Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue
Nadort, A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Glow With The Flow.
A thesis that contributes to the development of optical techniques to assess microcirculation functionality for the diagnosis, monitoring, therapy guidance and understanding of many diseases ranging from the onset of septic shock to the delivery of drugs to tumours. The first part of this thesis aims to develop a non-invasive technique to quantify microcirculatory blood flow velocity based on laser speckle flowmetry. The second part is devoted to the quantification of optical signals arising from photoluminescent upconversion nanoparticles for sensitive detection in biomedical tissues. The combination of these techniques is particularly useful in the context of tumour therapy by providing information on tumour angiogenesis, enabling molecular contrast and delivering nanoparticle-based drugs.
Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue

Annemarie Nadort
Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue
PhD thesis, University of Amsterdam, The Netherlands

The research in this thesis was funded by:

The public defence ceremony and printing of this thesis were kindly sponsored by:

Author: Annemarie Nadort
Printing: Off-page, www.offpage.nl
Cover design: CAPITALT
Tim Casey, CapitalT.net

Copyright 2015 © Annemarie Nadort, Amsterdam, The Netherlands. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue

ACADEMISCH PROEFSCHRIJT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom
ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel
op woensdag 1 april 2015, te 14:00 uur

door

Annemarie Nadort

geboren te Zaanstad
PROMOTIECOMMISSIE

Promotores: prof. dr. A.G.J.M. van Leeuwen Universiteit van Amsterdam
 prof. dr. M.C.G. Aalders Universiteit van Amsterdam

Co-promotor: dr. ir. D.J. Faber Universiteit van Amsterdam

Overige leden: prof. dr. E.T. van Bavel Universiteit van Amsterdam
 prof. dr. W.J. Buma Universiteit van Amsterdam
 prof. dr. H.J.C.M. Sterenborg Erasmus Universiteit Rotterdam
 prof. dr. ir. W. Steenbergen Universiteit Twente
 dr. E.G. Mik Erasmus MC

Faculteit der Geneeskunde
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Laser speckle contrast imaging</td>
<td>25</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy</td>
<td>37</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Quantitative blood flow velocity imaging using laser speckle flowmetry</td>
<td>57</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Upconversion nanoparticles</td>
<td>91</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Quantitative imaging of single upconversion nanoparticles in biological tissue</td>
<td>103</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Feasibility study of the optical imaging of a breast cancer lesion labeled with upconversion nanoparticle biocomplexes</td>
<td>133</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Discussion and conclusion</td>
<td>155</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Outlook</td>
<td>173</td>
</tr>
<tr>
<td>Appendices</td>
<td>List of abbreviations</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>List of symbols</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Samenvatting van het proefschrift</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Thesis summary</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>List of publications</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Portfolio</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Curriculum vitae</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>205</td>
</tr>
</tbody>
</table>