Enantioselective Hydroformylation by a Rh-Catalyst Entrapped in a Supramolecular Metallocage

Garcia-Simón, C.; Gramage-Doria, R.; Raoufmoghaddam, S.; Parella, T.; Costas, M.; Ribas, X.; Reek, J.N.H.

DOI
10.1021/ja512637k

Publication date
2015

Document Version
Final published version

Published in
Journal of the American Chemical Society

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Enantioselective Hydroformylation by a Rh-Catalyst Entrapped in a Supramolecular Metallocage

Cristina García-Simón, ‡ Rafael Gramage-Doria, § Saeed Raoufmoghaddam, § Teodor Parella, ‡ Miquel Costas, ‡, † Xavi Ribas, ‡, † and Joost N. H. Reek,*§

† Grup de Química Bioinorgànica i Supramolecular, Institut de Química Computacional i Catàlisi, and Departament de Química, Universitat de Girona. Campus Montilivi, Girona E17071 Catalonia, Spain
‡ Servei de RMN, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra E08193 Catalonia, Spain
§ Homogeneous and Supramolecular Catalysis Group, Van’t Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

Supporting Information

ABSTRACT: Regio- and enantioselective hydroformylation of styrenes is attained upon embedding a chiral Rh complex in a nonchiral supramolecular cage formed from coordination-driven self-assembly of macrocyclic dipalladium complexes and tetracarboxylate zinc porphyrins. The resulting supramolecular catalyst converts styrene derivatives into aldehyde products with much higher chiral induction in comparison to the nonencapsulated Rh catalyst. Spectroscopic analysis shows that encapsulation does not change the electronic properties of the catalyst nor its first coordination sphere. Instead, enhanced enantioselectivity is rationalized by the modification of the second coordination sphere occurring upon catalyst inclusion inside the cage, being one of the few examples in achieving an enantioselective outcome via indirect through-space control of the chirality around the catalyst center. This effect resembles those taking place in enzymatic sites, where structural constraints imposed by the enzyme cavity can impart stereoselectivities that cannot be attained in bulk. These results are a showcase for the future development of asymmetric catalysis by using size-tunable supramolecular capsules.

INTRODUCTION

Reactions taking place at enzyme active sites generally exhibit high rates and exquisite selectivities that differ from those occurring in bulk solution. This is best exemplified in asymmetric catalysis. Weak interactions with amino acid residues precisely modulate the relative orientation of reagents and in some cases assist in their activation. † The orientation of the reagents and substrates are controlled by the special environment around the active site leading to highly selective transformations. As such, structural constraints and weak interactions conspire to decrease activation barriers of precise reactions to furnish rapid chemo-, regio-, and stereoselective transformations. ‡–14 Analogous to the spatial constraints imposed by enzyme active sites, metal-based catalysts have been included in molecular nanovesicles,15–21 with the aim to modulate their activity and selectivity via the second coordination sphere. High chemo- and regioselectivities have been obtained in selected cases, but the number of stereo-selective transformations carried out in molecular cages remains scarce. ‡,3,32–28 Furthermore, a common limitation of this kind of supramolecular catalysts is that selectivity is most often increased at the expense of decreasing reaction rates.

A template-ligand approach to form encapsulated ligands and their metal complexes was previously described, and it was demonstrated that regioselectivity in hydroformylation reactions can be controlled by the second coordination sphere. ‡9–32 Generally, this strategy results in exclusively monoligated rhodium complexes that are very reactive. For asymmetric hydroformylation the approach was extended to chiral phosphoramidite,10,12 but the monoligated complexes generally resulted in low to moderate enantioselectivity. By using bis-zinc(II)salphen building blocks, the template-ligand approach resulted in the formation of bis-ligated rhodium complexes embedded in a well-defined cavity. ‡1 Although the enantioselectivity induced by this complex was high, the activity was rather low, especially at room temperature.

Here, we use a different strategy that consists of encapsulating the monophosphoramidite-Rh(I) catalysts10–14 in a tetragonal cage that was previously prepared by metal-directed self-assembly. ‡33 The resulting monoligated catalyst confined within the cavity of the capsule is especially active in the hydroformylation of styrene and derivatives and provides good levels of stereoselectivity. Chiral induction is greatly...
enhanced in comparison to the nonencapsulated analogue. These observations provide compelling evidence that the stereoselectivity provided by these catalysts is based on controlling the second coordination sphere by way of the structural constraints imposed by the cage.

RESULTS AND DISCUSSION

Host–Guest Experiments

The synthesis of the tetragonal prismatic nanocage $4\cdot(\text{BArF})_8$ was previously described, showing high affinity for fullerenes from C$_{60}$ to C$_{84}$. This property has been used in the selective separation of C$_{60}$ from mixtures of fullerenes. Cage $4\cdot(\text{BArF})_8$ is based on two opposing Zn-porphyrin building blocks, linked by four bridging carboxylate coordination bonds (Scheme 1).

Scheme 1. Schematic Representation of the Building Blocks Used in the Synthesis of Tetragonal-Prismatic Nanocapsule $4\cdot(\text{BArF})_8$

We envisioned that cage $4\cdot(\text{BArF})_8$ would be able to accommodate pyridine-based ligands because of the well-known ability of Zn-porphyrins to interact with pyridine moieties. We first sought to prove this by using 4,4'-bipyridine ($4,4'$-bpy) as a guest because we have shown that the Zn–Zn porphyrin distance of $4\cdot(\text{BArF})_8$ can vary from \sim11–14 Å (Scheme 2), owing to the structural flexibility of Pd-carboxylate bonds.

As anticipated, UV–vis titration experiments unambiguously indicated an interaction between the nanocapsule and $4,4'$-bpy. High-resolution mass spectrometry (HR-MS) analysis as well as 1H NMR analysis of the host–guest compound indicated the formation of adduct $4,4'$-bpyC$_4\cdot(\text{BArF})_8$ in a 1:1 stoichiometry (Experimental Section and Figures S1–4).

The geometry of adduct $4,4'$-bpyC$_4\cdot(\text{BArF})_8$ was fully characterized by means of 1D and 2D NMR spectroscopy (Figures S5–8). At room temperature, the 1H NMR spectrum exhibited some moderate upfield shifts in the signals, corresponding to some of the aromatic protons of the cage. Additionally, an isolated strongly upfield-shifted doublet signal was observed, centered at 4.91 ppm and corresponding to $4,4'$-bpy (Figure S5a). 2D COSY and 1H–1C HSQC spectra confirmed that the $4,4'$-bpy signals (resonating at 4.91/120.4 and 2.19/142.2 1H/1C ppm) experience a strong upfield-chemical-shift effect upon encapsulation, caused by the anisotropic ring currents from the porphyrin moieties. The stronger effect on proton α is a consequence of its very close proximity to the aromatic rings of the porphyrin (Figure 1a).

The $4,4'$-bpy nitrogen chemical shift was also expected to be a good indicator of encapsulation because it will also be altered by the porphyrin rings’ electron density. Therefore, 1H–1N HMBC spectra of free and encapsulated $4,4'$-bpy were recorded. A chemical shift from 319.5 ($4,4'$-bpyC$_4\cdot(\text{BArF})_8$) further confirmed the coordination of the N atoms from bpy to the Zn(II)-porphyrins (Figure S7–8). DOSY-2D NMR experiments also supported the formation of the $4,4'$-bpyC$_4\cdot(\text{BArF})_8$ 1:1 host–guest adduct (Supporting Information, Section 1.4 and Figure S9).

The next step was the inclusion of phosphoramidite (S)-α within $4\cdot(\text{BArF})_8$ cage with the aim of preparing in situ the encapsulated Rh-catalysts to be then employed in asymmetric hydroformylation reactions. We envisioned that the N_4 distance in α (\sim11 Å) might be suitable to fit inside $4\cdot(\text{BArF})_8$, whereas ligand β (containing pyridine groups in the para positions) does not have a suitable orientation to bind simultaneously with both pyridyl groups to the porphyrin units of the cage. UV–vis titration between capsule $4\cdot(\text{BArF})_8$ and ligand α displayed a bathochromic shift of the Soret band from the porphyrins, exhibiting two isosbestic points, suggesting the formation of a 1:1 host–guest adduct (Figure 2ab). The 1:1 interaction was further confirmed by Job’s plot analysis (Figure 2c). From the UV–vis data, a binding constant of $(3.6 \pm 0.2) \times 10^6 \text{ M}^{-1}$ was obtained. This high binding constant can be illustratively compared to that observed for α(Zn-TPP)$_2$ (K_a ca. 10^3 M^{-1}), strongly suggesting that α is indeed bound in a ditopic fashion within αC$_4\cdot(\text{BArF})_8$. As a consequence, the phosphoramidite ligand is located in the middle of the supramolecular cage. HRMS experiments also supported the formation of αC$_4\cdot(\text{BArF})_8$ (Figure S10). As anticipated, ligand β is not encapsulated within nanocapsule $4\cdot(\text{BArF})_8$ as shown by UV–vis studies (Figure S11).

1H NMR characterization of αC$_4\cdot(\text{BArF})_8$ displayed trends similar to those of $4,4'$-bpyC$_4\cdot(\text{BArF})_8$ (Figures S12–17). The 1H NMR spectrum of adduct αC$_4\cdot(\text{BArF})_8$ in acetonitrile at 298 K exhibited some line-broadening effects for all BArF signals, whereas smaller and very broad signals were observed for the encapsulated ligand (between 5 and 6.5 ppm) and the capsule. The broad signals might illustrate some complex dynamic process and loss of symmetry of the host–guest adduct in comparison with the highly symmetric structure of empty $4\cdot(\text{BArF})_8$. In addition, a broad upfield-shifted signal was observed at \sim0.3 ppm. To simplify the spectrum, it was recorded at 243 K. In the latter spectrum, the signals became sharper and suitable for study by 2D NMR methods. 2D COSY, NOESY, and HSQC spectra recorded at 243 K allowed us to identify and assign most of the signals belonging to the encapsulated ligand α (Figure 1b). Compared to the free ligand, all 1H signals corresponding to confined α appeared doubled at 243 K, confirming that the ligand is not symmetric when bound to the nanocage. Moreover, very pronounced upfield effects are observed for all pyridine aromatic protons from ligand α (resonating around 1–2 ppm), in strong agreement with the trends observed for model substrate $4,4'$-bpy.

The three-spin proton systems belonging to the pyridine rings of α (protons labeled as 1, 1', 2, 2', 3, 3', 5, 5', 8, and 8'; Figures 1b and S15) were quickly assigned from the evident COSY and NOE cross-peaks, and their 13C chemical shifts were assigned by HSQC. Protons 8 and 8', which appeared as two
separated singlets at 5.30 and 5.27 ppm, were assigned by NOE enhancement, with the aromatic proton resonating at 1.50/1.16 ppm, respectively. The N-methyl signals were assigned to the signal at \(-0.3\) ppm, on the basis of the NOEs, with the surrounding protons observed in the NOESY spectrum (Figure S16).

Interestingly, the \(^{31}\)P NMR data exhibited a singlet at \(\approx 137.0\) ppm, similar to that of free ligand \(\alpha\), indicating that the phosphorus is not coordinated to any of the metals of \(4\cdot(BArF)\) and therefore remains available for coordination to the rhodium metal center that is used for catalysis (Figure S18). The sum of the spectroscopic data led to the conclusion that \(\alpha\) is encapsulated and is strongly bound to \(4\cdot(BArF)\). Furthermore, this binding did not involve the phosphine atom, which remains available for binding the rhodium metal.

Preparation of the Encapsulated Catalyst. Rh(I) catalyst was formed in situ by addition of 1 equiv of \([\text{Rh(acac})(\text{CO})_2]\) to a deuterated toluene/acetonitrile (5:2 v/v) solution of \(\alpha\subset 4\cdot(BArF)\) (Scheme 3). Key features of the rhodium complex have been identified by IR and NMR spectroscopy (Figures S19–20). The carbonyl vibration of the CO ligand was detected by IR spectroscopy \((\nu = 1995 \text{ cm}^{-1}, \text{Figure S21})\). The \(^{31}\)P NMR displays a typical doublet centered at \(\delta = 147\) ppm, with a phosphorus–rhodium coupling (J\(_{P-Rh} = 260 \text{ Hz}\), suggesting the formation of monoligated species (Scheme 3).

Under catalytic conditions (5 bar of H\(_2/CO, 1:1\)), the rhodium acac precursor was converted into the typical hydride species; in this case, [\(\text{trans-Rh}(\text{H})(\text{CO})_3\alpha\subset 4\cdot(BArF)\)] was observed. The high-pressure (HP) \(^1\)H NMR spectrum of [\(\text{Rh}(\text{H})(\text{CO})_3\alpha\subset 4\cdot(BArF)\)] shows signals corresponding to the catalyst–capsule adduct (Figure S22), thus indicating its stability under the catalytic conditions. Moreover, a double doublet centered at \(\delta = 11.7\) ppm is observed, indicating formation of the hydride at a monoligated rhodium complex (Scheme 3). The large phosphorus coupling shows that the phosphorus donor atom is located trans to the hydride, similar to that observed for [\(\text{trans-Rh}(\text{H})(\text{CO})_3\beta\subset (\text{Zn-TPP})\)] (\(\delta = 260 \text{ Hz}\), suggesting the formation of monoligated species (Scheme 3).

Application of the Encapsulated Catalyst in Asymmetric Hydroformylation Catalysis. Once the encapsulated Rh catalyst was thoroughly characterized, we focused on the investigation of its catalytic performance in the asymmetric
hydroformylation (AHF) of styrene. To clearly study the effect of encapsulation, catalytic activities of \([\text{Rh(acac})(\text{CO})-\alpha\subset 4\cdot\text{BArF})_8]\) were compared with that of the Rh-complex of \(\alpha(Zn-TPP)_2\).

Because of limited solubility, catalyst loading was kept low \((2 \times 10^{-4} \text{ mol} \%)\). As is common practice, a 5-fold excess of ligand \((\alpha\subset 4\cdot\text{BArF})_8\) was used in all the experiments in order to avoid the formation of ligand-free rhodium species, an active and nonselective catalyst that could compromise the selectivity. Reactions were carried out at room temperature, and the turnover numbers (TON) and enantio-meric excesses (ee) are reported in Tables 1–4.

Much to our delight, encapsulated Rh catalyst \([\text{Rh(H)}(\text{CO})_3-\alpha\subset 4\cdot\text{BArF})_8]\) gave a higher turnover number (Table 1, entries 1, 6, and 7) than the nonencapsulated analogue (Table 1, entries 3 and 9) and the catalyst based on assembled \(\alpha(Zn-TPP)_2\) (Table 1, entries 4 and 10). As previously observed, when the reaction is carried out with rhodium complex \(\alpha\) in the absence of zinc(II) porphyrins, very low conversion is observed, which is likely due to the presence of free pyridyl groups that compete with the substrate for coordination at the rhodium center. The effect of encapsulation on the selectivity of the reaction was remarkable: when assembled \(\alpha(Zn-TPP)_2\) was used as ligand, a modest 9% ee was...
observed, whereas complete encapsulation of the ligand via αC₄-([BArF])₃ resulted in 74% ee (Table 1, entries 1–4). The encapsulated catalyst gives among the highest chemo- and stereoselectivities for a monoligated rhodium complex reported so far.⁶ Using an incubation period at 40 °C before initiating the reaction resulted in a higher TON, at the expense of the selectivity (TON increased from 797 to 1600, 99%); the activity was drastically lower in comparison with ligand α ([BArF])₃ (TON decreases from 797 to 308). When using ligand δ, a small increase in the enantiomeric excess was also observed (from 74 to 77%), but the activity was drastically lower in comparison with ligand α ([BArF])₃. These results reveal that small modifications to the ligand building block allow optimization of the selectivity and activity of the supramolecular catalysts, which opens the door to future catalyst optimization. So far, of this new class of encapsulated catalysts, αC₄-([BArF])₃ affords the best compromise in enantiomeric excess and TON for the AHF of styrene.

Preliminary molecular modeling studies were carried out (Figures S26–S29) to shine light on the effect of encapsulation on the performance of the Rh catalyst. For the nonencapsulated catalysts (Rh(H)(CO)₃·α), calculations show that there is a wide space for coordination of the styrene molecule in four orientations to the two available coordination sites. These will lead to subsequent selectivity in determining hydride migration, which constitutes the step that determines enantioselectivity. Because the substrate can approach the catalyst with multiple orientations, the overall stereoselectivity that results when reactions are carried out in the absence of the cage is poor. In contrast, when the catalyst is docked into the nanocapsule, the cage walls prevent most of the coordination modes of styrene to the Rh center, effectively blocking some of the reaction pathways (Figures S28–S29).

Given the promising results obtained in the AHF of styrene, the substrate scope of αC₄-([BArF])₃ was evaluated using different para-R-substituted styrene derivatives (R = H, Cl, CH₃, OCH₃, and t-Bu). The results obtained for these substrates were similar to the ones obtained for styrene (Table 2); in all cases, the best activities were obtained when ligand α was encapsulated in cage αC₄-([BArF])₃. The conversion (TON) and the regioselectivity depended to some extent on the substituent on the styrene. Selectivity toward the branched aldehyde was maintained when R = t-Bu (Table 2, entries 17); whereas for R = CH₃ and OCH₃, the b/l ratio was slightly lower (91:9; Table 2, entries 9 and 13). For 4-Cl-styrene, the selectivity decreased even further to b/l = 80:20 (Table 2, entry 5). In all cases, substrates bearing substituents at position 4 showed a decrease in enantiomeric excess. Nevertheless, comparison of these results with those of rhodium catalyst α(Zn-TPP)₂ consistently showed the benefits of catalyst encapsulation in cage αC₄-([BArF])₃. In general, enantiomeric excesses are below 12% for α(Zn-TPP)₂ (Table 2, entries 4, 8, 12, 16) but are over 58% for the encapsulated catalyst. For the most bulky substrate, when R = t-Bu, the effect is less pronounced because the enantiomeric excess improves from a moderate value of 31% to 48% (Table 2, entries 17 and 20).

The substrate scope was further extended to ortho-, meta- and para-substituted methoxystyrene derivatives, in order to investigate the effect of steric interactions in more detail. Higher TON and enantiomeric excess values were obtained for p-methoxystyrene when αC₄-([BArF])₃ was used as catalyst (Table 3, entry 1), compared to the complex based on α(Zn-TPP)₂ (Table 3, entry 4). In contrast, for o-methoxystyrene, the caged catalyst gave much lower TON than the complex based on α(Zn-TPP)₂ (Table 3, entry 9 vs 12). Because ortho- and para-methoxystyrene can be considered to have electroni-

<table>
<thead>
<tr>
<th>entry</th>
<th>ligand</th>
<th>b/l</th>
<th>ee (%)</th>
<th>conv (%)</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>αC₄-([BArF])₃</td>
<td>99:1</td>
<td>74 (R)</td>
<td>14</td>
<td>797</td>
</tr>
<tr>
<td>2</td>
<td>n.d.</td>
<td>n.d.</td>
<td><1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>α</td>
<td>99:1</td>
<td>6</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>α([ZnTPP]₃</td>
<td>99:1</td>
<td>9(R)</td>
<td>7</td>
<td>363</td>
</tr>
<tr>
<td>5</td>
<td>4([BArF])₃</td>
<td>99:1</td>
<td>1</td>
<td>6</td>
<td>300</td>
</tr>
<tr>
<td>6</td>
<td>αC₄-([BArF])₃</td>
<td>99:1</td>
<td>65 (R)</td>
<td>32</td>
<td>1600</td>
</tr>
<tr>
<td>7</td>
<td>αC₄-([BArF])₃</td>
<td>99:1</td>
<td>70 (R)</td>
<td>7</td>
<td>339</td>
</tr>
<tr>
<td>8</td>
<td>n.d.</td>
<td>n.d.</td>
<td><1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>α</td>
<td>99:1</td>
<td>8</td>
<td>44</td>
<td>197</td>
</tr>
<tr>
<td>10</td>
<td>α([ZnTPP]₃</td>
<td>99:1</td>
<td>16 (R)</td>
<td>4</td>
<td>215</td>
</tr>
<tr>
<td>11</td>
<td>γC₄-([BArF])₃</td>
<td>99:1</td>
<td>79 (R)</td>
<td>6</td>
<td>308</td>
</tr>
<tr>
<td>12</td>
<td>??</td>
<td>??</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td>13</td>
<td>δC₄-([BArF])₃</td>
<td>99:1</td>
<td>77 (R)</td>
<td>2</td>
<td>104</td>
</tr>
<tr>
<td>14</td>
<td>δ</td>
<td>99:1</td>
<td>6</td>
<td>41</td>
<td>1</td>
</tr>
</tbody>
</table>

*Reagents and conditions: [Rh] = 33 µM in toluene/MeCN (4:1), ligand/capsule/[Rh(acac)(CO)₂] = 5, alkene/rhodium = 5000, rt, 20 bar, 96 h. Rh complexes: [Rh(acac)(CO)₂]. The catalytically active species is generated under 20 bar of syngas, 16 h, 40 °C. Then the styrene was added and the reaction was carried out at rt, 20 bar, 96 h. ¹[Rh] = 33 µM in toluene/MeCN (2:3), rt, 20 bar, 96 h. ²Ratio of branched and linear aldehyde. ³Enantioselective ratio determined by chiral GC analysis (Supelco BETA DEX 225). n.d. = nondetected.
Finally, we carried out AHF catalysis of styrene at variable concentrations of αC4-(BARF)₈ and α(Zn-TPP)₂. We reasoned that the relatively high association constant of the ligand in the cage (i.e., stability constant) of αC4-(BARF)₈ compared to α(Zn-TPP)₂ should translate to a higher concentration window in which these supramolecular catalysts can operate. As such, we carried out experiments at four catalyst concentrations ranging from 147 to 1 μM (Table 4). Upon lowering the concentration of Rh-αC4-(BARF)₈, the TON is lower (as expected) because of the typical positive order of the catalyst concentration on the reaction rate. Most indicative of the stability of the assembly is the selectivity. The selectivity induced by the encapsulated catalysts remains high (71 ± 3% ee) even at concentrations of 6 μM, indicating that under these conditions catalysis is still dominated by the encapsulated catalyst (Figure S30). In contrast, when catalyst Rh-α(Zn-TPP)₂ was used at 6 μM, the product was formed in racemic form, and the TON was also similar to that of the control experiment where no porphyrins were present. These results are in agreement with the significantly more robust nature of catalyst αC4-(BARF)₈ compared to α(Zn-TPP)₂.

CONCLUSIONS

This work describes the encapsulation of a monoligated chiral rhodium complex in a self-assembled molecular cage. Encapsulated catalyst Rh-αC4-(BARF)₈ exhibits the highest selectivities in the asymmetric hydroformylation of styrenes.
among monoligated rhodium catalysts. Most significantly, the stereoselectivity observed in the hydroformylation of styrenes upon encapsulation of the catalyst is substantially improved with regard to analogous reactions carried out with the catalyst operating in bulk solution. Thus, the cage can be considered as a second coordination sphere of the catalyst, reminiscent of enzymatic active sites. On the basis of these observations, we envision that the use of the second-coordination-sphere tuning strategy over the selectivity of catalytic events may be more broadly applicable. The size-tunability of cage $4\cdot(BArF)_8$, the high affinity for pyridine-containing ligands, and the possibility of modifying the apertures of the cage all provide strong fundamentals for the future development of these cage structures for asymmetric catalysis.

Experimental Section

Materials. Unless indicated otherwise, the reagents and solvents used were commercially available reagent-quality, and reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques. Ligands α^{14} and β^{15} and molecular cage $4\cdot(BArF)_8^{16}$ were synthesized following recently reported procedures.

Physical Methods. NMR spectra (1H, 13C, and 15C) were measured on Bruker DRX 400 MHz, Bruker AVANCE 500 MHz, Bruker AVANCE 600 MHz, and Varian Inova 500 MHz spectrometers; CDCl$_3$, CD$_3$CN, or toluene- d_8 were used as solvents, unless further indicated. HRMS data were obtained on a Bruker MicroTOF-Q-II apparatus, using acetoni troile as the mobile phase. UV–vis spectrometry was carried out on an Agilent 8452 UV–vis spectrophotometer with a 1 cm quartz cell. Gas chromatographic analyses were run on a Shimadzu GC-17A apparatus (split/splitless injector, J&W 30 m column, film thickness = 0.3 μm, carrier gas 70 kPa He, FID Detector). Chiral GC separations were conducted on a J
tercisence HR GC apparatus with a Supelco β-dex 225 capillary column. IR experiments were carried out at room temperature on a Nicolet 510 FTIR spectrometer. Molecular modeling calculations were carried out using PM3-Spartan molecular modeling program.

Synthesis of Ligands γ and δ. In a flame-dried Schlenk flask, 200 mg (0.44 mmol) of d, pyridine (0.068 mL, 0.88 mmol), and DMAP (10 mol %) were suspended in dry toluene (4.4 mL, 0.1 M). The solution was cooled to 0°C, and distilled PCl$_3$ (0.080 mL, 0.88 mmol) was added. The mixture was stirred at room temperature for 5 min. After the reaction time, the mixture was filtered through cotton and recrystallized by diethyl ether diffusion. A quantitative yield was obtained. HRMS (m/z): Calculated 2128.453, Found 2128.452 (3Rh10)\cdot4\cdot(BArF)$_8$; Calcd 1577.118, Found 1577.115 (4Rh11)\cdot5\cdot(BArF)$_3$; Calcd 1170.251, Found 1170.255 (4Rh12)\cdot4\cdot(BArF)$_4$; Calculated 879.634, Found 879.637 (4Rh13)\cdot4\cdot(BArF)$_4$; Calculated 661.796, Found 661.799 (4Rh14)\cdot4\cdot(BArF)$_4$).

Preparation of $ac4\cdot(BArF)_8$ Complex for High-Pressure NMR Experiment. To a solution of $ac4\cdot(BArF)_8$ (0.0013 mmol) was added 1 equiv of the phosphomutid ligand (α, β, γ, or δ) and 1 equiv of Rh(acac)(CO)$_2$ in a 7:3 (v/v) mixture of toluene/acetonitrile (4:1 v/v). The mixture was stirred at room temperature for 5 min. After the reaction time, the mixture was filtered through cotton and recrystallized by diethyl ether diffusion. A quantitative yield was obtained. HRMS (m/z): Calculated 2278.453, Found 2278.452 ($ac4\cdot(BArF)_8$); Calculated 1650.120, Found 1650.151 ($ac4\cdot(BArF)_9$); Calculated 1231.283 ($ac4\cdot(BArF)$_{10}$); Calculated 931.942, Found 931.945 ($ac4\cdot(BArF)$_{11}$); Calculated 707.621, Found 707.693 ($ac4\cdot(BArF)$_{12}$).
catalysis, the charged autoclave was purged three times with 10 bar of syngas (H₂/CO, 1:1) and then pressurized to 20 bar. After the catalytic reaction, the autoclave was cooled to room temperature if the reaction was carried out at a high temperature, the pressure was reduced to 1.0 bar, and a few drops of tributyl-phosphite were added to each reaction vessel to prevent any further reaction. The reaction mixtures were not filtered over basic aluminum to remove the catalyst residues because filtration may cause retention of the aldehydes, influencing the GC results. The mixtures were diluted with CH₂Cl₂ for GC analysis. The enantiomeric excess was analyzed by GC (Supleco β-DEX 225 capillary column). The absolute configuration was determined by comparing the chiral GC traces of the reaction mixture with the those of commercially available enantiopure aldehydes.

ASSOCIATED CONTENT

† Supporting Information

DOSY 2D experiments of 4,4′-bpyC₄(BArF)₈, all 1D and 2D NMR spectra, HRMS results, UV−vis experiments, chiral GC data for hydroformylation products, and information and chromatograms (Figures S33−37). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*miquel.costas@udg.edu
*xavi.ribas@udg.edu
*J.N.H.Reek@uva.nl

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the European Research Council (ERC-2011-StG-277801 to XR, ERC-2009-StG-239910 to M.C., and ERC-2013-AdG-339782-NAT_CAT to J.N.H.R.), the Spanish MINECO (Consolider-Ingenio CSD2010-00065, INNPLANTA project INP-2011-0059-PCT-420000-ACT1, and CTQ2012-32436), and the Catalan DIUE of the Generalitat de Catalunya (2009SGR637 and PhD grant to C.G.S.), X.R. and M.C. are also grateful for ICREA-Acadèmia awards.

REFERENCES

