The quench action approach to out-of-equilibrium quantum integrable models
Wouters, B.M.

Citation for published version (APA):
Wouters, B. M. (2015). The quench action approach to out-of-equilibrium quantum integrable models
Spin content of the Néel state

In this section we compute the expectation value of the number of infinite rapidities in the Néel state. We use that for zero-magnetization states the average number of rapidities at infinity is related to the average total spin, where spin refers to the global $SU(2)$ symmetry.

D.1 Global spin operators

It is well known that the spin-1/2 XXX Hamiltonian ($\Delta = 1$) exhibits a global $SU(2)$ symmetry. Let us consider the global $SU(2)$ operators (here and in the following we choose N even, such that zero magnetization states are always possible)

$$S^\alpha = \sum_{j=1}^{N} s_j^\alpha, \quad \text{for} \quad \alpha = x, y, z, +, - .$$

The operators $s_j^\alpha = \sigma_j^\alpha / 2$ represent the local spin degrees of freedom and act locally as $SU(2)$ operators. They have the usual commutation relations

$$[s_j^\alpha, s_k^\beta] = i \delta_{jk} \epsilon_{\alpha\beta\gamma} s_k^\gamma \quad \text{for} \quad \alpha, \beta, \gamma \in \{x, y, z\}$$

where $\epsilon_{\alpha\beta\gamma}$ is the total anti-symmetric epsilon tensor. Using the definitions $s_j^\pm = s_j^x \pm i s_j^y$ these commutation relations transform into $[s_j^x, s_k^\pm] = \pm \delta_{jk} s_k^\pm$ and $[s_j^y, s_k^-] = 2 \delta_{jk} s_k^x$. Similar relations hold for the global operators,

$$[S^x, S^\pm] = \pm S^\pm \quad \text{and} \quad [S^+, S^-] = 2S^z .$$

The total spin operator

$$S^2 \equiv \vec{S}^2 = \sum_{\alpha=x,y,z} S^\alpha S^\alpha = \frac{1}{2} \left(S^+ S^- + S^- S^+ \right) + (S^z)^2 = S^+ S^- - S^z + (S^z)^2$$

(D.4)
D. Spin content of the Néel state

is a central element of $SU(2)$, i.e., $[S^2, S^\alpha] = 0$ for all $\alpha = x, y, z, +, -$.

The Hilbert space of the XXX chain is given by an N-fold tensor product of local spin-1/2 $SU(2)$ representation spaces. Due to the global $SU(2)$ symmetry, we can choose simultaneous eigenstates of S^z and S^2 with eigenvalues s^z and $s(s+1)$, respectively, as an orthonormal basis of the Hilbert space. The eigenstates are denoted by $|s, s^z, a\rangle$, where the integer values s, s^z, and a are restricted by $0 \leq s \leq N/2$, $-s \leq s^z \leq s$, and $1 \leq a \leq A_N(s)$. Here, $A_N(s)$ is the number of $(2s+1)$-multiplets in the N-fold tensor product of $SU(2)$ spin-1/2 representations,

$$A_N(s) = \left(\frac{N}{2} - s \right) - \left(\frac{N}{2} - s - 1 \right).$$

(D.5)

The Bethe states, which are constructed as eigenstates of the operator S^z, form multiplets of the global $SU(2)$ symmetry. A highest-weight state $|s, s, a\rangle$ is a Bethe state with $N/2 - s$ finite rapidities and zero rapidities at infinity. Other states of the multiplet, with $s^z < s$, are constructed by repeatedly applying $(s-s^z)$ times the total spin-lowering operator S^- to the highest-weight state. This operator can be interpreted as the creation of a magnon with zero momentum, corresponding to a rapidity at infinity, see Eq. (2.55). Infinite rapidities decouple from the Bethe equations and the newly obtained state remains an eigenstate of the Hamiltonian. A generic state $|s, s^z, a\rangle$ can therefore be seen as a Bethe state with $N/2 - s$ finite rapidities, supplemented by $s - s^z$ infinite rapidities.

Let us define the operator \hat{N}_∞, counting the number of infinite rapidities, i.e., $\hat{N}_\infty|s, s^z, a\rangle = (s - s^z)|s, s^z, a\rangle$. Note that \hat{N}_∞ is a conserved quantity. We are interested in the expectation value of the number of infinite rapidities on the Néel state. For a generic zero-magnetization state $|\psi\rangle$ we easily find

$$\langle \psi | \hat{N}_\infty | \psi \rangle = \sum_{s=0}^{N/2} \sum_{a=1}^{A_N(s)} |\langle \psi |s, 0, a\rangle|^2 = \sum_{s=0}^{N/2} s C_s,$$

where C_s can be interpreted as a measure of how much overlap the state $|\psi\rangle$ has with the total spin-s sector.

To find this “spin content” of a generic state, define the function f_N as the Fourier transform of the coefficient C_s,

$$f_N(x) = \sum_{s=0}^{N/2} C_s e^{2s(s+1)x/N}.$$

(D.7)

The inverse transformation exists and yields

$$\frac{2}{i\pi N} \int_{0}^{i\pi N/2} \text{d}x \ f_N(x) e^{-2i(t+1)x/N} = \ldots.$$
D.1. Global spin operators

\[\ldots = \sum_{s=0}^{N/2} C_s \left(\frac{2}{i \pi N} \int_0^{i \pi/2} dx \, e^{2is(s+1)-t(t+1)\frac{x}{N}} \right) = C_t, \]

where we used that \([s(s + 1) - t(t + 1)] = 0\) if and only if \(s = t\) for nonnegative integers \(s\) and \(t\). The coefficient \(C_s\) is thus determined by the function \(f_N\), which can be expressed by its Taylor series around \(x = 0\),

\[f_N(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f_N^{(n)}(0)x^n = \sum_{n=0}^{N/2} \frac{1}{n!} \sum_{s=0}^{N/2} C_s s^n(s+1)^n \left(\frac{2x}{N} \right)^n \]

where we used that \([s(s + 1)] = 0\) if and only if \(s = t\) for nonnegative integers \(s\) and \(t\). The coefficient \(C_s\) is thus determined by the function \(f_N\), which can be expressed by its Taylor series around \(x = 0\),

\[f_N(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f_N^{(n)}(0)x^n = \sum_{n=0}^{N/2} \frac{1}{n!} \sum_{s=0}^{N/2} C_s s^n(s+1)^n \left(\frac{2x}{N} \right)^n \]

\[= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{2x}{N} \right)^n \langle \psi | (S^+ S^-)^n | \psi \rangle. \]

For the last equality, we used Eq. (D.4), the zero-magnetization property and the following expression for the expectation value of the total-spin operator

\[\langle \psi | (S^2)^n | \psi \rangle = \sum_{s=0}^{N/2} s^n(s+1)^n \sum_{a=1}^{A_N(s)} |\langle \psi | s, 0, a \rangle|^2 = \sum_{s=0}^{N/2} s^n(s+1)^n C_s. \]

It is convenient to bring the operators \(S^+\) and \(S^-\) of the product \((S^+ S^-)^n\) in an appropriate order,

\[\langle \psi | (S^+ S^-)^n | \psi \rangle = \sum_{m=0}^{n} c_m^{(n)} \langle \psi | (S^+)^m (S^-)^m | \psi \rangle. \]

As shown in D.3, the coefficients \(c_m^{(n)}\) are Legendre-Stirling numbers and given by

\[c_0^{(0)} = 1, \quad c_m^{(n)} = \sum_{r=1}^{m} \frac{(-1)^{r+m}(2r+1) r^n(r+1)^n}{(m+r+1)!(m-r)!} \]

for \(n \geq 1\). Furthermore, the expectation values of the operator \((S^+ S^-)^m\) on an arbitrary zero-magnetization state cannot be evaluated in general. However, let us focus on a special class of states that can be expressed in the local spin basis as a single product of local spin lowering operators acting on the fully-polarized state (e.g. the Néel state),

\[|\psi\rangle = |\{n_j\}_{j=1}^{N/2} \rangle = \prod_{j=1}^{N/2} s_{n_j}^{-}\uparrow^{\otimes N}. \]

The integers \(\{n_j\}_{j=1}^{N/2}\) with \(1 \leq n_1 < \ldots < n_{N/2} \leq N\) label the positions of the downspins. One easily finds

\[\langle \psi | (S^+)^m (S^-)^m | \psi \rangle = \langle \{n_j\}_{j=1}^{N/2} | (S^+)^m (S^-)^m | \{n_j\}_{j=1}^{N/2} \rangle = (m!)^2 \binom{N/2}{m}. \]
Plugging Eqs (D.12) and (D.14) into Eq. (D.9), we eventually obtain

$$f_N(x) = c_0^{(0)} + \sum_{n=1}^{\infty} \sum_{m=1}^{n} \frac{(m!)^2}{n!} \left(\frac{N/2}{m} \right) \sum_{r=1}^{m} \frac{(-1)^{r+m}(2r+1)r^n(r+1)^n}{(m+r+1)!(m-r)!} \left(\frac{2x}{N} \right)^n$$

$$= 1 + \sum_{m=1}^{N/2} \sum_{r=1}^{m} \frac{(m!)^2}{(m+r+1)!(m-r)!} \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{2r(r+1)x}{N} \right)^n$$

We used that $c_m^{(n)} = 0$ if $m = 0$ or $m > n$, as can be seen from Eq. (D.12). Using now the inverse Fourier transform (D.8) we can read off the coefficients C_s. They are given by

$$C_s = \sum_{m=s}^{N/2} \left(\frac{N/2}{m} \right) \frac{(-1)^{s+m}(m!)^2(2s+1)}{(m+s+1)!(m-s)!} = \frac{(2s+1)(N/2)!^2}{(N/2-s)!(N/2+s+1)!} = \frac{A_N(s)}{N/2}.$$

(D.15)

The fact that C_s is directly proportional to $A_N(s)$, the number of all zero-magnetization states in a fixed s-sector, is remarkable. It means that the average overlap squared is the same ($= (N/2)!^2/N!$) for each sector. Therefore, one cannot argue that overlaps with higher s, i.e., with more rapidities at infinity, $N_\infty = s$, decrease with increasing s. Only the number of zero-magnetization states $A_N(s)$ per s-sector decreases with increasing s for sufficiently large s.

D.2 Limit of large number of lattice sites

The formula for C_s, which is a measure of how much spin s is contained in a zero-magnetization state of the form (D.13) and which is directly proportional to the number $A_N(s)$ of $(2s+1)$-multiplets for a given N, can be further analyzed in the limit of large lattice site N.

In the limit $N \to \infty$ we use Stirling’s formula to manipulate Eq. (D.16). After a straightforward calculation one obtains the scaling of the coefficient C_s with large N,

$$C_s \sim \frac{2(2s+1)}{N} e^{-2s(s+1)/N}.$$

(D.17)

This function has a maximum at $s_0 = (\sqrt{N} - 1)/2 \sim \sqrt{N}/2$ or, to be more precise, at the integer which lies as close as possible to this generally irrational
number. Furthermore, the expectation value of the number of infinite rapidities can be computed analytically,

\[
\langle \psi | \hat{N}_\infty | \psi \rangle = \sum_{s=0}^{N/2} s C_s = \frac{1}{2} \left(\frac{2^N (N/2)!^2}{N!} - 1 \right). \tag{D.18}
\]

Using Stirling’s formula one finds that

\[
\lim_{N \to \infty} \frac{\langle \psi | \hat{N}_\infty | \psi \rangle}{\sqrt{N}} = \sqrt{\frac{\pi}{8}}. \tag{D.19}
\]

In the thermodynamic limit, the number of infinite rapidities of the steady state is negligible compared to the total number of rapidities, \(n_\infty = \lim_{N \to \infty} N_\infty / N = 0\). This serves as additional evidence for the correctness of the application of the quench action approach to the Néel-to-XXX quench.

D.3 Legendre-Stirling numbers of the second kind

The coefficients \(c_m^{(n)}\) appear in the reordering of operators \(S^\pm\) in the product \((S^+ S^-)^n\) to get terms like \((S^+)^m (S^-)^m\), see Eq. (D.11). Since we consider this inside expectation values \(\langle \cdot \rangle\) of zero-magnetization states and since for these states

\[
\langle S^+ S^- (S^+)^m (S^-)^m \rangle = \left((S^+)^{m+1} (S^-)^{m+1} \right) + (2 + 4 + \ldots + 2m) \langle (S^+)^m (S^-)^m \rangle \tag{D.20}
\]

we obtain the relations \((c_m^{(n)} := 0 \text{ for } m > n \text{ or } m < 0)\)

\[
c_0^{(0)} = 1, \quad c_m^{(n+1)} = m(m+1)c_m^{(n)} + c_{m-1}^{(n)} \quad \text{for} \quad 0 \leq m \leq n+1, \quad n \geq 0. \tag{D.22a}
\]

These recursion relations define the triangle of Legendre-Stirling numbers of second kind, which have an explicit representation for \(n \geq 1\),

\[
c_m^{(n)} = \sum_{r=1}^{m} \frac{(-1)^r + m(2r + 1)r^n(r + 1)^n}{(m + r + 1)!(m - r)!}. \tag{D.23}
\]