Finite element analysis of levee stability for flood early warning systems

Melnikova, N.B.

Publication date
2014

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Table of contents

Chapter 1
Introduction .. 1
1.1 Motivation and scientific challenges............................... 1
1.2 Early Warning Systems for Flood Protection..................... 4
1.3 Overview of the thesis.. 6

Chapter 2
Principles of dike modelling .. 7
2.1 Simulation of water flow through the dike.......................... 8
2.2 Modelling soil deformations.. 11
2.3 Dike stability assessment... 15
2.4 Virtual Dike model.. 17
2.5 Conclusions... 20

Chapter 3
Implementation, integration into decision support system and performance assessment .. 21
3.1 Introduction... 21
3.2 Virtual Dike Implementation.. 22
3.3 Integration into the UrbanFlood early warning system 24
3.4 Performance benchmarking... 26
3.5 Conclusions... 29

Chapter 4
Livedike case study: simulation and validation of the fluid sub-model ... 30
4.1 LiveDike: geometry, soil build-up, loadings and sensor data...... 31
4.2 Governing equations, model data and computational mesh 36
4.3 2D numerical sensitivity analysis of pressure amplitude and time delay to the variation of soil diffusivity 39
4.4 1D analytical sensitivity analysis of tidal pressure oscillations to the variation of soil diffusivity.................................. 41
4.5 Automatic procedure for diffusivities calibration............... 45
4.6 Livedike diffusivities calibration....................................... 47
4.7 Conclusions... 49

Chapter 5
Boston dike case study: simulation and validation of a coupled flow-structure interaction model under tidal loads .. 50
5.1 Test site description and ground conditions......................... 50
5.2 Instrumentation and sensor data analysis............................ 52
5.3 Mathematical models and numerical implementation........ 55
5.4 Finite element simulation results...................................... 58
5.5 Limit equilibrium modelling results.................................... 60
5.6 Models cross-validation: comparison of FEM and LEM results.. 61
5.7 Conclusions... 64

Chapter 6
IJkDijk case study: prediction of a dike slope failure by the Virtual Dike module .. 65