A new metal-organic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments

Duan, X.; Zhang, Q.; Cai, J.; Yang, Y.; Cui, Y.; He, Y.; Wu, C.; Krishna, R.; Chen, B.; Qian, G.

DOI
10.1039/c3ta14454b

Publication date
2014

Document Version
Final published version

Published in
Journal of Materials Chemistry. A

Citation for published version (APA):
A new metal–organic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments

Xing Duan, Qi Zhang, Jianfeng Cai, Yu Yang, Yuanjin Cui, Yabing He, Chuande Wu, Rajamani Krishna, Banglin Chen* and Guodong Qian*

A new three-dimensional microporous metal–organic framework, Cu₂(MFDI) (ZJU-60, H₂MFDI = 5,5’-(9,9-dimethyl-9H-fluorene-2,7-diyl)disipthalic acid), was solvothermally synthesized. ZJU-60 features a three-dimensional structure with a rare sty-a-type topology and has two different types of pore apertures. With open metal sites and suitable pore spaces, ZJU-60 can readily separate methane in nearly pure form from CO₂ and C₂-hydrocarbon quaternary gas mixtures at room temperature with high separation capacity and moderate selectivity. The separation feasibility has been further established by simulated breakthrough and pulse chromatographic experiments.

1. Introduction

Natural gas often contains impurities such as CO₂, along with C₂-hydrocarbons: C₂H₂, C₂H₄ and C₂H₆. In order to meet pipeline gas specifications, these impurities need to be removed. Methane has been widely utilized as an energy source and raw material. Compared to other conventional automobile fuels such as gasoline (petrol) and diesel, methane can be considered as a cleaner energy alternative due to its clean-burning characteristics, so separation of methane from C₂-hydrocarbons (C₂s) and CO₂ is a very important industrial process.¹ The traditional cryogenic distillation separation technology, which is based on their different vapour pressures and thus boiling points, is very energy-consuming, whereas the alternative oil-absorption method is not efficient.² Adsorptive separation is one of the most promising alternative energy- and cost-efficient separation methods, so it is desirable to explore new microporous adsorbents which can selectively separate methane from CO₂ and C₂-hydrocarbons at room temperature.

Among the diverse adsorptive separation materials, metal–organic frameworks (MOFs) have recently shown great promise for such an important application. MOFs can be self-assembled from metal ions or metal-containing clusters with multi-dentate organic linkers through coordination bonding.³⁻⁷ The uniqueness of porous MOFs is that their pore sizes can be systematically tuned with organic linkers of different lengths and geometries while their pore surfaces can be functionalized by the immobilization of different functional sites, such as –NH₂ and –OH, and open metal sites for their differential recognition for small molecules and thus for gas separation.³⁻⁵ The first examined MOF (ZIF-8) for C₂s/C₁ separation by ExxonMobil exhibits quite a low separation capacity and selectivity.⁸ We significantly enhanced the separation capacity up to about 3.0 mol kg⁻¹ and the selectivity up to 35 via tuning the pore and cavity sizes in the MOF UTSA-34 for C₂s/C₁ separation.⁹ Given the fact that porous MOFs with higher separation capacity and selectivity for the C₂s/C₁ separation can significantly save the energy cost, pursuit of new porous MOF materials for this important application is highly desirable. Herein we report a new copper–organic framework, Cu₂(MFDI) (ZJU-60, ZJU = Zhejiang University, H₂MFDI = 5,5’-(9,9-dimethyl-9H-fluorene-2,7-diyl)disipthalic acid), which can separate methane in nearly pure form from CO₂ and C₂-hydrocarbon gas mixtures at room temperature, which has been established exclusively by the sorption isotherms and simulated breakthrough and pulse chromatographic experiments.
2. Experimental

2.1 Materials and measurements

All the chemicals were commercially available and used without further purification. 1H NMR spectra were recorded on a Bruker Advance DMX500 spectrometer using tetramethylsilane (TMS) as an internal standard. Elemental analyses for C, H, and N were performed on an EA1112 microelement analyzer. Powder X-ray diffraction (PXRD) patterns were collected in the 2θ = 3–30° range on an X’Pert PRO diffractometer with Cu Kα radiation ($\lambda = 1.542 \text{ Å}$) at room temperature. Thermogravimetric analyses (TGA) were conducted on a Netsch TGA 209 F3 thermogravimeter with a heating rate of 10 °C min$^{-1}$ in a N$_2$ atmosphere.

2.2 Gas sorption measurements

A Micromeritics ASAP 2020 surface area analyzer was used to measure gas adsorption. To have a guest-free framework, the fresh sample was guest-exchanged with dry acetone at least 10 times, filtered and vacuumed at room temperature for 12 h and then at 383 K until the outgas rate was 5 μmHg min$^{-1}$ prior to measurements. The sorption measurement was maintained at 77 K with liquid nitrogen and at 273 K with ice-water bath (slush), respectively. As the center-controlled air condition was set up at 23.0 K for slush, a water bath of 23.0 °C was used for adsorption isotherms at 296.0 K.

2.3 X-ray collection and structure determination

Crystallographic measurements were taken on an Oxford Xcalibur Gemini Ultra diffractometer with an Atlas detector using graphite-monochromatic Cu Kα radiation ($\lambda = 1.54178 \text{ Å}$) at 293 K for ZJU-60. The measurements of the unit cells and data collections for the crystals of ZJU-60 were performed with CrysAlisPro. The datasets were corrected by empirical absorption correction using spherical harmonics, implemented in the SCALE3 ABSPACK scaling algorithm. The structure was determined by direct methods and refined by the full-matrix least-squares method with the SHELX-97 program package. All non-hydrogen atoms, including solvent molecules, were located successfully from Fourier maps and were refined anisotropically. H atoms on C atoms were generated geometrically. The solvent molecules in ZJU-60 are highly disordered. The SQUEEZE subroutine of the PLATON software suite was used to remove the scattering from the highly disordered guest molecules. Crystallographic data are summarized in Table S1.†

2.4 Synthesis of ZJU-60

A mixture of H$_2$MDDI (1.04 mg, 0.0020 mmol) and Cu(NO$_3$)$_2$·2.5H$_2$O (1.949 mg, 0.0080 mmol) was dissolved in DMF–H$_2$O (3 mL, 4 : 1, v/v) in a screw-capped vial. After HNO$_3$ (40 μL) (69%,aq.) was added to the mixture, the vial was capped and placed in an oven at 65 °C for 48 h. The resulting hexagonal flake-shaped single crystals were washed with DMF several times to give ZJU-60. Elemental analysis: calcd for [Cu$_2$(C$_3$H$_8$O$_8$)(H$_2$O)$_3$](DMF)$_8$(H$_2$O)$_{12}$: C, 44.56; H, 6.95; N, 7.56; Found: C, 44.56; H, 6.95; N: 7.56%.

3. Results and discussion

ZJU-60 was synthesized from Cu(NO$_3$)$_2$·2.5H$_2$O and H$_2$MFPDI in DMF–H$_2$O with addition of a small amount of nitric acid at 60 °C for 2 days as small blue cuboid block-shaped crystals. The structure of ZJU-60 was characterized by single-crystal X-ray diffraction studies, and the phase purity of the bulk material was independently confirmed by powder X-ray diffraction (PXRD, Fig. S1†) and thermogravimetric analysis (TGA, Fig. S2†).

The single-crystal X-ray diffraction analysis reveals that ZJU-60 crystallizes in a hexagonal space group of P6$_3$/mmc.† The framework is composed of paddle wheel dinuclear Cu$_2$(COO)$_4$ units which are bridged by organic linkers to form a 3D rare styrene cage of about 4.4 × 8.6 Å2 in diameter; and (b) the pores along the c axis with the size of about 5.4 Å.

ZJU-60 crystallizes in a hexagonal space group of P6$_3$/mmc. The framework is composed of paddle wheel dinuclear Cu$_2$(COO)$_4$ units which are bridged by organic linkers to form a 3D rare styrene cage of about 4.4 × 8.6 Å2 in diameter; and (b) the pores along the c axis with the size of about 5.4 Å.

† Crystal data for ZJU-60: C$_3$H$_8$Cu$_2$O$_{18}$, M = 681.57, P6$_3$/mmc, a = b = 18.4819(3) Å, c = 34.4495(5) Å, V = 10 190.8(3) Å3, Z = 6, D$_m$ = 0.666 g cm$^{-3}$, μ(Cu-Kα) = 0.988 mm$^{-1}$, f(000) = 2076, GoF = 1.070, final R$_1$ = 0.0589 for I > 2σ(I), and wR$_2$ = 0.1636 for all data. CCDC: 969710.

Establishment of the permanent porosity of ZJU-60 encourages us to examine its potential application in gas storage and selective gas separation. As shown in Fig. 2b and c, ZJU-60a can take up moderate amounts of C$_2$H$_2$ of 178.66 and 150.57 cm3 g$^{-1}$ at 273 and 296 K, respectively, under 1 atm. The
amount of adsorbed C$_2$H$_2$ in ZJU-60a at 296 K is slightly higher than that in MOF-505 (148 cm3 g$^{-1}$). ZJU-60a can take up C$_2$H$_2$ (178.67 cm3 g$^{-1}$), C$_2$H$_4$ (158.71 cm3 g$^{-1}$), C$_2$H$_6$ (177.59 cm3 g$^{-1}$), and CO$_2$ (97.69 cm3 g$^{-1}$) at 1 atm and 273 K, and C$_2$H$_2$ (150.57 cm3 g$^{-1}$), C$_2$H$_4$ (132.55 cm3 g$^{-1}$), C$_2$H$_6$ (135.66 cm3 g$^{-1}$) and CO$_2$ (73.3 cm3 g$^{-1}$) at 1 atm and 296 K, which are much higher than the amount of CH$_4$ (26.4 cm3 g$^{-1}$) at 273 K and that of CH$_4$ (19.06 cm3 g$^{-1}$) at 296 K. Such different sorption enables ZJU-60a to be a promising material for highly selective adsorptive separation of C$_2$-hydrocarbons and CO$_2$ from CH$_4$.

In order to establish the feasibility of these gas separations, we performed calculations using the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz. The IAST calculations indicated that the hierarchy of adsorption strengths is C$_2$H$_2$ > C$_2$H$_4$ > C$_2$H$_6$ > CO$_2$ > CH$_4$.

The isosteric heat of adsorption, Q_{st}, defined as

$$Q_{st} = RT \left(\frac{\partial \ln p}{\partial T} \right) q$$

was determined using the pure component isotherm fits. Fig. S4† shows data on the loading dependence of Q_{st} for adsorption of CH$_4$, CO$_2$, C$_2$H$_2$, C$_2$H$_4$, and C$_2$H$_6$ on ZJU-60a. The isosteric heat of adsorption of CH$_4$ on ZJU-60a is 12.0 kJ mol$^{-1}$, whereas the isosteric heats of adsorption of C$_2$H$_2$, C$_2$H$_4$, C$_2$H$_6$, and CO$_2$ are 17.6, 21.4, 19.8 and 15.2 kJ mol$^{-1}$, respectively. The higher adsorption heats for C$_2$ hydrocarbons and CO$_2$ might be due to the comparable pore sizes and open metal sites in ZJU-60a with these small C$_2$ hydrocarbons and CO$_2$, thereby enforcing their interaction with the host framework, and thus leading to moderately high C$_2$-hydrocarbons/CH$_4$ and CO$_2$/CH$_4$ selective separation.

To obtain pure CH$_4$ from natural gas streams, the adsorption selectivity of CO$_2$ with respect to CH$_4$ is very important. We used two different metrics to evaluate the performance of ZJU-60a for the CO$_2$/CH$_4$ separation. The first metric is the adsorption selectivity. Fig. 3 shows the IAST adsorption selectivity, S_{ads}, for equimolar CO$_2$/CH$_4$ mixtures at 296 K in ZJU-60a. The adsorption selectivities of CO$_2$ with respect to CH$_4$ are higher than 5 for ZJU-60a for a range of pressures to 100 kPa, indicating that ZJU-60a is feasible to separate methane from CO$_2$ and C$_2$-hydrocarbons.

Besides the CO$_2$/CH$_4$ selectivity, another important metric for pressure swing adsorbers is the uptake capacity for impurities. Fig. 4 presents the IAST calculations for the uptake capacities for the total of four impurities (C$_2$H$_2$ + C$_2$H$_4$ + C$_2$H$_6$ + CO$_2$) in the 5-component mixture. We note that the capacity of ZJU-60a for impurity uptake reaches 3 mol L$^{-1}$ at 100 kPa and 296 K, which is higher than that of our recently developed UTSA-34. In order to properly evaluate the feasibility for the practical separation, the breakthrough experiments were simulated based on the established methodology described in the work of
Krishna and Long which has been exclusively confirmed by the experimental breakthrough experiments. Fig. 5 presents data on the concentrations at the exit of the adsorber for the chosen MOFs, for illustration purposes. The x-axis in Fig. 5 is dimensionless time, \(\tau \), defined by dividing the actual time, \(t \), by the characteristic time, \(\tau_{c} \). We note that the sequence of breakthroughs for the MOFs is CH\(_4\), CO\(_2\), C\(_2\)H\(_6\), C\(_2\)H\(_4\), and C\(_2\)H\(_2\). The adsorbent has the ability to separate CH\(_4\) in pure form from this quaternary mixture.

From the data presented in Fig. 5, we can determine the mol \% CH\(_4\) in the exit gas stream. Fig. 6 shows the \%CH\(_4\) exiting the bed adsorber packed with ZJU-60a. With the MOFs it is possible to recover pure CH\(_4\) from the gas mixture in a certain interval of time. We arbitrarily set the purity requirement to be 99% CH\(_4\). From a material balance on the adsorber, we can determine the amount of 99% pure CH\(_4\) that can be produced per L of the adsorbent in the fixed bed. The productivity is 0.33 mol L\(^{-1}\) for ZJU-60a. The separation capability of ZJU-60a is also underscored in pulse chromatographic simulations (Fig. S5†). The breakthrough and pulse chromatographic simulations confirm the potency of ZJU-60 for separation of CH\(_4\) in nearly pure form from gas mixtures containing CO\(_2\), C\(_2\)H\(_2\), C\(_2\)H\(_4\) and C\(_2\)H\(_6\) species at room temperature.

4. Conclusions
In summary, we have synthesized a novel three-dimensional porous metal–organic framework ZJU-60 for separation of methane in nearly pure form from CO\(_2\) and C\(_2\)-hydrocarbon quaternary gas mixtures at room temperature with high separation capacity and moderate selectivity. The high separation capacity is attributed to the suitable pore space and open metal sites within pores of the framework to take up a large amount of hydrocarbons and CO\(_2\). It is expected that this work will initiate more investigations on the emerging MOFs for such industrially important separation.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grants 51010002, 51272231 and 51229201), Grant CHE 0718281 from the National Science Foundation, and Grant AX-1730 from the Welch Foundation (B.C.).

Notes and references

