Thiopurines and inhibition of Rac1 in vascular disease
Marinkovi, G.

Citation for published version (APA):
Marinkovi, G. (2015). Thiopurines and inhibition of Rac1 in vascular disease Belgrade: Don-Vas
APPENDICES

Summary
Samenvatting
Acknowledgements
Curriculum vitae
SUMMARY

The studies presented in this thesis report on the pharmacological effect of immunosuppressive drug azathioprine and its downstream metabolites 6-mercaptopurine (6-MP) and thiopurine 6-T-GTP on different cell types, by modulation of the activity of small GTPase Rac1. This immunosuppressive drug is mostly used in the clinic after transplantation and in chronic autoimmune diseases such as in inflammatory bowel disease patients. Because of its anti-inflammatory properties it is reasonable to assume that azathioprine may also be beneficial in other chronic inflammatory diseases, such as during abdominal aortic aneurysm development.

In Chapter 1 we provide the general background information necessary to comprehend the studies presented in this thesis. We describe the disease settings for abdominal aortic aneurysm formation and inflammatory bowel disease, which both involve chronic inflammation, leading to destruction of the artery or bowel, respectively. Inflammatory macrophages (immune cells) are important in both pathologies. We give a brief overview of the main properties of azathioprine, and its metabolites 6-MP and 6-T-GTP, and its relation to small GTPase Rac1, which is the main target of this drug.

In Chapter 2 we review the available literature on the function of Rac1 in the three main cell types of the vessel wall, namely endothelial cells, smooth muscle cells and fibroblasts. Rac1 is involved in regulation of numerous cellular functions such as oxidative stress, cytoskeletal changes, migration and proliferation. We conclude that chronically enhanced Rac1 activity plays a role in many vascular pathologies, with partial overlapping and partial cell type specific effects of Rac1.

Chapter 3 describes a murine study, measuring the effect of azathioprine treatment on prevention and progression of aneurysm development in the angiotensin-II-induced aneurysm model. Azathioprine reduces aneurysm initiation and progression, by inhibition of the inflammatory response and thus decreasing macrophage influx into the vessel wall. This effect is at least in part mediated by inhibition of endothelial cell activation, a process which facilitates macrophage adhesion and transmigration, to exit from the circulation into the tissues upon inflammation. In endothelial cells, pro-inflammatory cytokines such as IL-12, CCL5 and CCL2, as well as adhesion molecule VCAM-1 mRNA expression is reduced upon 6-MP treatment, which suppressed Rac1 activation, consequently reducing activation of the JNK-mediated signaling pathway. This demonstrates for the first time that the immunosuppressive drug has anti-inflammatory effects on non-immune cells, namely endothelial cells.

Chapter 4 discusses the in depth mechanisms which are underlying the immunosuppressive effect of 6-MP on endothelial cells. In this chapter we demonstrate in an in vitro setup of cultured endothelial cells that 6-T-GTP, the downstream metabolite of 6-MP, is probably responsible for Rac1 inhibition. 6-MP can inhibit TNFα-induced endothelial activation by diminishing the activity of several pro-inflammatory transcription factors such as cJun, ATF2 and NFkB. In turn, this leads to reduced mRNA expression of many pro-inflammatory cytokines and reduced protein expression of VCAM-1. Expression of adhesion molecule ICAM-1 was not influenced by 6-MP or 6-T-GTP, however, the ICAM-1-dependent process of assembling leukocyte capturing structures, was abrogated due to inhibition of Rac1 activity. Rac1 activation is needed for the cytoskeletal changes to form mature capturing structures on the endothelial surface, which is hampered by 6-MP. The functional relevance of this finding is revealed in transmigration experiments where neutrophils should transmigrate...
through an endothelial cell monolayer. Incubation with 6-MP or 6-T-GTP indeed decreased neutrophil transmigration.

In Chapter 5 we anticipate that the Rac1 inhibiting capacity of 6-MP is not limited to endothelial cells (our data) and T cells (shown by others). Here, we investigate if macrophages are also sensitive to 6-MP and 6-T-GTP. Interferon-γ-induced activation of macrophages leads to JNK-mediated signal transduction and an increase in iNOS production, which could be reduced by 6-MP or 6-T-GTP in a Rac1-dependent manner. In addition, expression of a number of cytokines is suppressed by 6-MP or 6-T-GTP, yet not Rac1-dependent. This shows that these drugs influence additional GTP-dependent pathways beyond Rac1. Since azathioprine is most extensively used in inflammatory bowel disease patients, we investigate gut epithelial cells. In epithelial cells, 6-MP or 6-T-GTP treatment diminished expression of cytokines CCL2 and IL-8, of which only IL-8 production is Rac1-dependent. The drugs decrease the activity of transcription factor STAT-3 in a Rac1-dependent fashion, consequently diminishing cyclin D1 and thus the proliferative response. Summarizing the data shows that azathioprine and its metabolites inhibit activation of immune cells and non-immune cells, which is in part Rac1-dependent, and thereby effectively blocks disease progression.

In Chapter 6 we perform in silico docking studies to determine if and how 6-T-GTP can inhibit Rac1, if this would be via a direct interaction with Rac1. We examine the relative binding affinities of 6-T-GTP and GTP for the Rac1 GTP-binding pocket. 6-T-GTP can bind into the GTP-binding pocket of Rac1, although with low specificity and lower affinity than its natural substrate GTP. In addition, 6-T-GTP shows a high specificity and affinity for a groove on the surface of Rac1, when Rac1 is in the conformation to bind its guanine nucleotide exchange factor (GEF). This groove is at the Rac1-GEF interface and necessary for binding of the GEF to Rac1. Binding of 6-T-GTP at this position suggests that it can block GEF binding and thus Rac1 activation, which is what we observe in our previous studies. Interestingly, two known Rac1 inhibitors bind in the same groove, which is considered their mode of function.

This thesis ends with Chapter 7 where the general outcomes of the different studies are reviewed in the context of other relevant literature, extrapolated to human data, and future research is discussed.
SAMENVATTING

De studies in dit proefschrift beschrijven het farmacologische effect van het immuunsuppressivum azathioprine en zijn metabolieten 6-mercaptopurine (6-MP) en thiopurine 6-T-GTP op verschillende cel types, door de activiteit van small GTPase Rac1 te moduleren. Dit immuunsuppressivum wordt het meest gebruikt na transplantatie of bij autoimmuun ziekten, zoals bij patiënten met chronische darmontstkingen. Door de anti-inflammatoire eigenschappen van dit medicijn is het denkbaar dat azathioprine ook een gunstig effect zou kunnen hebben op andere chronische ontstekingsziekten, zoals bij het ontstaan van een buik-aneryysma van de aorta.

In Hoofdstuk 1 wordt een algemene introductie gegeven om de verdere studies in dit proefschrift te begrijpen. Het ontstaan van buik-aneryysmata en darmontstkingen wordt beschreven, waarbij chronische ontsteking leidt tot afbraak van respectievelijk de vaatwand en de darmwand. Macrofagen zijn immuun cellen die belangrijk zijn bij beide ziektebeelden. Er wordt ook een overzicht gegeven van de omzetting van azathioprine in zijn metabolieten 6-MP en 6-T-GTP, en de relatie met GTPase Rac1, wat een belangrijk aangrijpingspunt is van deze metabolieten.

In Hoofdstuk 2 wordt een overzicht gegeven van de huidige literatuur over de functie van Rac1 in de drie voornaamste cel typen van de vaatwand; namelijk de endotheelcellen, gladde spiercellen en fibroblasten. Rac1 is betrokken bij de regulatie van verschillende cellulaire functies, zoals oxidatieve stress, cytoskelet veranderingen, migratie en proliferatie. We kunnen concluderen dat chronisch verhoogde Rac1 activiteit een rol speelt in veel vasculaire ziekten, met overeenkomstige en cel type specifieke effecten van Rac1.

In Hoofdstuk 3 wordt een muis studie beschreven in het angiotensine-II geïnduceerde aneurysma model, waarbij het effect van azathioprine op de preventie en progressie van aneurysma ontwikkeling wordt gemeten. Azathioprine vermindert de initiatie en progressie van aneurysma ontwikkeling, door de inflammatoire respons te remmen, waardoor er minder macrofaag influx plaats vindt in de vaatwand. Dit effect is gedeeltelijk afhankelijk van de remming van endotheelcel activatie, een proces dat normaliter macrofaag adhesie en migratie faciliteert, waardoor macrofagen vanuit de circulatie het ontstoken weefsel in trekken. In endotheelcellen is de expressie van cytokines zoals IL-12, CCL5, CCL2 en adhesie molecuul VCAM-1 verlaagd na behandeling met 6-MP, door middel van Rac1 remming, wat activatie van de JNK signaal transductie route vermindert. Het laat voor het eerst zien dat dit immuunsuppressivum ook een anti-inflammatoire werking heeft in niet-immuun cellen zoals endotheelcellen.

Hoofdstuk 4 bestudeert de verschillende mechanismen die ten grondslag liggen aan het immuunsuppressieve effect van 6-MP op endotheelcellen. In dit hoofdstuk wordt aangetoond in gekweekte endotheelcellen dat 6-T-GTP, gevormd uit 6-MP, waarschijnlijk verantwoordelijk is voor de Rac1 remmende werking. 6-MP blokkeert TNFα-geïnduceerde endotheelcel activatie door de activiteit van meerdere pro-inflammatoire transcriptie factoren, zoals cJun, ATF2 en NFkB, te verlagen. Dit leidt tot verminderde mRNA expressie van veel pro-inflammatoire cytokines en verminderde eiwit expressie van VCAM-1. Expressie van adhesie molecuul ICAM-1 wordt niet beïnvloed door 6-MP of 6-T-GTP, maar de vorming van membraan uitstulpingen voor het omkapselen van migrerende leukocyten, een ICAM-1-afhankelijk proces, is wel verminderd door Rac1 remming. Rac1 activatie is nodig om de cytoskelet veranderingen mogelijk te maken om de membraan uitstulpingen te vormen, wat verstoord wordt door 6-MP. De functionele relevantie wordt aangetoond door middel van
transmigratie experimenten, waarbij neutrofielen migreren over een endotheelcel monolaag. Incubatie met 6-MP of 6-T-GTP vermindert inderdaad de neutrofiel transmigratie.

In Hoofdstuk 5 veronderstellen we dat de Rac1 remmende werking van 6-MP niet is voorbeholden aan de endotheelcellen (onze data) of T cellen (zoals aangetoond door anderen). Hier wordt onderzocht of ook macrofagen gevoelig zijn voor 6-MP en 6-T-GTP. Interferon-γ-geïnduceerde activatie van macrofagen leidt tot JNK-gemediëerde signaal transductie en een verhoging van iNOS expressie, wat verlaagd kan worden door 6-MP en 6-T-GTP op een Rac1-afhankelijke manier. Expressie van een aantal cytokines is ook verlaagd door 6-MP en 6-T-GTP, maar blijkt niet Rac1-afhankelijk te zijn. Dit laat zien dat er meer GTP-afhankelijke routes geremd worden, naast GTPase Rac1.

Aangezien azathioprine het meest voorgeschreven wordt in patiënten met chronische darmontstekingen, zijn ook darm epitheelcellen bestudeerd. TNFα-geïnduceerde epitheelcel activatie wordt sterk geremd door 6-MP en 6-T-GTP. CCL2 en IL-8 expressie is verlaagd, maar alleen de IL-8 productie blijkt Rac1-afhankelijk te zijn. Het medicijn vermindert de activatie van transcriptie factor STAT3, welke ook Rac1-afhankelijk is, met als gevolg dat er minder cyclin D1 wordt geproduceerd, waardoor de proliferatieve respons uit blijft. Samenvattend laten de data zien dat azathioprine, en zijn metabolieten, activatie van immuun cellen en niet-immuun cellen remt, voor een deel via Rac1-afhankelijke processen, en op deze manier effectief ziekte progressie kan blokkeren.

In Hoofdstuk 6 worden in silico docking studies uitgevoerd om te bepalen of en hoe 6-T-GTP de GTPase Rac1 kan remmen, en of er een directe interactie mogelijk is met Rac1. De relatieve binding-affiniteiten van 6-T-GTP en GTP voor de GTP-bindingsplaats op Rac1 laten zien dat 6-T-GTP kan binden aan Rac1 op die locatie, maar met een minder hoge affiniteit dan zijn natuurlijke substraat GTP. Daarnaast laat 6-T-GTP een hoge specificiteit en affiniteit zien voor een groeve aan het oppervlak van Rac1, waar normaliter de guanine nucleotide exchange factor (GEF) bindt. Binding van 6-T-GTP op deze Rac1-GEF interactie locatie suggereert dat het de binding van de GEF kan voorkomen, waardoor Rac1 activatie geremd wordt, wat we ook zien in de voorgaande studies. Het is opmerkelijk dat twee andere bekende Rac1 remmers in dezelfde groeve binden, wat het werkingsmechanisme is van die Rac1 remmers.

Dit proefschrift eindigt met Hoofdstuk 7, waar de uitkomsten van de verschillende studies worden belicht in de context van relevante literatuur, geëxtrapoleerd naar de humane situatie, en vervolg onderzoek wordt besproken.
ACKNOWLEDGEMENTS

I would hereby like to thank all the people that in a one way or another contributed to this thesis. Without them, their support and encouragement it would have been just too difficult. More than five years ago I started my PhD at the Academic Medical Centre in Amsterdam, yet it seems like it was yesterday. The people who surrounded me on a daily basis at work, all the colleagues and all the friends who I met, made this time very dynamic, interesting and above all, an enriching experience.

Dear Professor de Vries, dear Carlie, I would like to thank you for your support, advice, understanding and more than anything, thank you for the patience you showed me. Thank you for letting me pursue my ideas and critically redirecting my line of thought, placing me back on track whenever I started to wander. Above all, thank you for giving me the opportunity to be a part of your accomplished and proficient group and to discover the beauty of vascular biology.

Dear Dr. de Waard, Vivian, I would like to let you know how grateful I am for your unlimited support during my PhD. You were not only my supervisor, but a true friend, always guiding me and my research in the right direction. I still remember the first day of my arrival in the Netherlands, when you waited for me at the airport. Your kindness and spontaneity made me feel instantly very comfortable with my decision to come to a foreign country for my PhD and made me feel at home. I would, of course, especially like to thank you for sharing your knowledge with me and having patience when dealing with me on a daily basis, with my stubbornness and impatience that I showed from time to time. You are simply an awesome person to work with!

Dear Dr. Jaap van Buul, thank you for your involvement in my project, for the knowledge and expertise that you provided me with, for time invested in discussing and planning experiments together with Vivian and me.

Dear committee members; Prof. dr. G.R. van den Brink, Prof. dr. P.L. Hordijk, Prof. dr. E. Lutgens, Prof. dr. G. Pasterkamp and Dr. J.H.N. Lindeman thank you for taking the time to read and revise my thesis.

My dear colleagues and friends, working with you was always very stimulating, pleasant and encouraging. You are great people to spend a PhD with and I learned a lot from you and shared some great moments. I had great borrels, lab days, dinners and sinterklaas celebrations. Thank you for that! Annita, Mariska and Pieter, thank you for taking care of all the important issues in our lab, for help that you provided me with during my experiments. Claudia, your expertise in molecular biology was very valuable to me, thank you for all the assistance. Thijs, thank you for sharing your knowledge and ideas. Arginell, Natascha, Daniella, Amber, Edith, experiments that you performed during your stay in our lab were very informative and important for the successful outcome of my project and I thank you for that. My dear friend Matthijs, spending time with you at work was great! It resulted in the performing of some cool experiments resulting in nice papers... Also, beer time after work with an experienced Postdoc is a valuable thing in itself. Stijntje, thanks for being a great colleague and friend, your spontaneity is truly a unique quality. Duco (Ducoṭje©), when I met you, you were a kid hungry for science and then you became a serious scientist. It was truly
wonderful to observe that transition 😊. Btw, beating me in squash like that was really not cool. Lejla, djes ba?! For that year and a half of working with you, you became a valuable and a dear friend, thank you. Anouk, we were in the same pot for five years, sharing similar fears and hopes, working together, helping each other, exchanging ideas, thank you for all of that. Vincenzo, Jessyka, Paulo, Daniela, Tanit, Rossela, Teja, Ana, Teresa, Anke, thanks for being great friends in and outside of work. Mark, thank you for your cheerfulness and eagerness to share sport results and comments on players that I had never even heard about 😊. All the best mate! Marco, your relaxed attitude and common sense in dealing with scientific problems is truly inspiring. It was great to discuss them with you, cheers! Milka, ah sta reci… It was great to have someone at work to share all my daily joys and frustration in a native language. During my PhD you became a great friend, someone with whom I could always discuss and share so many things. Getting to know you was truly a pleasure. Nazanin, Cristina, Maria (J) and Alessandra, thank you for all the good times that we spent together, for being my honest and true friends. We shared many great moments, many joys and frustration, it was really nice having you there! I wish you all the best!!!

Iker, my dearest friend, my flatmate and my brother, thank you for always being there for me, for spending amazing times together, you were a great colleague, always down to earth, a person that I could always talk to. I wish you all the luck in your life !!! EUSKAL HERRIA!!! ;)

To people that helped me with special analysis and experiments: Dr. Boris Bleijlevens, thank you for performing all the Rac1 structure studies and modelling, Dr. Jan Stap, thank you for helping me with all endothelial migration experiments, Dr. Kees A. Hoeben, thank you for providing me with excellent electron microscopy images of endothelial cells. Mark Hoogenboezem, thank you for your assistance in performing Rac1 pull-down experiments.

My Groningen friends, there are no words to explain how lucky and grateful I am to have found you all. You are a colourful group of truly wonderful and unique individuals. We were living as one big family (even though I was a family member only for the weekends 😊) and all the memories which I have from that period, I will cherish for the rest of my life. Dule, it was so easy for me to embrace you as a friend, you always had some new ideas, which would make me observe things from a different perspective, thank you for your wisdom 😊; Jelena, yours are the lines in the paragraph dedicated to paranymphs; Relja, it was amazing to watch you grow up and from a baby becoming a smart schoolboy, with all the stages that you went through. Jelena C.J. your cheerful spirit and determination is really something admirable; Cobe, I’m missing those days when we were chilling out in my living room, watching football, Formula1 and all those other sports that I don’t know much about. Your common sense and stability are indeed your great virtues, thank you both, you are truly good friends. Vibor, your patience and ingenuity are truly remarkable; Kaća, your determination and clear headed approach to life is something that I respect with great admiration; Sara, when you came you brought a new light into Vibor’s and Kaca’s life and a new dynamic to all of us, you are simply adorable! Deki, what can I say? I think I should let you be in charge of all of the paper work related to my thesis I believe that everything would go much smoother, your organization skills are absolutely impressive; Sonja, your mild temper and determination are a truly powerful combination. Ivan, your vocabulary, sharp mind and a brilliant sense of weird humour makes a person constantly question him/herself about the things he/she would normally never think about. That is your superpower. Ivana, the rationality and easiness with which you deal with everyday life, always with both feet on the ground are your true qualities.
Milice, your firmly established life principles are your greatest quality. Jelena G., Jelena S. and Milice (kamilice), your kindness and positivity are truly your biggest advantages, making you great people and my dear friends.

My dear parannymphs, my dear Jelena and Babu, first, thank you for helping me in the preparation of my thesis defence, without you it would be so much more difficult. Jelena, your understanding and composure were invaluable to me. During the times when I was wondering, when I doubted myself, you understood me and with your common sense managed to shed a different light on many of my problems, making them much easier to deal with. Thank you for that. Babu, my friend, lab mate, we were sharing so many things in the lab and outside of work. In the lab, you were always a person that I could count on, always having some cool ideas of how some experiment could be performed. I loved it when I heard your sentence “Dude, I have my tricks”, then I knew that we were on the safe side 😊. Outside of AMC…., well what can I say…the joyfulness that you spread around made everyone who was with you simply have a great time.

My friends in Serbia: Djole, Milice (totemce 😊), Coske, Vojjo, Sandra, Bogi, Danco, Kraso, Stupo, Selena, Jelena V., Kaća, Scepo, Srdjane, thank you for being part of my life and above all good friends. Damire, I miss you.

My friends from Israel, Caterina, Giuseppe, Benjamin, thank you for being there with and for me, when I needed you most. Starting a postdoc and a life in a new country can be pretty tricky and challenging. Thanks to you, your kindness and amity this transition was as smooth as possible. Neta, thanks for your help in revising the acknowledgements section of my thesis.

I am sincerely grateful to my Biology teacher at high school, “Gimnazija Bora Stanković, Bor”, Professor Svetlana Čorboloković for showing me the beauty of Biology, introducing me to the world of science and by that shaping my future.

My dear father Zvonko and grandmother Tončika, thank you for your love, your support and encouragement. You always believed in me, thank you. Dear Jasmina, thank you for all your help and understanding.

Višnja, for ten and half years you were the foundation of all my achievements, someone who was always there for me. You shared with me all the great moments and all the fears which I was struggling with. For that, I’m infinitely thankful. I wish you all the happiness in the world.

My dear mother Snežana, my dear grandparents Mira and Miodrag, there are no words to describe how truly grateful I am for all your absolute love, support and dedication you invested in me. You always believed in me, you were always pushing me forward, even when I doubted myself. You taught me the true values which one individual should have and should fight for. Everything I have become, I owe to you. Volim vas beskrajno.
PERSONAL DATA
Date and place of birth 27 February 1984, Bor, Serbia
Nationality Serbian

PROFILE
Five years of academic research in the field of vascular biology and vascular diseases with a main focus on atherosclerosis and aneurysm formation. As a Postdoc, spotlight of the research is to explore the role of immune response in pathology of vascular diseases with a main focus on monocyte characterization.

PROFESSIONAL EXPERIENCE
Postdoc. scientist At the Dept. of Immunology, Weizmann Institute of Science

Ph.D. student at the Dept. of Medical Biochemistry, Academic Medical Center
Topic: “Pharmacological approach in treatment of aortic abdominal aneurysms”

Researcher at the Dept. of Human and Medical Genetics, Institute of Mental Health
Prenatal screening and diagnostics of genetic aberrations (funded by Serbian Ministry of Health care)

M.Sc. at Faculty of Biology, Dept. of Microbiology and Immunology, University of Belgrade
Thesis work at Faculty of Medicine, Institute for Microbiology and Immunology, University of Belgrade
Topic: “Molecular characterization of new Human papillomavirus (HPV) genotypes”

Research assistant at Petnica Science Center

Teaching assistant at Faculty of Biology
EDUCATION

Ph.D. study at the Academic Medical Center
Thesis defense expected: beginning of 2014

Bachelor/Master of Science at the Faculty of Biology
Average grade: 8.8/10, Diploma thesis and exam grade: 10/10

PUBLICATIONS & AWARDS

- Marinković G, Heemskerk N, van Buul JD, de Waard V. The ins and outs of small GTPase Rac1 in vasculature. Manuscript in submission
- Marinković G, de Vries CJ, Delgado Oabarriaga S, de Waard V, Bleijlevens B. Docking of the GTP-metabolites of immunosuppressive drug azathioprine reveals an inhibitory Rac1 binding site. Manuscript in submission
- Ruiter MS, van Tiel CM, Doornbos A, Marinković G, Strang A, Attevelt NJM, de Waard V, de Winter RJ, Steendam R, de Vries CJ. Stents eluting 6-mercaptopurine reduce neointima formation and inflammation while enhancing strut coverage in rabbits. Manuscript in submission
- “Azathioprine Is Protective in Aneurysm Formation and Progression”; Won “ATVB Travel Awards for Young Investigators” at Atherosclerosis, Thrombosis and Vascular Biology conference in Chicago, USA, 2012
REFERENCES

Prof. Dr. Carlie de Vries, Group Leader within Dept. of Medical Biochemistry
Academic Medical Center, Amsterdam, The Netherlands; c.j.devries@amc.uva.nl Tel: +31(0)20 566 5152

Dr. Vivian de Waard, Dept. of Medical Biochemistry
Academic Medical Center, Amsterdam, The Netherlands; v.dewaard@amc.uva.nl Tel: +31(0)20 566 5129