Diagnosis, treatment and long-term effects of venous thromboembolism
Cheung, Whitney

Citation for published version (APA):
Cheung, Y. W. (2016). Diagnosis, treatment and long-term effects of venous thromboembolism

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 11

Post-thrombotic syndrome in patients treated with rivaroxaban or vitamin K antagonists for acute deep venous thrombosis: a post-hoc analysis

Y.W. Cheung
S. Middeldorp
M.H. Prins
A.F. Pap
A.W.A. Lensing
A.J. ten Cate-Hoek
S. Villalta
M. Milan
J. Beyer-Westendorf
P. Verhamme
R.M. Bauersachs
P. Prandoni

on behalf of the Einstein PTS Investigators Group

Thrombosis and Heamostasis, 2016:116 epub ahead of print
Abstract

Introduction: Post-thrombotic syndrome (PTS) is a common complication of deep venous thrombosis (DVT). Poor quality treatment with vitamin K antagonists (VKA) is a risk factor for PTS. We hypothesised that treatment with the direct oral anticoagulant (DOAC) rivaroxaban may lower PTS incidence as compared to enoxaparin/VKA, as DOACs have a more stable pharmacologic profile than VKA.

Methods: Post-hoc subgroup analysis of the Einstein DVT trial (n=3449). Kaplan Meier survival analysis was performed to compare the cumulative incidence of PTS between the rivaroxaban and enoxaparin/VKA groups. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated using Cox proportional hazards models.

Results: We included 336 patients with a mean age of 58±16 years and a median follow-up after index DVT of 57 months (interquartile range 48-64). Of these, 162 (48%) had been treated with rivaroxaban and 174 (52%) with enoxaparin/VKA. The cumulative PTS incidence at 60 months follow-up was 29% in the rivaroxaban group and 40% in the enoxaparin/VKA group. After adjusting for age, gender, body mass index, previous VTE, ipsilateral recurrent DVT, extent of DVT, idiopathic DVT, duration of anticoagulant treatment, compliance to assigned study medication, elastic compression stocking use and active malignancy, the HR of PTS development for rivaroxaban was 0.76 (95% CI: 0.51-1.13).

Conclusion: Treatment of acute DVT with rivaroxaban was associated with a numerically lower but statistically nonsignificant risk of PTS compared to enoxaparin/VKA treatment. The potential effect on reducing PTS deserves evaluation in a large randomised trial.
Introduction

Post-thrombotic syndrome (PTS) is a common complication of deep venous thrombosis (DVT) and occurs in 20-50% of the patients after a DVT.\(^1\)\(^\text{-}\)\(^4\) Clinical presentation may vary from minor signs including skin discoloration, venous ectasia, discomfort and swelling, to severe manifestations such as chronic pain, intractable edema or leg ulcers impairing. Due to its high prevalence, severity and chronicity, PTS has a significant impact on quality of life and is associated with considerable socioeconomic consequences for both the patient and the health care system.\(^1\),\(^5\)

The pathogenesis of PTS is not fully understood. It has been thought that persistent venous obstruction, valve damage and an impaired microcirculation in the veins contribute to PTS development.\(^6\) Inadequate thrombus resolution might cause persistent venous obstruction and valve damage leading to venous hypertension.\(^7\) The regular treatment of DVT is unfractionated heparin or low molecular weight heparin (LMWH) followed by vitamin K antagonists (VKA). Several studies have shown that on average patients spend more than 20% of their time below the therapeutic range during treatment with VKA.\(^8\)\(^\text{-}\)\(^10\) It is confirmed that the therapeutic intensity of VKA treatment is an essential determinant for development of PTS since the time spent beneath the therapeutic range is associated with PTS development.\(^9\),\(^11\) Furthermore, a systematic review found a significantly lower rate of PTS in patients treated with LMWH alone compared to patient treated with LMWH followed by VKA.\(^12\)

Rivaroxaban, one of the direct oral anticoagulants (DOACs) approved for treatment of venous thromboembolism (VTE), has a stable pharmacological profile and thereby could overcome the disadvantages of VKA. However, the risk of PTS in DVT patients treated with rivaroxaban is unknown. We hypothesised that treatment with rivaroxaban may lower the risk of PTS as compared with VKA treatment.

Methods

Study design and population

This investigator-initiated cohort study assessed the incidence of PTS in patients who participated in the Einstein DVT trial. The Einstein DVT trial was an open-label, randomised, event-driven, non-inferiority trial that compared the efficacy and safety of oral rivaroxaban alone (15 mg twice daily for 3 weeks, followed by 20 mg once daily) with subcutaneous enoxaparin followed by a VKA (either warfarin or acenocoumarol; target INR 2-3) in 3449 patients with acute, symptomatic DVT (for 3, 6, or 12 months). The Einstein DVT trial showed that rivaroxaban was as effective as enoxaparin followed by VKA in reducing the incidence of symptomatic recurrent VTE events.\(^13\)

All centers which were willing to collect assessments for PTS after the con-
clusion of the Einstein DVT study were invited to participate in this sub-study. Study centers were requested to complete a predefined questionnaire without enquiring the allocation to study treatment.

Patient data from the Einstein DVT trial were obtained after informed consent and independent review board approvals. Data from the Einstein DVT trial database had been entirely de-linked from personal health information when accessed for this study. This study is consistent with the principles of the Declaration of Helsinki. Bayer performed the analyses that the authors requested.

Definition of PTS

PTS was assessed with the Villalta score and performed by trained physicians or nurses.\(^\text{14}\) This score consists of 5 patient-rated symptoms (heaviness, pain, cramps, itching, and tingling) and 6 physician-rated signs (pretibial edema, skin induration, hyperpigmentation, venous ectasia, redness, and pain on calf compression). For each item, a score of 0-3 was assigned using the contralateral unaffected leg as comparator. PTS was defined as a Villalta score of ≥ 5 persisting for at least three months. A total score of 5 to 14 points indicates moderate PTS, and ≥ 15 severe PTS. The presence of a venous ulcer of the lower limb indicates severe PTS, regardless of the Villalta score.\(^\text{14}\) The date of PTS development was reported by the patient. Use of elastic compression stockings (ECS) was scored by means of a questionnaire. Additional information on the recurrence of symptomatic recurrent VTE and death during follow-up was collected at time of the PTS assessment. Only events that were objectively documented and/or led to hospitalisation were included.

Study outcomes

The primary outcome of this study was the cumulative incidence of PTS. Secondary outcomes were the severity of PTS, confirmed symptomatic recurrent VTE and death.

Statistical analyses

A Kaplan Meier survival analysis was performed to compare the cumulative incidence of PTS between the two treatment groups. Differences between the curves were formally tested for significance with the log-rank test. Hazard ratios (HR) and 95% confidence intervals (CI) for the effect of rivaroxaban and enoxaparin/VKA were calculated by using Cox proportional hazards models. HRs were adjusted for age, gender, body mass index, previous VTE, ipsilateral recurrent DVT, extent of DVT (femoral vein or more proximal DVT versus popliteal or more distal DVT), idiopathic DVT, duration of anticoagulant treatment, compliance to assigned study medication, use of ECS and presence of an active malignancy (defined as a malignancy treated during the previous 6 months or presence of recurrent or metastatic malignancy).
Compliance in the rivaroxaban treatment group was calculated as follows. For the initial 21 days in which rivaroxaban 15 mg was given twice-daily, the number of tablets taken was divided by 2 and then divided by the duration from randomisation up to the last intake of the twice daily regimen. For the subsequent period in which rivaroxaban 20 mg was given once-daily, the number of tablets taken was divided by the duration from stop of twice daily rivaroxaban up to the last intake of once-daily rivaroxaban. Compliance in the enoxaparin/VKA group was calculated as follows: for the initial treatment period with enoxaparin, subjects were considered compliant if they had at least 4 days of initial enoxaparin treatment, and if the INR was at least 2.0 on 2 consecutive measurements at least 24 hours apart before stop date of enoxaparin. For the subsequent VKA treatment period, subjects were considered compliant if the INR was measured at least monthly after the initial treatment period, regardless of the INR value. Compliance of ≥80% was considered good.

Follow-up started at randomisation and ended for each individual at the date of estimated onset of PTS or at the date of the last PTS assessment.

Results

Figure 11.1 shows the study profile: 25 centers participated with a total number of 492 randomised patients. The assessment of PTS was not performed in 156 (32%) patients, 81 in the rivaroxaban group and 75 in the enoxaparin/VKA group.

The baseline characteristics of the 336 recruited patients are shown in Table 11.1. The mean age was 58±16 years, mean body weight of 84±18 kg and 197 (59%) subjects were male. Of the patients treated with rivaroxaban 101 (62%) had an idiopathic DVT compared to 114 (66%) in the enoxaparin/VKA group. In 92 (57%) rivaroxaban patients, the location of the index DVT was in the femoral vein or more proximal versus 117 (67%) in the enoxaparin/VKA patients. The median overall duration of anticoagulation was 7 months (interquartile range [IQR] 6-26), 6 months (IQR 6-18) in the rivaroxaban and 12 months (IQR 6-51) in the enoxaparin/VKA group.

Assigned treatment and compliance

In total, 336 patients were included of whom 162 (48%) had been treated with rivaroxaban and 174 (52%) with enoxaparin/VKA. Compliance to assigned treatment was >80% in 153 (94%) rivaroxaban-treated patients versus 169 (97%) enoxaparin/VKA-treated patients. The INR was 21% of the time below 2 and 79% of the time 2 or higher in the enoxaparin VKA group.
Follow-up

The median follow-up after index DVT was 57 months (IQR 48-64, Table 11.1). In 39 patients the follow-up was less than 24 months (Figure 11.2). Eight patients with a follow-up less than 24 months developed PTS; 4 patients were treated with rivaroxaban and 4 were treated with enoxaparin/VKA. Twenty three patients with a follow-up of less than 24 months had not developed PTS at the end of the follow-up; 13 were treated with rivaroxaban and 10 with enoxaparin/VKA. Another 8 patients with a follow-up of less than 24 months died within the 24 months without developing PTS; 4 were treated with rivaroxaban and 4 were treated with enoxaparin/VKA.
Rivaroxaban and post-thrombotic syndrome

Figure 11.2 | Follow-up less than 24 months versus more than 24 months

<table>
<thead>
<tr>
<th>PTS data available</th>
<th>297 patients had a follow-up ≥ 24 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=335</td>
<td>• PTS present – 103 patients</td>
</tr>
<tr>
<td></td>
<td>• No PTS present – 194 patients</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>39 patients had a follow-up < 24 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTS present at time of assessment – 8 patients</td>
</tr>
<tr>
<td>No PTS at time of assessment – 31 patients</td>
</tr>
<tr>
<td>• 23 patients (alive)</td>
</tr>
<tr>
<td>• 8 patients died before 24 months (cancer [n=3], renal failure [n=1], septic shock [n=1], suicide [n=1], unknown [n=2])</td>
</tr>
</tbody>
</table>

Abbreviations: PTS, post-thrombotic syndrome.

PTS

The cumulative incidence of PTS at 60 months follow-up was 29% in the rivaroxaban group and 40% in the enoxaparin/VKA group (unadjusted HR 0.71, 95% CI: 0.48-1.03, p=0.07, Figure 11.3, Table 11.2). The HR for PTS development in the rivaroxaban group was 0.76 (95% CI: 0.51-1.13, p=0.18, Figure 11.3) after adjustment for age, gender, body mass index, previous VTE, ipsilateral recurrent DVT, extent of index DVT, idiopathic DVT, duration of anticoagulant treatment, compliance to assigned study medication, use of ECS and presence of active malignancy. Of the rivaroxaban-treated patients 5 (11%) developed severe PTS compared to 6 (9%) enoxaparin/VKA treated-patients (Table 11.2).

Confirmed symptomatic recurrent VTE and death

The rates of symptomatic recurrent VTE and death during follow-up were similar in both groups (Table 11.2). Recurrent VTE occurred in 34 (21%) patients treated with rivaroxaban and in 29 (17%) patients treated with enoxaparin/VKA. Death occurred in 10 (6%) patients treated with rivaroxaban versus 16 (9%) patient treated with enoxaparin/VKA.
Table 11.1 | Baseline characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Rivaroxaban (n=162)</th>
<th>Enoxaparin/VKA (n=174)</th>
<th>Total (N=336)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, yr – no. (±SD)</td>
<td>57 (±16)</td>
<td>58 (±16)</td>
<td>58 (±16)</td>
</tr>
<tr>
<td>< 65 years</td>
<td>102 (63%)</td>
<td>99 (57%)</td>
<td>201 (60%)</td>
</tr>
<tr>
<td>Gender, male – no. (%)</td>
<td>91 (56%)</td>
<td>106 (61%)</td>
<td>197 (59%)</td>
</tr>
<tr>
<td>Weight, mean (±SD) kg</td>
<td>83 (±19)</td>
<td>84 (±17)</td>
<td>84 (±18)</td>
</tr>
<tr>
<td>BMI, mean (±SD) kg/m²</td>
<td>28 (±5)</td>
<td>28 (±5)</td>
<td>28 (±5)</td>
</tr>
<tr>
<td>Active malignancy at randomisation – no. (%)</td>
<td>8 (5%)</td>
<td>6 (3%)</td>
<td>14 (4%)</td>
</tr>
<tr>
<td>CrCl, mean (SD) ml/min</td>
<td>102 (±39)</td>
<td>98 (±37)</td>
<td>100 (±38)</td>
</tr>
<tr>
<td>History of VTE</td>
<td>31 (19%)</td>
<td>36 (21%)</td>
<td>67 (20%)</td>
</tr>
<tr>
<td>Cause of DVT – no. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopathic</td>
<td>101 (62%)</td>
<td>114 (66%)</td>
<td>215 (64%)</td>
</tr>
<tr>
<td>Provoked</td>
<td>61 (38%)</td>
<td>60 (35%)</td>
<td>121 (36%)</td>
</tr>
<tr>
<td>Location of index DVT – no. (%)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femoral vein or more proximal</td>
<td>92 (57%)</td>
<td>117 (67%)</td>
<td>209 (62%)</td>
</tr>
<tr>
<td>Popliteal vein or more distal</td>
<td>70 (43%)</td>
<td>57 (33%)</td>
<td>127 (38%)</td>
</tr>
<tr>
<td>Median duration of oral anticoagulant treatment – months (IQR)</td>
<td>6 (6-18)</td>
<td>12 (6-51)</td>
<td>7 (6-26)</td>
</tr>
<tr>
<td>The median duration of study medication – months (IQR)</td>
<td>6 (6-7)</td>
<td>6 (6-8)</td>
<td>6 (6-8)</td>
</tr>
<tr>
<td>≥80% compliance to assigned treatment – no. (%)</td>
<td>153 (94%)</td>
<td>169 (97%)</td>
<td>321 (96%)</td>
</tr>
<tr>
<td>Time INR <2</td>
<td>-</td>
<td>21%</td>
<td>-</td>
</tr>
<tr>
<td>Time INR 2-3</td>
<td>-</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>Confirmed ECS use – no. (%)</td>
<td>111 (69%)</td>
<td>134 (80%)</td>
<td>245 (73%)</td>
</tr>
<tr>
<td>Follow-up time – months (IQR)</td>
<td>58 (46-64)</td>
<td>57 (49-65)</td>
<td>57 (48-64)</td>
</tr>
</tbody>
</table>

Abbreviations: VKA, vitamin K antagonists; SD, standard deviation; BMI, body mass index; CrCl, Creatinin Clearance; VTE, venous thromboembolism; DVT, deep venous thrombosis; IQR, interquartile range; INR, International Normalised Ratio.

femoral vein or more proximal versus popliteal vein or more distal
Table 11.2 | Outcomes by treatment group

<table>
<thead>
<tr>
<th>Villalta severity category</th>
<th>Rivaroxaban (n=162)</th>
<th>Enoxaparin/VKA (n=174)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild and moderate</td>
<td>40 (89%)</td>
<td>60 (91%)</td>
</tr>
<tr>
<td>Severe</td>
<td>5 (11%)</td>
<td>6 (9%)</td>
</tr>
<tr>
<td>Ipsilateral leg ulcer</td>
<td>1 (2%)</td>
<td>4 (6%)</td>
</tr>
<tr>
<td>Recurrent VTE</td>
<td>34 (21%)</td>
<td>29 (17%)</td>
</tr>
<tr>
<td>Death</td>
<td>10 (6%)</td>
<td>16 (9%)</td>
</tr>
</tbody>
</table>

*Abbreviations: VKA, vitamin K antagonists; ECS, elastic compression stocking; VTE, venous thromboembolism

Figure 11.3 | Cumulative incidence of the post-thrombotic syndrome in patients treated with rivaroxaban and patients treated with enoxaparin/VKA (Kaplan Meier).

Abbreviations: VKA, vitamin K antagonists; HR, hazard ratio; CI, confidence interval.
Chapter 11

Discussion

This is the first study that assessed the PTS incidence in patients treated with rivaroxaban versus enoxaparin/VKA. Our results showed that rivaroxaban-treated patients may have a lower risk of developing PTS as compared with enoxaparin/VKA-treated patient. The PTS risk reduction observed in the rivaroxaban group as compared to the enoxaparin/VKA group was not statistically significant but there was a trend towards a beneficial effect of rivaroxaban.

Suboptimal quality of coagulation might cause inadequate clot resolution and consequently increase venous obstruction and valve damage leading to venous hypertension and ultimately PTS. During the Einstein DVT trial, enoxaparin/VKA patients were 21% of the time below the therapeutic range (INR 2-3) and more than 90% of the patients in both rivaroxaban and enoxaparin/VKA-treated patient had a compliance rate of ≥80%. This raises the question whether the TTR and compliance in the Einstein DVT trial can be translated to daily practice. It is known that patients treated with VKA and monitored in a community setting have a lower adherence than patients in a randomised control trial setting.10,11 Considering that reduced treatment burden and regimen complexity are associated with better compliance, rivaroxaban patients might have a better adherence in clinical practice and thereby contributing to better long term clinical outcomes like PTS, especially in settings where INR control is suboptimal.15

In our study, 31 (9%) patients had a follow-up of less than 24 months. Hypothetically, these patients could develop PTS if the follow-up was sufficient. However, it is unlikely that we underestimated the overall PTS incidence or the PTS incidence in one of the treatment arms, since the cumulative incidence of PTS in our study was similar to previous studies and the patients with a short follow-up were equally distributed between both treatment arms.4,16,17 In 156 patients we were not able to perform a PTS assessment, as the number of patients in the rivaroxaban and enoxaparin/VKA group were similar we deem it unlikely that this affected the PTS outcome in the two groups.

One of our study limitations is the open-label design of the Einstein DVT trial. Since the Villalta scale comprises 5 subjective symptoms recall bias cannot be ruled out. Patients’ expectations could have affected the reporting of the symptoms. Observation bias could not be completely excluded. However, as the study investigators were instructed to proceed in a standardised way by using a predefined questionnaire without enquiring about the drugs received in the initial treatment of the DVT episode observation bias was minimised. Moreover, the development of PTS was defined according the internationally recommended Villalta scale. Nonetheless, PTS diagnosis is based on the subjective symptoms reported by patients and the observation of the investigator, therefore observation bias could not be completely excluded. Moreover, recall bias could be present in this study since at a median follow-up time of 57 months patients were asked when the PTS complaints started. Another
limitation is the inability to recruit all patients who were enrolled in the Einstein DVT trial. However, our subgroup is representative of the Einstein DVT population as the baseline characteristics were similar in the two cohorts. Furthermore, the risk of selection bias within the centers was reduced to a minimum as all Einstein DVT centers were invited to participate in this sub-study and all centers that could participate in this study tried to evaluate all Einstein DVT patients. On average, 75% of the Einstein DVT patients per center were included in the current sub-study. Due to the small sample size sensitivity analyses with TTR stratification could not be performed. Nevertheless, regression analysis showed that compliance of less than 50% to assigned study medication is a risk factor for PTS development. Worse compliance exposes patients to inadequate treatment and thereby supporting the hypothesis that inadequate treatment is a risk factor for PTS development.

The median duration of treatment was longer in enoxaparin/VKA-treated patients than in rivaroxaban patients. This is likely due to the fact that continuation of treatment with rivaroxaban was not possible because the drug was not approved for the treatment of VTE at the time of the conduct of the Einstein study. However, this is a conservative bias. Furthermore, as post-randomisation variables could affect the outcome of PTS we deliberately chose to include these variables in our Cox proportional hazard model.

Conclusion

Treatment of acute DVT with rivaroxaban was associated with a numerically lower but statistically nonsignificant risk of PTS compared to enoxaparin/VKA treatment. The potential effect on reducing PTS deserves evaluation in a large randomised trial.

What is known on this topic?

- PTS is a common complication of DVT
- DOACs are as effective as vitamin K antagonists in the treatment of DVT
- No data are available on the effect of DOACs on the long-term outcomes PTS

What this paper adds?

- Treatment of acute DVT with rivaroxaban was associated with a numerically lower but statistically nonsignificant risk of PTS compared to enoxaparin/VKA treatment.
- The potential effect on reducing PTS deserves evaluation in a large randomised trial.
Reference list

