Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue

Nadort, A.

Citation for published version (APA):
Glow With The Flow.
A thesis that contributes to the development of optical techniques to assess microcirculation functionality for the diagnosis, monitoring, therapy guidance and understanding of many diseases ranging from the onset of septic shock to the delivery of drugs to tumours. The first part of this thesis aims to develop a non-invasive technique to quantify microcirculatory blood flow velocity based on laser speckle flowmetry. The second part is devoted to the quantification of optical signals arising from photoluminescent upconversion nanoparticles for sensitive detection in biomedical tissues.

The combination of these techniques is particularly useful in the context of tumour therapy by providing information on tumour angiogenesis, enabling molecular contrast and delivering nanoparticle-based drugs.
Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue

Annemarie Nadort
Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue
PhD thesis, University of Amsterdam, The Netherlands

The research in this thesis was funded by:

MACQUARIE UNIVERSITY  amC MicroVisionMedical

The public defence ceremony and printing of this thesis were kindly sponsored by:

Gerbrand de Jong Fonds

Author: Annemarie Nadort
Printing: Off-page, www.offpage.nl
Cover design: CAPITALT
Tim Casey, CapitalT.net

Copyright 2015 © Annemarie Nadort, Amsterdam, The Netherlands. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
Glow with the flow: Quantifying blood flow and photoluminescence signal in biological tissue

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom
ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel
op woensdag 1 april 2015, te 14:00 uur

door

Annemarie Nadort

geboren te Zaanstad
PROMOTIECOMMISSIE

Promotores:  prof. dr. A.G.J.M. van Leeuwen  Universiteit van Amsterdam
            prof. dr. M.C.G. Aalders  Universiteit van Amsterdam

Co-promotor:  dr. ir. D.J. Faber  Universiteit van Amsterdam

Overige leden:  prof. dr. E.T. van Bavel  Universiteit van Amsterdam
                 prof. dr. W.J. Buma  Universiteit van Amsterdam
                 prof. dr. H.J.C.M. Sterenborg  Erasmus Universiteit Rotterdam
                 prof. dr. ir. W. Steenbergen  Universiteit Twente
                 dr. E.G. Mik  Erasmus MC

Faculteit der Geneeskunde
# Table of Contents

Chapter 1  Introduction  
Chapter 2  Laser speckle contrast imaging  
Chapter 3  Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy  
Chapter 4  Quantitative blood flow velocity imaging using laser speckle flowmetry  
Chapter 5  Upconversion nanoparticles  
Chapter 6  Quantitative imaging of single upconversion nanoparticles in biological tissue  
Chapter 7  Feasibility study of the optical imaging of a breast cancer lesion labeled with upconversion nanoparticle biocomplexes  
Chapter 8  Discussion and conclusion  
Chapter 9  Outlook  

Appendices  
List of abbreviations  
List of symbols  
Samenvatting van het proefschrift  
Thesis summary  
List of publications  
Portfolio  
Curriculum vitae  
Acknowledgments