamma_{\text{noise}} \) must take place when \(\rho_{\rho(\gamma_\text{noise})} \sim \langle \ln(\epsilon) \rangle / 8, \) which leads to the result \(\gamma_c - \gamma_{\text{noise}} \sim \langle \rho(\infty) - \langle \ln(\epsilon) \rangle / 4 \rangle^{1/(1+\mu)/2}. \) The reversibility is then lost if only if \(\frac{\langle \ln(\epsilon) \rangle}{\langle \rho(\infty) \rangle} < 1; \) however, due to the logarithmic dependence on the noise, this inequality is easily satisfied close to the critical point. If \(\frac{\langle \ln(\epsilon) \rangle}{\langle \rho(\infty) \rangle} < 1 \) one finds that the crossover time \(\tau_{\text{noise}} \sim t_f + \langle \Delta \theta(\gamma f)^2 \rangle / \langle \Delta \theta \rangle / |\langle \ln(\epsilon) \rangle |. \) Above which the noise term becomes dominant and the reversible term can be neglected. Then the integral equation (B5) can be written as

\[
\langle \Delta \theta^2 \rangle = e^{2\mu} \int_0^1 \left(-2\gamma' v_k \int_{\gamma' v_k}^{\gamma' v_k} \frac{d\tau}{\langle \Delta \theta^2 \rangle} \right) \sin(\pi k)^2dk \approx \frac{e^{4/(1+\mu)}}{2\lambda_\mu (\gamma_c - \gamma f)^{2/(1+\mu)}} \times \left[1 - \left(\frac{\gamma_c - \gamma_f}{\gamma_c - \gamma_f} \right)^{-2/(1+\mu)} \right], \tag{B10}
\]

where \(\gamma_f = \gamma(t_f) \). The integral in Eq. (B9) can be expressed as

\[
\int_0^1 e^{-2\nu_\mu(\rho(\gamma))} \sin(\pi k)^2dk \equiv \frac{e^{4/(1+\mu)}}{2} \left[I_0(4\rho(\gamma)) + I_1(4\rho(\gamma)) \right]. \tag{B8}
\]

(B8)

where \(I_0(x) \) and \(I_1(x) \) are modified Bessel functions. Since we are considering exponentially small noise we need to reach values of \(\rho(\gamma) \gg 1 \). In this limit we can use the asymptotic expression for the Bessel function, which leads to the equation

\[
\frac{\langle \Delta \theta^2 \rangle}{\langle \Delta \theta \rangle^2} = e^{-4/(1+\mu)} a_\mu (\gamma_c - \gamma f)^{3+\mu}/(1+\mu) \sim 4e^{2} \frac{e^{4/(1+\mu)}}{\langle \ln(\epsilon) \rangle / 8}. \tag{B9}
\]

(B9)
The integral form of $\rho(t)$ allow us to write

$$
\rho(t) = \rho_{\text{r}}(y_{\text{noise}}) + \gamma \int_{t_{\text{noise}}}^{t} \frac{d\tau}{(\Delta \theta^2)}.
$$

Since $\rho_{\text{r}}(y_{\text{noise}}) >> 1$ we can use the asymptotic behavior for the modified Bessel functions in Eq. (B10), which leads to

$$
\langle \Delta \theta^2 \rangle \approx 4\pi^2 \frac{\exp(8\rho_{\text{r}}(y_{\text{noise}}) + 8\gamma \int_{t_{\text{noise}}}^{t} \frac{d\tau}{(\Delta \theta^2)})}{\sqrt{8\pi \rho_{\text{r}}(y_{\text{noise}})}} = \langle \Delta \theta(t_{\text{noise}})^2 \rangle \exp(8 \gamma \int_{t_{\text{noise}}}^{t} \frac{d\tau}{(\Delta \theta^2)}) \quad \text{(B11)}
$$

Finally, we obtain the asymptotic solution for the reverse evolution

$$
\langle \Delta \theta^2 \rangle \sim (\gamma_c - \gamma),
$$

where the effective critical strain depends on the initial conditions $\gamma_c \approx y_{\text{noise}} + \langle \Delta \theta(t_{\text{noise}})^2 \rangle/8$, but the scaling exponent is universal.

APPENDIX C: SCALING OF ω_{min} AND σ WITH STRAIN

We consider the ASM framework [12], in which overdamped hard spheres are driven under shear flow, and adopt the notation for dimensionless forces and velocities from the main text. The linear operator S and its transpose S^T are defined via the relations

$$
\tilde{n}_{ij} \cdot (\tilde{V}_j - \tilde{V}_i) \leftrightarrow S(V), \quad (C1)
$$

$$
\sum_{i(j)} \tilde{n}_{ij} n_{ij} \leftrightarrow S^T |\tau|, \quad (C2)
$$

where \tilde{n}_{ij} are the unit vectors pointing from the center of particle i to the center of particle j and $i(j)$ are all the particles i that are in contact with particle j. We consider the limit of perfectly rigid particles, therefore the velocities $|V|$ must preserve the distance between the centers of every pair of particles that are in contact, i.e., $S(V) = 0$. Decomposing the velocities to the driving affine flow and the nonaffine part $|V| = |V^f| + |V^n|$, we require that drag forces $|F^{\text{drag}}| = |V^f| - |V|$ balance the net forces on particles due to contacts

$$
S^T |\tau| = -|F^{\text{drag}}| = |V| - |V^f|. \quad (C3)
$$

Operating on Eq. (C3) with S leads to Eq. (14). Inverting for the contact forces, we obtain

$$
|\tau| = -N^{-1}S|V^f|, \quad (C4)
$$

where $N \equiv SS^T$. Inserting Eq. (C4) into Eq. (C3) results in the nonaffine velocities

$$
|V^n| = -S^T N^{-1} S|V^f|. \quad (C5)
$$

Denoting the kth particles’ coordinates by \tilde{R}_k and the differences $\tilde{R}_{ij} \equiv \tilde{R}_j - \tilde{R}_i$ the variation of the pairwise distance $r_{\alpha} \equiv \sqrt{\tilde{R}_{\alpha} \cdot \tilde{R}_{\alpha}}$ for the contact $\alpha = (ij)$ under simple shear in the x-y plane is given by

$$
\langle \alpha |S|V^f| \rangle = \frac{\partial r_{\alpha}}{\partial \gamma} \cdot \hat{k} \cdot \hat{R}_\alpha \cdot \hat{y}, \quad (C6)
$$

where \hat{k} and \hat{y} denote Cartesian unit vectors. From here the stress is given by

$$
\sigma = -\langle \tau |S|V^f| \rangle = \langle V^f|S^T N^{-1}S|V^f| \rangle = \langle V^{na}|V^{na} \rangle / \Omega, \quad (C7)
$$

where Ω is the dimensionless volume.

In our framework, the total derivatives of a regular observable O are taken as $\frac{dO}{d\gamma} = \frac{dO}{d\gamma} + \frac{d\gamma}{d\gamma} |V^n|$. As $\frac{d\gamma}{d\gamma}$ is always regular, whereas close to the critical point $|V^n|$ is singular [12], we approximate in the following $\frac{d\gamma}{d\gamma} \approx \langle \gamma |S|V^n| \rangle$.

We let $|W|$ be a vector in the space of particles and calculate

$$
\frac{dS}{d\gamma} |W| \simeq \langle \langle (V^{na}|K)|W| \rangle \rangle, \quad (C8)
$$

where the contraction of K on a pair of any vectors (U_i,W) is a vector in the space of contacts with components defined via

$$
\tilde{U}_{ij} \cdot \left(\frac{\tau}{r_{ij}} - \tilde{R}_{ij} \right) \cdot \tilde{W}_{ij} \leftarrow \langle U|K|W \rangle, \quad (C9)
$$

where $\tilde{U}_{ij} \equiv \tilde{U}_j - \tilde{U}_i$ and \tilde{K} denotes the unit tensor. Notice that components of the vector $|\langle (W|K|W) \rangle|$ are non-negative for any vector $|W|$. Denoting by $|\phi_{\text{min}}|$ the normalized eigenvector of N associated with the minimal eigenvalue $\omega_{\text{min}}^2 = |\phi_{\text{min}}|N|\phi_{\text{min}}\rangle$, the derivative of ω_{min}^2 with respect to strain is calculated as

$$
\frac{d(\omega_{\text{min}}^2)}{d\gamma} \simeq 2|\phi_{\text{min}}| |\langle (V^{na}|K|S^T|\phi_{\text{min}})\rangle| \quad (C10)
$$

since $\langle \phi_{\text{min}}| \frac{d\gamma}{d\gamma} |\phi_{\text{min}}\rangle = 0$ from normalization. Close to the critical point the minimal mode has a finite coupling to the shear [16] (this simply comes from the fact that even for frictionless particles, at jamming the stress has a finite anisotropy, i.e., $\mu = \sigma/p > 0$, i.e., $|\phi_{\text{min}}| |S|V^f| \sim |\phi_{\text{min}}| |S|V^f| \sim |S|V^f| \sim \sqrt{N}$ (this last relation simply stem from the fact that the components of $S|V^f|$ are of order one in our dimensionless units). Contact forces $|\tau|$ [see Eq. (C4)] are thus dominated by the minimal mode, i.e.,

$$
|\tau| \sim -|\phi_{\text{min}}| |S|V^f| |\phi_{\text{min}}| \sim \sqrt{N} |\phi_{\text{min}}| \omega_{\text{min}}^2 |\phi_{\text{min}}|. \quad (C11)
$$

Operating on this relation with S and using Eq. (C3), we find

$$
S^T |\phi_{\text{min}}| \sim \omega_{\text{min}}^2 \sqrt{N} S^T |\tau| \sim \omega_{\text{min}}^2 / \sqrt{N} |V^n|. \quad (C12)
$$

Inserting this expression for $S^T |\phi_{\text{min}}|$ in Eq. (C10), we obtain

$$
\frac{d(\omega_{\text{min}}^2)}{d\gamma} \sim \omega_{\text{min}}^2 / \sqrt{N} \langle \phi_{\text{min}} |(\langle (V^{na}|K|V^{na}) \rangle \rangle. \quad (C13)
$$

Since contact forces are positive for repulsive particles, close to the critical point where contact forces are dominated by the minimal mode, all components of $|\phi_{\text{min}}|$ are non-negative.
This is also true for the components of $\langle (V^m | K | V^n) \rangle$ by construction. Thus we expect for the overlap

$$\langle \phi_\text{min} ((V^m | K | V^n)) \rangle \sim ||\phi_\text{min}|| \times ||(V^n | K | V^m)|| = ||(V^n | K | V^m)||.$$

We finally assume that the relative nonaffine displacement, of order $||(V^n | K | V^m)||/\sqrt{N}$, is the order of the relative nonaffine velocities between particles, by definition of order $||V^m||/\sqrt{N}$. This assumption is consistent with our results on the buckling of the one-dimensional chain, where it applies. This assumption implies that

$$\langle \phi_\text{min} ((V^m | K | V^n)) \rangle \sim \frac{||V^n||^2}{N}. \quad (C14)$$

Returning to Eq. (C7), we use Eq. (C11) for the forces to obtain

$$\sigma \sim \frac{||V^n||^2}{\Omega} \sim \frac{\phi_\text{min} |S| V^2}{\Omega \omega^2_{\text{min}}} \sim \frac{N}{\Omega \omega^2_{\text{min}}} \sim \frac{1}{\omega^2_{\text{min}}}. \quad (C15)$$

Finally, using Eqs. (C14) and (C15) in Eq. (C13), we find that

$$\frac{d\omega_{\text{min}}}{dy} \sim O(1) \text{ or } \omega_{\text{min}} \sim \sqrt{\gamma} - \gamma_c , \quad (\gamma_c < \gamma).$$

A straightforward consequence of the scalings $\omega_{\text{min}} \sim \sqrt{\gamma} - \gamma_c$ and $\sigma \sim 1/\omega^2_{\text{min}}$ is a prediction for the relaxation of the stress $\sigma \sim 1/(\gamma - \gamma_c)$ or, alternatively,

$$\frac{d\sigma}{d\gamma} \sim -\sigma^2, \quad (C16)$$

which is validated numerically in Fig. 7(b).

APPENDIX D: NUMERICAL METHODS

Data for the flow of hard particles within the ASM framework [12] are generated using the algorithm described in [26]. We have simulated a binary mixture of large and small disks in two dimensions with $N = 4096$ particles, setting the ratio of radii of large and small particles to 1.4. Systems were deformed under simple shear with Lees-Edwards periodic boundary conditions for strains of at least 300% before statistics were collected. We simulated systems at various packing fractions ranging from $\phi = 0.820$ to 0.840.

The same algorithm described in [26] is straightforwardly adapted for deforming networks of rigid rods by keeping the topology of the networks fixed. Initial floppy networks of rods with coordination $z < 2d$ were created as described in [20]. We have simulated networks of $N = 4096$ and $N = 40,000$ nodes and coordinations varying between $z = 3.6$ and 3.95. Networks were deformed under simple shear with Lees-Edwards periodic boundary conditions until the dimensionless stress reached $\sigma \approx 10^9$. Then the shear was reversed [see, for example, the stress-strain signal of Fig. 3(a)] and data were collected. Responses to point perturbations and velocity correlations were measured in the larger networks, whereas the spectral analysis as displayed in Fig. 4 was performed on the smaller networks. The response to a point perturbation [Figs. 2(c), (5), 7(c), and 7(d)] at a bond σ is calculated by solving the equation $N(f) = |\sigma|$ for $|f|$ and then calculating $|V| = S^T |f|$ (see Appendix C for definitions of S and N). The derivatives $d\sigma/d\gamma$ were calculated by finite differences. Linear chains with $N = 10,000$ nodes were deformed under extensional flow with periodic boundary conditions using the same method used for random floppy networks.

APPENDIX E: VELOCITY CORRELATIONS IN STRAINED RANDOM NETWORKS

In Fig. 8 the velocity correlations $C(r)$ vs distance r between particles i and j are plotted for networks of $N = 40,000$ nodes with $\delta z = 0.2$ in two dimensions, at various stresses. We find that $C(r)$ initially decays exponentially on the scale $l_r \sim 1/\sqrt{\delta z}$ and then crosses over to an exponential decay on the length scale $l_r \sim \sqrt{\sigma}$. These correlation functions are similar to the velocity response to a point perturbation presented in Fig. 5. Notice in particular the two exponential decays on the length scale l_r at short distance and l_r in the far field.