Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue
Nadort, A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Glow With The Flow.
A thesis that contributes to the
development of optical techniques to
assess microcirculation functionality for the
diagnosis, monitoring, therapy guidance and
understanding of many diseases ranging from
the onset of septic shock to the delivery of drugs to
tumours. The first part of this thesis aims to develop a
non-invasive technique to quantify microcirculatory blood
flow velocity based on laser speckle flowmetry.
The second part is devoted to the quantification of
optical signals arising from photoluminescent
upconversion nanoparticles for sensitive detection
in biomedical tissues.
The combination of these techniques is particularly
useful in the context of tumour therapy by
providing information on tumour angiogenesis,
enabling molecular contrast and
delivering nanoparticle-based drugs.
Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue

Annemarie Nadort
Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom
ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel
op woensdag 1 april 2015, te 14:00 uur

door

Annemarie Nadort

geboren te Zaanstad
PROMOTIECOMMISSIE

Promotores: prof. dr. A.G.J.M. van Leeuwen, prof. dr. M.C.G. Aalders

Co-promotor: dr. ir. D.J. Faber

Universiteit van Amsterdam

Universiteit van Amsterdam

Faculteit der Geneeskunde
Table of Contents

Chapter 1 Introduction ... 7
Chapter 2 Laser speckle contrast imaging 25
Chapter 3 Quantitative laser speckle flowmetry of the *in vivo* microcirculation using sidestream dark field microscopy 37
Chapter 4 Quantitative blood flow velocity imaging using laser speckle flowmetry ... 57
Chapter 5 Upconversion nanoparticles 91
Chapter 6 Quantitative imaging of single upconversion nanoparticles in biological tissue ... 103
Chapter 7 Feasibility study of the optical imaging of a breast cancer lesion labeled with upconversion nanoparticle biocomplexes .. 133
Chapter 8 Discussion and conclusion 155
Chapter 9 Outlook .. 173

Appendices
List of abbreviations ... 181
List of symbols .. 182
Samenvatting van het proefschrift 185
Thesis summary .. 191
List of publications ... 197
Portfolio .. 200
Curriculum vitae .. 203
Acknowledgments .. 205