Host-pathogen interactions in typhoid fever

de Jong, H.K.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Host-pathogen interactions in typhoid fever

This thesis focuses on host-pathogen interactions in *Salmonella Typhi* and *Burkholderia pseudomallei* infections and explores the interplay between these bacteria and the innate immune system. Typhoid fever is one of the most common causes of bacterial infection in low-income countries. With adequate antibiotic treatment it has a low mortality rate. Melioidosis also commonly causes community-acquired sepsis in Southeast Asia and northern Australia but even with appropriate antibiotic treatment the mortality is high. During severe bacterial infections such as these uncontrolled activation of the innate immune response can lead to detrimental systemic inflammation, intravascular coagulation, tissue injury, and eventually death. This thesis presents clinical and experimental studies in which the effects of a variety of proteins involved in the hyper-inflammatory response of the innate immune system during severe typhoid fever and melioidosis are investigated and compared.
Host-pathogen interactions in typhoid fever

Hanna Katrien de Jong
Host-pathogen interactions in typhoid fever

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties
ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel
op woensdag 15 april 2015, te 14:00 uur

door

Hanna Katrien de Jong

geboren te Amsterdam
Promotiecommissie

Promotor: Prof. Dr. T. van der Poll

Co-promotores: Dr. C. M. Parry
 Dr. W. J. Wiersinga

Overige leden: Prof. Dr. J. T. van Dissel
 Prof. Dr. S. Florquin
 Dr. S. E. Geerlings
 Prof. Dr. M. P. Grobusch
 Dr. N. P. Juffermans
 Prof. Dr. P. Speelman

Faculteit der Geneeskunde
“Voor alle bacteriënjagers”
Contents

Part I: Introduction

1. General introduction and outline of the thesis. 11

2. The systemic pro-inflammatory response in sepsis.
 Journal of Innate Immunity, 2010

Part II: Host-pathogen interactions in invasive salmonellosis

3. Host-pathogen interaction in invasive salmonellosis.
 Plos Pathogens, 2012 39

4. Epidemiologic and diagnostic aspects of typhoid fever in Chittagong Medical College Hospital, Chittagong, Bangladesh.
 Submitted 61

5. The etiology of febrile illness in patients presenting to Chittagong Medical College Hospital in Chittagong, Bangladesh.
 Submitted 77

6. Activation of coagulation and endothelium with concurrent impairment of anticoagulant mechanisms in patients with typhoid fever. 93
 Submitted

 Submitted 109

8. Limited role for ASC and NLRP3 during in vivo *Salmonella* Typhimurium infection.
 BMC Immunology, 2014 127

9. Expression and function of S100A8/A9 (calprotectin) in human typhoid fever and the murine *Salmonella* model.
 Plos Neglected Tropical Diseases, 2015 147
Part III: Host responses in melioidosis

10. Neutrophil extracellular traps in the host defense against sepsis induced by *Burkholderia pseudomallei*.
 Intensive Care Medicine Experimental, 2014
 175

 Journal of Thrombosis and Haemostasis, 2014
 197

12. S100A8/A9 (calprotectin) impairs host defense against pneumonia-derived septic melioidosis.
 Submitted
 209

Part IV: Epilogue

13. Summary, general discussion and conclusion
 231

14. Samenvatting voor niet-ingewijden (Dutch summary)
 243

Addendum

Common abbreviations
Authors and affiliations
PhD portfolio
List of publications
Dankwoord (Acknowledgements)
About the author
249
251
255
259
263
265
269