Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue
Nadort, A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Glow With The Flow.
A thesis that contributes to the development of optical techniques to assess microcirculation functionality for the diagnosis, monitoring, therapy guidance and understanding of many diseases ranging from the onset of septic shock to the delivery of drugs to tumours. The first part of this thesis aims to develop a non-invasive technique to quantify microcirculatory blood flow velocity based on laser speckle flowmetry. The second part is devoted to the quantification of optical signals arising from photoluminescent upconversion nanoparticles for sensitive detection in biomedical tissues. The combination of these techniques is particularly useful in the context of tumour therapy by providing information on tumour angiogenesis, enabling molecular contrast and delivering nanoparticle-based drugs.

Quantifying Blood Flow and Photoluminescence Signal in Biological Tissue
Annemarie Nadort
Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue

Annemarie Nadort
Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue

Academisch proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom
ten overstaan van een door het College voor Promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel
op woensdag 1 april 2015, te 14:00 uur

door

Annemarie Nadort

geboren te Zaanstad
PROMOTIECOMMISSIE

Promotores: prof. dr. A.G.J.M. van Leeuwen
 prof. dr. M.C.G. Aalders
 Universiteit van Amsterdam

Co-promotor: dr. ir. D.J. Faber
 Universiteit van Amsterdam

Overige leden: prof. dr. E.T. van Bavel
 prof. dr. W.J. Buma
 prof. dr. H.J.C.M. Sterenborg
 prof. dr. ir. W. Steenbergen
 dr. E.G. Mik
 Universiteit van Amsterdam
 Universiteit van Amsterdam
 Erasmus Universiteit Rotterdam
 Universiteit Twente
 Erasmus MC

Faculteit der Geneeskunde
TABLE OF CONTENTS

Chapter 1 Introduction 7

Chapter 2 Laser speckle contrast imaging 25

Chapter 3 Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy 37

Chapter 4 Quantitative blood flow velocity imaging using laser speckle flowmetry 57

Chapter 5 Upconversion nanoparticles 91

Chapter 6 Quantitative imaging of single upconversion nanoparticles in biological tissue 103

Chapter 7 Feasibility study of the optical imaging of a breast cancer lesion labeled with upconversion nanoparticle biocomplexes 133

Chapter 8 Discussion and conclusion 155

Chapter 9 Outlook 173

Appendices List of abbreviations 181
List of symbols 182
Samenvatting van het proefschrift 185
Thesis summary 191
List of publications 197
Portfolio 200
Curriculum vitae 203
Acknowledgments 205