Nur77 and FHL2: Novel players in vascular and immune disease
Kurakula, K.B.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Nur77 and FHL2: Novel Players in Vascular and Immune Disease

by

Konda Babu Kurakula

PhD thesis public defence

30 June 2015
Tuesday 14.00

Agnietenkapel
Oudezijds Voorburgwal 231
1012 EZ Amsterdam

You are kindly invited to join the defence and the reception thereafter

Paranymphs:
Nazanin Hakimzadeh
n.hakimzadeh@amc.uva.nl

Lejla Medzikovic
l.medzikovic@amc.uva.nl

Konda Babu Kurakula
Nur77 and FHL2: Novel Players in Vascular and Immune Disease

Cover design and Lay-out by Dollar photo club and Konda Babu Kurakula

Printed by Gildeprint, Enschede.

This research forms part of the Project P1.02 NEXSTREAM of the research program of the BioMedical Materials institute, co-funded by the Dutch Ministry of Economic Affairs. The research described in this thesis was supported by a grant of the Dutch Heart Foundation (NEXSTREAM – DHF 2008T090).

Financial support by the Dutch Heart Foundation for the publication of this thesis is gratefully acknowledged.

The printing of this thesis was financially supported by: the Department of Medical Biochemistry, Academic Medical Center (AMC); Tebu-bio (The Netherlands); BD Biosciences (Belgium).

The research described in this thesis was conducted at the department of Medical Biochemistry, Academic Medical Center, University of Amsterdam.

Copyright@2015 by Konda Babu Kurakula
All rights are reserved. No part of this thesis may be reproduced, stored, or transmitted in any form or by any means, without written permission of the author.
Nur77 and FHL2: Novel Players in Vascular and Immune Disease

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties ingestelde
commissie, in het openbaar
te verdedigen in de Agnietenkapel

op dinsdag 30 juni 2015, te 14.00 uur

door

Konda Babu Kurakula

geboren te Viravada, India
Promotiecommissie

Promotor: Prof. dr. C.J.M. de Vries

Co-promotores: Dr. C.M. van Tiel
 Dr. V. de Waard

Overige leden: Prof. dr. J.C.M. Meijers
 Prof. dr. M.J.T.H. Goumans
 Prof. dr. M.P.J. de Winther
 Prof. dr. M. Yazdanbakhsh
 Dr. N. Zelcer

Faculteit der Geneeskunde
“A person who never made a mistake never tried anything new.” - Albert Einstein

“It always seems impossible until it’s done.” - Nelson Mandela

To my family…
Table of Contents

Chapter 1
General introduction and outline of the thesis
Part I
Vascular and Immune diseases
Part II
Nuclear Receptors in Vascular Disease
Part III
The Interactome of NR4A Nuclear Receptors

Chapter 2
Dual function of Pin1 in NR4A nuclear receptor activation: enhanced activity of NR4As and increased Nur77 protein stability

Chapter 3
FHL2 protein is a novel co-repressor of nuclear receptor Nur77

Chapter 4
6-Mercaptopurine reduces cytokine and Muc5ac expression involving inhibition of NFκB activation in human airway epithelial cells

Chapter 5
Nuclear receptor Nur77 attenuates airway inflammation in mice by suppressing NFκB activity in lung epithelial cells

Chapter 6
Deficiency of LIM-only protein FHL2 attenuates airway inflammation in mice and genetic variation in FHL2 associates with human bronchohyperreactivity

Chapter 7
LIM-only protein FHL2 regulates pulmonary Schistosoma mansoni egg granuloma formation

Chapter 8
The LIM-only protein FHL2 reduces vascular lesion formation involving inhibition of proliferation and migration of smooth muscle cells

Chapter 9
LIM-only protein FHL2 is a positive regulator of
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>FHL2 interacts with Tissue Factor and modulates its activity in vascular cells</td>
<td>247</td>
</tr>
<tr>
<td>11</td>
<td>General discussion</td>
<td>265</td>
</tr>
<tr>
<td>12</td>
<td>Summary</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>Samenvatting</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>About the author</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>PhD portfolio</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>List of publications</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>309</td>
</tr>
</tbody>
</table>