Here, there and everywhere. A multi organ approach to acylcarnitine metabolism

Schooneman, M.G.

Citation for published version (APA):
Appendix
Summary

In this thesis, we investigated acylcarnitines in plasma and insulin sensitive tissues in fasted, fed and a high fat diet (HFD)-induced, insulin resistant state. Acylcarnitines are fatty acid oxidation intermediates. They comprise of a fatty acid bound to carnitine, so that the fatty acid can enter the otherwise impermeable mitochondrion for oxidation purposes. By studying acylcarnitine concentrations, kinetics, and fluxes, we aimed to understand whole body acylcarnitine metabolism under different metabolic circumstances, including pathological conditions such as insulin resistance characterized by derangements in acylcarnitine profiles. A short background of acylcarnitines is presented in chapter 1, where general information on the function of carnitine and acylcarnitines is provided. Finally, the thesis outline is presented.

In chapter 2, we reviewed acylcarnitines more extensively, in particular in relation to insulin resistance. As acylcarnitines are proposed to play a role in diet-induced insulin resistance, we discussed human and animal studies showing alterations in acylcarnitine metabolism in obese, insulin resistant subjects and correlations between acylcarnitines and markers of glucose intolerance. The theory of lipotoxicity is discussed, where the accumulation of lipid derived metabolites such as acylcarnitines, could interfere with insulin signaling. We concluded that most of the studies reviewed in chapter 2 only showed associations between acylcarnitines and insulin resistance, but an exact causal mechanism has not yet been identified. This was the starting point for the following studies.

Many studies on altered acylcarnitine profiles, which we reviewed in chapter 2, showed predominantly alterations in plasma. But it was unknown whether the plasma acylcarnitine profile represents the acylcarnitine profile in one specific, or multiple tissues, hampering the interpretation of these plasma profile alterations. In chapter 3 we investigated plasma and tissue acylcarnitine profiles in fed and fasted C57BL/6N and BALB/cJ mice. Here, no significant correlations were found between plasma and all examined tissues, in both fed and fasted state. We concluded that plasma acylcarnitines do not adequately reflect tissue acylcarnitines, and therefore studies on acylcarnitine metabolism should focus on tissue measurements.

To further clarify the role of different organs in whole body acylcarnitine metabolism, in chapter 4 we investigated a pig model with intravascular catheters positioned before and after the liver, gut, hindquarter muscle compartment and the kidney. With a mixed meal test, we measured acylcarnitine profiles at several time points and calculated tranorgan acylcarnitine fluxes. Liver played a main role in acylcarnitine metabolism, as it synthesizes carnitine, and distributes and regulates the acylcarnitine pool. The highest flux was found for C2-carnitine, especially from liver towards other organs. Muscle showed only minor fluxes besides C2-carnitine uptake. The kidney predominantly extracted acylcarnitines for excretion. The gut provided the pool with carnitine from the diet. These results illustrated the importance of liver as main organ for the distribution of acylcarnitines, and in particular C2-carnitine.
To aid in the understanding of the role of acylcarnitines under different metabolic circumstances, we studied acylcarnitine kinetics using stable isotopes. Chapter 5 demonstrates the kinetics of C16- and C2-carnitine in various mouse models of insulin resistance. Both C2- and C16-carnitine kinetics allowed single pool model analysis. Although BALB/cJ mice had a greater pool size than C57BL/6N mice, other kinetics for C16-carnitine kinetics were not affected by mouse strain, fasting or HFD. In contrast, C2-carnitine kinetics in C57BL/6N mice were affected, with a greater pool size, rate of appearance and lower elimination in fasted chow mice. HFD lowered the rate of appearance of C2-carnitine. These results suggest that HFD alters mainly C2-carnitine metabolism, and that these findings reflect impaired substrate switching in HFD-induced insulin resistance.

As plasma acylcarnitines have been associated with clinical parameters related to glucose metabolism, such as fasting glucose levels and HbA1c, we hypothesized that plasma acylcarnitines would correlate with clinical parameters of insulin sensitivity and glucose tolerance. In chapter 6, we measured plasma acylcarnitines in 60 obese human subjects before and during weight loss, and analysed acylcarnitine profiles in relation to clinical parameters of glucose metabolism, insulin sensitivity and energy expenditure. We demonstrated that along with improved insulin sensitivity, plasma acylcarnitines did not correlate with clinical parameters of glucose metabolism during weight loss. Acylcarnitines did correlate significantly with plasma non-esterified fatty acids, suggesting that acylcarnitines reflect lipolysis during weight loss. We demonstrated that high plasma acylcarnitine levels are not necessarily associated with insulin resistance, in contrast to some earlier studies discussed in chapter 2.

In chapter 7, we intervened in the carnitine pool by administration of the carnitine precursor gamma-butyrobetaine, hypothesizing that increasing free carnitine levels could facilitate FAO and improve insulin sensitivity. We compared lean and obese C57BL/6N mice of which half of both groups were treated with gamma-butyrobetaine, and performed indirect calorimetry, glucose tolerance and insulin sensitivity tests. Increasing carnitine availability affected acylcarnitine profiles in plasma and liver. Glucose tolerance or insulin sensitivity were not affected, possibly due to the lack of effect on muscle acylcarnitines, as this is an important contributor to whole body insulin sensitivity. A bolus of C2-carnitine had an even more pronounced effect on the profiles, again without effect on glucose tolerance. These results suggest that there is not an unequivocal association between plasma acylcarnitine levels and insulin resistance.

We discuss our results in chapter 8, combining the findings from the different studies to generate new hypotheses. Here we focus on the roles the different organs fulfill in whole body acylcarnitine metabolism, in particular the liver. Additionally we discuss the individual species, where we question whether acylcarnitines are indeed involved in the etiology of insulin resistance. The results of our studies could not confirm a causal role for acylcarnitines in the induction of insulin resistance. One exception is C2-carnitine,
as this species is abundantly present and plays an important role in substrate switching. Therefore we consider it as a species, which could be indirectly related to insulin resistance, as substrate switching is impaired in insulin resistant subjects. For the other species, we question whether they are causally involved in insulin resistance.
Nederlandse samenvatting

In dit proefschrift hebben we gekeken naar acylcarnitine metabolisme in plasma en insuline gevoelige weefsels, in een gevaste, gevoede en een hoog vet dieet-geïnduceerde, insuline resistente staat. Acylcarnitines zijn intermediairen van de vetzuuroxidatie die bestaan uit een vetzuur gekoppeld aan carnitine, om zo het mitochondrion te kunnen bereiken voor oxidatie aldaar. Door acylcarnitine concentraties, -kinetiek en -fluxen te bestuderen, hebben we getracht meer inzicht te krijgen in het totale acylcarnitine metabolisme in het lichaam onder verschillende metabole omstandigheden. Zo proberen we verstoorde acylcarnitine profielen beter te begrijpen in relatie tot pathologische condities zoals insuline resistentie. Een kort overzicht van de achtergrond van acylcarnitines is geschetst in hoofdstuk 1, waar carnitine en acylcarnitines in algemenere zin worden besproken. We sluiten af met een globaal overzicht van de hoofdstukken in het proefschrift.

Hoofdstuk 2 geeft een uitgebreider overzicht van de bestaande acylcarnitine literatuur, met name in relatie tot insuline resistentie. Omdat acylcarnitines in verband worden gebracht met het ontstaan van dieet-geïnduceerde insuline resistentie, hebben we naar studies gekeken die verstoringen in het acylcarnitine metabolisme lieten zien in obese, insuline resistente mensen en diermodellen, en studies die verbanden lieten zien tussen acylcarnitines en kenmerken van glucose intolerantie. Ook bespreken we lipotoxiciteit, een bekende theorie waarin vetzuur metabolieten zoals acylcarnitines ophopen en de insuline signalering kunnen verstoren. We concluderen dat de bestaande literatuur hoofdzakelijk associaties aan het licht brengt, maar geen exact causaal mechanisme identificeert. Dit vormde de basis voor alle hierop volgende studies.

Veel studies die acylcarnitines in verband brengen met insuline resistentie, zoals besproken in hoofdstuk 2, hebben voornamelijk gekeken naar plasma acylcarnitine profielen. Het is echter niet bekend welk weefsel het plasma profiel daadwerkelijk reflecteert. Dit bemoeilijkt de interpretatie van eventuele veranderingen in het plasma. In hoofdstuk 3 hebben we onderzocht of er correlaties bestaan tussen het plasma acylcarnitine profiel en de profielen in verschillende insuline gevoelige weefsels van gevaste en gevoede C57BL/6N en BALB/cJ muizen. Het plasma acylcarnitine profiel bleek met geen enkel profiel in weefsels te correleren, zowel in gevaste als in gevoede muizen. Dit leidde tot de conclusie dat plasma acylcarnitines geen reflectie zijn van wat er gebeurt op weefsel-niveau, en dat studies naar acylcarnitine metabolisme zich moet richten op metingen in een specifiek weefsel.

Om de rol van de verschillende organen betrokken bij acylcarnitine metabolisme verder te verduidelijken, hebben we in hoofdstuk 4 een varkensmodel gebruikt om trans-organ acylcarnitine fluxen te meten. Hiervoor werden middels een operatie intraveneuze catheters geplaatst in varkens, voor en na de lever, darm, skeletspieren van de achterpoten en de nier. Voor en tijdens een maaltijd werden acylcarnitines gemeten en bijbe-
horende fluxen berekend. Hieruit kwam naar voren dat de lever een centrale rol heeft in acylcarnitine metabolisme, als producent, distributeur en regulator van de acylcarnitine pool. C2-carnitine bleek de belangrijkste metaboliet uit het gehele acylcarnitine profiel, met zeer hoge fluxen vanuit de lever richting andere organen. Skeletspier liet kleine fluxen zien, en met name C2-opname. De nier toonde met name opname van acylcarnitines voor de uitscheiding ervan. In de darm veroorzaakte de maaltijd positieve fluxen van bijna alle acylcarnitines, wat opname van carnitine vanuit het dieet suggereert. Deze bevindingen illustreren het belang van de lever in het totale acylcarnitine metabolisme, en het belang van C2-carnitine daarin als metaboliet.

Om acylcarnitine metabolisme onder verschillende metabole omstandigheden in nog meer detail te begrijpen, hebben we de kinetiek van acylcarnitines bestudeerd door middel van stabiele isotopen. **Hoofdstuk 5** bevat kinetische studies van C16- en C2-carnitine in muisen met een variabele mate van insuline gevoeligheid. Zowel de kinetiek van C16- en C2-carnitine kunnen worden geanalyseerd als 1-compartment-model. Hoewel BALB/cJ muisen een grotere C16-carnitine pool size hadden, verschilde de C16-carnitine kinetiek niet tussen de muisstammen, voedingstoestanden of dieetsoort. Daarentegen was de kinetiek van C2-carnitine wel anders, met een grotere pool size, rate of appearance, en een lagere eliminatie constante in gevaste dieren op normaal dieet. Een hoog vet dieet verlaagde de rate of appearance van C2-carnitine. Deze resultaten impliceren dat een hoog vet dieet met name C2-carnitine metabolisme beïnvloedt, en dat dit mogelijk leidt tot een vermindere capaciteit om te switchen tussen suiker en vet als energie substraat onder hoog vet dieet-geïnduceerde insuline resistentie.

Op basis van de vermeende associatie tussen acylcarnitines en klinische parameters van glucose metabolisme, verwachtten wij dat plasma acylcarnitines negatief correleren met insuline gevoeligheid en glucose tolerantie. In **hoofdstuk 6** hebben wij acylcarnitine profielen gemeten in het plasma van 60 obese proefpersonen, voor en tijdens gewichtsverlies. Deze profielen analyseerden wij in relatie tot klinische parameters van glucose metabolisme, insuline gevoeligheid en de basale verbranding. Hier demonstreerden wij dat ondanks een verbetering in insuline gevoeligheid door gewichtsverlies, plasma acylcarnitine niveaus verhoogd waren en niet correlerden met glucose metabolisme parameters. Plasma acylcarnitines correlerden wel met vrije vetzuren in plasma, wat suggereert dat deze acylcarnitines mogelijk een reflectie zijn van verhoogde lipolyse bij gewichtsverlies. Op basis van deze resultaten vinden wij het minder aannemelijk dat acylcarnitines een rol spelen in de etiologie van insuline resistentie.

In **hoofdstuk 7** hebben we de carnitine pool beïnvloedt door middel van de toediening van de carnitine precursor gamma-butyrobetaine. Wij verwachtten dat het verhogen van carnitine niveaus de vetzuur oxidatie zou kunnen faciliteren en een beter verlopende vetzuur oxidatie vervolgens de insuline gevoeligheid zou kunnen verbeteren. Hiertoe vergeleken we slanke en obese C57BL/6N muisen die wel of geen gamma-butyrobetaine toegediend kregen, waarbij we vervolgens een indirecte calorimetrie meting, een
glucose tolerantie- en een insuline gevoeligheidstest uitvoerden. Een verhoging van het carnitine niveau had een effect op het gehele acylcarnitine profiel in plasma en in lever. Glucose tolerantie en insuline gevoeligheid veranderden beide niet, mogelijk doordat er geen effect van gamma-butyrobetaine bereikt werd in skeletspier. Een eenmalige toediening van een hoge dosis C2-carnitine had een nog sterker effect op de acylcarnitine profielen, maar wederom zonder de glucose tolerantie te beïnvloeden.

We bediscussiëren onze resultaten in hoofdstuk 8, waar we de verschillende bevindingen naast elkaar leggen om nieuwe hypotheses te genereren. Hier richten wij ons op de rol van de diverse organen in het totale acylcarnitine metabolisme, en daarin de lever in het bijzonder. Verder bespreken we de individuele acylcarnitine soorten, en bediscussiëren we of acylcarnitines inderdaad betrokken lijken te zijn bij het ontstaan van insuline resistentie. De resultaten uit onze studies bevestigen niet dat acylcarnitines betrokken zijn bij het induceren van insuline resistentie. Alleen C2-carnitine lijkt mogelijk wel een indirecte rol te spelen, daar deze acylcarnitine een belangrijke rol speelt in het switchen tussen vet en suiker als energie substraat. Voor de overige acylcarnitines vinden wij een causale rol in het ontstaan van insuline resistentie niet aannemelijk.
PhD portfolio

Name PhD student: Marieke Guurtje Schooneman
PhD period: June 2011 – Dec 2014
Name PhD supervisors: Prof. Dr. C.E.M. Hollak; Prof. Dr. R.J.A. Wanders
Name PhD co-supervisors: Dr. S.M. Houten; Dr. M.R. Soeters

<table>
<thead>
<tr>
<th>1. PhD training</th>
<th>Year</th>
<th>Workload (Hours/ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>World of Science</td>
<td>2011</td>
<td>0.7</td>
</tr>
<tr>
<td>BROK (Basiscursus Regelgeving Klinisch Onderzoek)</td>
<td>2012</td>
<td>0.9</td>
</tr>
<tr>
<td>Practical Biostatistics</td>
<td>2012</td>
<td>1.1</td>
</tr>
<tr>
<td>Crash course biomedical research</td>
<td>2012</td>
<td>0.4</td>
</tr>
<tr>
<td>Specific courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Cursus Proefdierkunde</td>
<td>2011</td>
<td>3.9</td>
</tr>
<tr>
<td>- Stralingscursus</td>
<td>2012</td>
<td>1.7</td>
</tr>
<tr>
<td>Seminars, workshops and master classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research meetings Endocrinology & Metabolism</td>
<td>2011-2014</td>
<td>4</td>
</tr>
<tr>
<td>Research meetings GMZ lab</td>
<td>2011-2014</td>
<td>1</td>
</tr>
<tr>
<td>Presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keystone scientific symposium, Dublin, Ireland. Oral presentation & poster presentation</td>
<td>2014</td>
<td>0.4</td>
</tr>
<tr>
<td>ADDRM NVDO, Oosterbeek. Oral presentation</td>
<td>2013</td>
<td>0.2</td>
</tr>
<tr>
<td>EASD Annual meeting, Barcelona, Spain. 3 poster presentations</td>
<td>2013</td>
<td>0.6</td>
</tr>
<tr>
<td>ESPEN congres, Leipzich, Germany. Poster presentation</td>
<td>2013</td>
<td>0.3</td>
</tr>
<tr>
<td>AMGRO, Lemmer. 3x oral presentations</td>
<td>2011, 2013, 2014</td>
<td>0.9</td>
</tr>
<tr>
<td>Research meeting Endo&Meta. Oral presentations</td>
<td>2011-2014</td>
<td>0.3</td>
</tr>
<tr>
<td>Research meeting GMZ lab. Oral presentations</td>
<td>2011-2014</td>
<td>0.9</td>
</tr>
<tr>
<td>(Inter)national conferences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keystone scientific symposium, Dublin, Ireland.</td>
<td>2014</td>
<td>1.7</td>
</tr>
<tr>
<td>ADDRM NVDO, Oosterbeek.</td>
<td>2012, 2013</td>
<td>0.6</td>
</tr>
<tr>
<td>EASD Annual meeting</td>
<td>2012, 2013</td>
<td>3.4</td>
</tr>
<tr>
<td>ESPEN congres, Leipzich, Germany.</td>
<td>2013</td>
<td>1</td>
</tr>
<tr>
<td>AMGRO, Lemmer</td>
<td>2011-2014</td>
<td>0.9</td>
</tr>
</tbody>
</table>
2. Teaching

<table>
<thead>
<tr>
<th>Supervising</th>
<th>Year</th>
<th>Workload (Hours/ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niki Achterkamp, Correlation study</td>
<td>2012</td>
<td>1</td>
</tr>
<tr>
<td>Leonie van der Geest, TMT study</td>
<td>2012-2013</td>
<td>1</td>
</tr>
<tr>
<td>Guido Bakker, PIGS study</td>
<td>2013</td>
<td>1</td>
</tr>
</tbody>
</table>

3. Parameters of Esteem

<table>
<thead>
<tr>
<th>Grants</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMC PhD Scholarship</td>
<td>2010</td>
</tr>
<tr>
<td>Tjallingh Roorda Foundation</td>
<td>2011</td>
</tr>
<tr>
<td>AMC Young Talent Fund Scholarship</td>
<td>2014</td>
</tr>
<tr>
<td>Keystone Scholarship travelfund</td>
<td>2014</td>
</tr>
</tbody>
</table>

4. Publications

- Schooneman MG, ten Have GAM, Houten SM, Deutz NEP, Soeters MR Transorgan fluxes in a porcine model reveal a central role for liver in acylcarnitine metabolism Submitted
- Schooneman MG, Houten SM, Deutz NEP, Soeters MR Acylcarnitine kinetics in a fasting- and obesity-induced insulin resistant mouse model Submitted
- Schooneman MG, Houtkooper RH, Hollak CEM, Wanders RJA, Vaz FM, Soeters MR, Houten SM The impact of altered carnitine availability on fatty acid and glucose metabolism in diet-induced obese mice Submitted
- Soeters MR, Soeters PB, Schooneman MG, Sobotka L The benefit of moderate hyperglycemia and insulin resistance in critical illness Submitted
Dankwoord

Promoveren is en was een mooi avontuur, dat ik onderweg heb gedeeld met zoveel bijzondere mensen.

Allereerst zoveel dank aan mijn beide promotores, Prof. Dr. C.E.M. Hollak en Prof. Dr. R.J.A. Wanders.

Beste Carla, als AIO op een wat curieus, niet erfelijk stofwisselings-onderwerp, was ik voor jou initieel een vreemde eend in de bijt. Jij bleek als vrouwelijke academica een prachtig rolmodel, en een waardevolle, welkomse aanvulling op mijn verder hoofdzakelijk masculiene begeleiding. Je scherpte, kritische blik, en je vermogen om al het handelen te blijven toetsen op wetenschappelijke relevantie is bewonderenswaardig. Om nog maar te zwijgen over je goede smaak voor brilmonturen en schoenen. Dank voor al je aandacht en toewijding, en voor alle wel- en niet-wetenschappelijke gesprekken in jouw altijd warme kamer.

Beste Ron, jouw begeleiding was weliswaar wat meer op afstand door die paar verdiepingen ertussen, maar zonder die begeleiding was mijn onderzoek nergens geweest. Heel veel dank dat ik gebruik heb mogen maken van het fantastische GMZ lab, met geweldige collega’s en de vele faciliteiten die elk artikel in mijn proefschrift van data hebben voorzien. Het voelt als een grote eer om onder zo’n ervaren wetenschapper te mogen promoveren.

Dank aan mijn beide co-promotores, Dr. M.R. Soeters en Dr. S.M. Houten.

Beste Maarten. Ain’t no mountain high enough. Of je er nou tegenop moet fietsen in Zuid-Frankrijk, of dat je er één moet verplaatsen om iets te bereiken wat je graag wil; jij deinst niet terug voor een hoge berg. En het liefst neem je iedereen mee naar boven om te laten zien hoe mooi het daar is. Jij hebt mij met deze onuitputtelijke drive weten te enthousiasmeren en motiveren, met dit proefschrift tot gevolg. En ik ben zo trots op het resultaat! Dankjewel voor je zorg en aandacht, voor je kritiek (oh, al die ‘spreektaal’ in mijn manuscripten!) en je vertrouwen. Mijn promotie jaren waren een feestje!

Beste Sander, toen ik jou ontmoette, had ik nog nooit een pipet vastgehouden. Vanaf het begin heb je mij met zoveel geduld en toewijding wegijs gemaakt in de wereld der basale wetenschap. Jouw intensieve hulp bij de experimenten en het labwerk was van onschatbare waarde, en zeker ook de ruimte die je mij gaf om (keer op keer) fouten te maken. Een geweldige wetenschapper als jij met toch zoveel nuchterheid en bescheidenheid, kom je niet vaak tegen. Ik ben dankbaar voor jouw fantastische begeleiding, die je zelfs voortzette toen je op avontuur ging naar New York. Hier ligt voor jou, Carmen en kleine Bas vast nog heel veel moois in het verschiet. Maar we missen je wel in het AMC!

Veel dank aan alle overige leden van de promotiecommissie, Prof. Dr. J.A. Romijn, Prof. Dr. A.J. Verhoeven, Prof. Dr. C.J.M. de Vries, Prof. Dr. A.K. Groen, Prof. Dr. P. Schrauwen en Dr. M.J. Serlie, voor het zitting nemen in de promotiecommissie, en het kritisch bestuderen van mijn manuscript. Beste Prof. Dr. Romijn, wat een eer en groot genoegen om
onder uw hoede internist te mogen worden in het AMC! Beste Prof. Dr. Groen, ik hoop dat we na mijn verdediging een minstens zo gezellige borrel kunnen drinken als die op het Keystone congres in Dublin.

Dank aan al mijn collega’s op F5, waar ik 3 en een half jaar met veel plezier heb gewerkt.

Birgit, als we jou toch niet hadden! Gabor, je liefde voor Haribo is wanstalig, maar je hebt heel wat saaie AMC-middagen opgevrijd, waarvoor dank (vooral onze grapjes over Dr. Soeters deden het altijd goed). Lieve mede-AIO’s Anke, Annegreet, Barbara, Bouwien, Charlotte, Dirk-Jan, Eelkje, Eveline, Karin, Kasper, Laura, Linda, Maarten, Martine, Murat, Pim, Ruth, Sam en Yvonne, het was gezellig. Tijdens verjaardagstaartjes, op congressen, borreltjes, kraambezoeken, barbeque’s, sinterklaasavondjes en promotiefeestjes: never a dull moment! Annegreet, wat leuk om nu als collega-assistenten interne verder te gaan! Eelkje, ook jij voegt je daar binnenkort bij, hoera! Kom je weer naast me zitten dan? Karin, zie ik je weer tijdens de interne-MLD-bespreking? Ruth, het zal wat drukker worden, maar ik maak graag tijd voor een mooi stuk rennen vanaf het AMC en een goeie borrel na afloop.

Sam, collega-AIO, kamergenoot, proefpersoon, co-promotorgenoot, en pindasoep-liebhebber. Je bent als een goede rode wijn. Eerst wat stroef, maar met een mooie afdronk die veel interessanter is dan is dan een doorsnee supermarktwijntje. Jouw aanwezigheid de afgelopen jaren was een verrijking, zowel op F5, in de zuurkast op F0 of bij een reusachtige schnitzel met bier in Leipzich. En dan nog het andere lid van Groep Soeters; Hannah. Je hebt me verrast met jouw wereldbeeld, wat zo anders kan zijn dan dat van mij. Maar zeker niet minder leuk! Ik heb genoten van onze gezamenlijke congressen, stukjes rennen, Vietnamese etentjes en kopjes koffie op maandag. To be continued, zou ik zeggen.

Beste collega’s van het GMZ lab, dank voor jullie warme ontvangst op F0! Arno, Albert, Henk, Martin, Gerard, jullie geduld voor mijn soms ietwat gebrekkige biochemische kennis was onuitputtelijk. Zonder jullie hulp is het nog maar de vraag of ik ooit enige significante had bereikt met mijn metingen. Beste Riekelt, ik heb genoten van de urenlange muizenatjes, met slechte muziek en goede gesprekken. Fred, jouw carnitine expertise, je input op mijn manuscripten en het meedenken over mijn proeven en analyses was geweldig. Heleen en Simone, Sander’s twee rechter handen. Alles wat ik niet van Sander leerde, leerde ik van jullie. Zoveel dank! En ook voor alle leuke gesprekken op het lab als er weer eens 40 vials stonden droog te dampen. Desi, die roti op donderdag, man... zo goed!
En dank dat ik je fiets mocht lenen: ik blijf toch gewoon een Nederlander in Texas!

Dear Danielle Nicole White, I’d probably still be running after a crazy pig if you hadn’t been there. I’ll never drink a margarita again without thinking of you.

En zoveel dank voor alle hulp bij mijn experimenten, geneeskundestudenten Niki, Leonie en Guido, en ook de proefdierverzorgers in het ARIA-S gebouw, Suzan, Lex en Nienke. Jullie hulp was onmisbaar!

En dan kom ik aan bij mijn paranimfen; ook wel laven voor intimi. Lieve Antony, wanneer jij binnenkomt en jouw polygoonjournaalstem door de kamer schalt, moet ik als vanzelf glimlachen. Ik zou je monologen boven de zuurkoolschotel bij een goede fles wijn voor geen goud willen missen. Je bent een fantastische vriend, en ik vind het een eer dat je me bijstaat in de Agnietenkapel.

Lieve Chantal, ik vraag me af wat jij in een vorig leven zou zijn geweest: Boeddha, Jackie O. of Mrs. President herself? Je bent een warme, lichte, lieve, sterke en prachtige vrouw en vriendin. Je bent een geweldige fotografe (zie dit proefschrift!). Je bent als familie. En ik kan in mijn broek piesen van je grapjes. Dankjewel, lieve buv!

Lieve Krista! Naast dat je dit proefschrift prachtig ontworpen hebt als fantastische art-director, ben je een lieve vriendin, een mooie, nuchtere Drenthse vrouw, en bovenal een mede-‘ambitieuze moeder’. Ooit richten we een partij op! Met jou als lijsttrekker.

Lieve Eva, het is soms best lastig om aan Anna en Wies uit te leggen dat tante Eva geen échte tante is. Maar wat ben je dan wel? Nou ja, you’re my person, you know.

Lieve Polke, word nou gewoon ook internist, gezellig! Lieve Bas, jij hoort ook in dit dankwoord; jij maakte mijn studie zoveel leerder! Lieve Merlijn, ik geniet zo van jouw verwonderende en bewonderende kijk op deze wereld. Lieve Fleur, we ontdekten elkaar wat later, maar ik ben blij dat we dat deden. Laten we daar weer eens een cocktail op drinken!

Samen met Merlijn misschien?

Lieve Johanna en Jurriaan, wat fijn om dat drukke leven met werk, jong gezin en eigenwijze pre-puber-peuters te kunnen delen! En ja, hardlopen is een goede uitlaatklep: volgend jaar een gezamenlijke marathon?

En als ik het dan toch over hardlopen heb: lieve John, Michael, Salo, Frans, Eugenie, Mildred, Francesco, Kees, Urtha, Fred, Ineke, Jack, Peter, Joris, Joris en alle andere (ex-) Phanos-genoten. Het drukke leven van een promoverende moeder zou niet vol te houden zijn zonder die kilometers rennen. Op die zaterdagochtenden en de Blaricumse hei, kan het leven wat mij betreft niet veel mooier. Dankjulliewel!

Lieve Monique, jij vervult hierin een bijzondere rol. We zijn al sinds 2007 elkaars personal coaches. We hebben al duizenden kilometers samen afgelegd, gepraat, gemopperd en genoten. Onze levens lijken soms gelijk op te gaan, met carrière maken, kinderen krijgen, marathons lopen. Laten we rennen tot we niet meer kunnen!

Lieve Kees, je hebt mij geleerd te houden van alles wat oh zo mooi en soms zo lelijk is. Ik kan niet in woorden uitdrukken hoeveel mij dat gebracht heeft.
Lieve Samma, jij leerde mij om niet alsmar te rennen, maar soms gewoon te zijn. Je bent een bijzondere vrouw en vriendin.

Lieve Corine, wanneer ik dit proefschrift zal verdedigen, is het een kleine 9 maanden geleden dat ik je allerlaatste hartslag heb gevoeld. Hoewel ik je mis, ben je nog zoveel in mijn gedachten. Ik denk dat je er vol trots bij had gezeten in die Agnietenkapel. Op een bepaalde manier ben je er gewoon nog een beetje bij.

Lieve Menno & Tina, Roos & Jeroen, Daan & Ferry. Hoe ouder ik word, hoe meer ik mij realiseer wat een groot goed het is dat ons gezin zo ontzettend hecht is. We delen 2 fantastische ouders, 9 geweldige kinderen, en een heleboel lief en leed. En daar ben ik enorm dankbaar voor. Lieve Menno, je bent een amateur-meteoroloog, de droogste grappenmaker ter wereld, maar bovenal een fantastische broer. Lieve Roos, we zijn in vele opzichten best verschillend, maar in al jouw betrokkenheid, belangstelling en steun ben je zo vertrouwd en dichtbij. Wat een rijkdom om zo’n zus te hebben. Lieve Daan, je hebt ons gezin een kleine 30 jaar geleden aangevuld, en je bent nog steeds een volwaardig onderdeel van de familie. Wat fijn dat je er bent!

Lieve Pappa en Mamma. Ons gezin is uniek, en inmiddels 19 man groot! En nu ik zelf kinderen heb, besef ik pas echt hoe fantastisch jullie ons grootgebracht hebben. Hoeveel ik van jullie geleerd heb. Hoezeer ik door jullie gesteund ben. Met heel veel trots geef ik nu jullie waardevolle levenslessen door aan mijn eigen kleine Anna en Wies.

Lieve Tijs. Vraag je je wel eens af waar je destijds je steun aan hebt betuigd, toen ik opperde om geen artdirector meer te zijn maar geneeskunde te gaan studeren? I’ve put you through a lot. En hoewel ik dingen doe op een dag waar jij nooit aan zou moeten denken, je interesse en enthousiasme zijn oneindig en fantastisch. Om over alle zorgen voor de meisjes waar ik door dat idioot drukke leven geen tijd voor heb nog maar te zwijgen.

Biografie

Marieke Guurtje Schooneman werd geboren op 22 september 1979 en groeide op in de Beemster met haar ouders, broer, zus en pleegzus. Initieel wilde zij arts worden, maar het leven liep anders. Zij doorliep zonder middelbare schooldiploma de academie voor art direction en design. Hierna studeerde zij aan de Hallo©academie voor toegepaste creativiteit, om vervolgens art director te worden bij reclamebureau KesselsKramer in Amsterdam. Maar na enkele jaren in deze creatieve functie, deed een boeddhistische monnik in Chang Mai, Thailand haar inzien dat de reclame het niet was voor de rest van haar leven.

De wens om arts te worden bestond nog steeds: zo gebeurde het dat ze op haar 24e alsnog in de avonduren haar VWO diploma haalde. In september 2005 werd ze ingeloot voor geneeskunde aan het AMC. De studie doorliep ze, iets ouder dan haar medestudenten, met véél overtuiging, voorspoed en plezier.

Na het behalen van haar artsenbul in juni 2011, is zij promotieonderzoek gaan doen onder begeleiding van promotores Prof. Carla Hollak en Prof. Ronald Wanders en co-promotores Dr. Maarten Soeters en Dr. Sander Houten, aan de afdeling Endocrinologie & Metabolisme in het AMC. Sinds 1 januari 2015 is zij in opleiding tot internist in het AMC. Samen met Mattijs heeft zij twee prachtige dochters, Anna en Wies, van 6 en 3 jaar oud. Vanuit de Amsterdamse Pijp, waar zij woont, rent ze vele rondjes langs de Amstel richting Ouderkerk en verder. In september 2014 liep zij in Berlijn haar 7e marathon in een PR van 3:19:57.