Understanding losses in halide perovskite thin films
Adhyaksa, G.W.P.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Semiconductors have become an inseparable part of our 21st century society. We find them in the heart of every microprocessor chip, transistor, light-emitting diode (LED), and photovoltaic (PV). Ground breaking experiments on silicon introduced by Shockley, Bardeen, and Brattain (1956 Nobel prize in Physics) provided the basic of our current understanding on semiconductors. Decades later, the studies of gallium nitride growth for LEDs by Akasaki, Amano, and Nakamura (2014 Nobel prize in Physics) have expanded our knowledge connecting electronics and light sciences. Halide perovskites have emerged recently as an elite class of semiconductors finding applications in PV, even though many fundamental questions still remain unanswered. This thesis is a first step to systematically contribute to answering such questions. We identify and disentangle inherent sources of losses which can explain the mysteriously long lifetime and record efficiency achieved in this semiconductor, and furthermore we demonstrate a novel architecture promising even better performing PVs.
UNDERSTANDING LOSSES IN HALIDE PEROVSKITE THIN FILMS
Front cover: wide-field photoluminescence experiment and unveiled CH$_3$NH$_3$PbBr$_3$ true grains with amorphous boundaries.

Back cover: Kikuchi patterns of CH$_3$NH$_3$PbI$_3$; a first successful step ever toward mapping the true grains (back cover).

Ph.D. thesis University of Amsterdam, Mei 2018
Understanding losses in halide perovskite thin films
Gede Widia Pratama Adhyaksa

A digital version of this thesis can be downloaded from http://www.amolf.nl.
UNDERSTANDING LOSSES IN HALIDE
PEROVSKITE THIN FILMS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. K. I. J. Maex
ten overstaan van een door het college voor promoties
ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel
op dinsdag 22 mei 2018, te 10:00 uur

door

Gede Widia Pratama Adhyaksa

geboren te Denpasar, Indonesië
Promotor: prof. dr. E. C. Garnett (Universiteit van Amsterdam)

Copromotor: prof. dr. A. Polman (Universiteit van Amsterdam)

Overige leden: prof. dr. R. A. J. Janssen (Technische Universiteit Eindhoven)
prof. dr. L. J. A. Koster (Rijksuniversiteit Groningen)
prof. dr. M. S. Golden (Universiteit van Amsterdam)
prof. dr. W. C. Sinke (Universiteit van Amsterdam)
dr. R. M. Williams (Universiteit van Amsterdam)

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The work described in this thesis is part of the research program of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) and is financially supported mainly by the European Research Council (ERC) under the European Union’s Seventh Framework Programme (EP/2007-2013)/ERC Grant 337328 "NanoEnabledPV, and partly by an Industrial Partnership Programme between FOM and Phillips, and additionally by TKI Urban Energy, "COMPASS" Project (TEID215022).

This work was carried out at the Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands, where a limited number of copies of this dissertation are available.
Contents

1 Introduction and General Principles 9
 1.1 Halide perovskite thin-films 9
 1.1.1 Crystal structures 10
 1.1.2 Methods of deposition 11
 1.1.3 Optical properties 13
 1.1.4 Electrical properties 14
 1.2 Sources of losses 15
 1.2.1 Bulk recombination 15
 1.2.2 Surface recombination 16
 1.2.3 Grain boundary recombination 17
 1.3 Methodology for identifying losses 17
 1.3.1 Modelling can tell everything about solar cells 18
 1.3.2 Results are only as accurate as the input and assumptions 19
 1.3.3 What are required for reliable inputs ? 19
 1.4 Outline of this thesis 20
References 22

2 Carrier Diffusion Lengths in Halide Perovskites 27
 2.1 Introduction 27
 2.2 Setup 28
 2.3 Processing effect 30
 2.4 Compositional and aging effects 32
 2.5 Surface passivation effect 34
 2.6 Conclusions 34
 2.7 Outlook and data validation 36
 2.8 Supporting information 36
 2.8.1 Sample preparation 36
 2.8.2 Atomic layer deposition (ALD) 38
 2.8.3 Laser grating setup 38
 2.8.4 Estimating crystallite size using X-ray diffraction analysis 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.1</td>
<td>Optical modelling</td>
<td>110</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Electrical modelling</td>
<td>115</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Tunnel junction for 3-T (IBC) tandem</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Samenvatting</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Ringkasan</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>List of publications</td>
<td>142</td>
</tr>
</tbody>
</table>