Towards the architectures of macromolecules: Modeling of multi-dimensional polymer chain distributions
Yaghini, N.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
TOWARDS THE ARCHITECTURES OF MACROMOLECULES
Modeling of Multi-Dimensional Polymer Chain Distributions

NAZILA YAGHINI
TOWARDS THE ARCHITECTURES OF MACROMOLECULES
MODELING OF MULTI-DIMENSIONAL POLYMER CHAIN DISTRIBUTIONS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus prof. dr. D.C. van den Boom
ten overstaan van een door het College voor Promoties ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op dinsdag 24 maart 2015, te 14:00 uur

door

Nazila Yaghini
geboren te Tabriz, Iran
Promotiecommissie

Promotor: Prof. dr. P. D. Iedema
Co-promotor: Prof. dr. P. G. Bolhuis
Overige leden: Prof. dr. E. J. Meijer
Prof. dr. J. Meuldijk
Prof. dr. J. J. M. Slot
Prof. dr. G. Storti
Dr. K. Keune
Dr. W. T. Kok
Dr. J. Vreede

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The research presented in this thesis was carried out at the Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam with the financial support from Marie Curie Actions (initial training network, Nanopoly PITN-GA-2009-238700) and Dutch Polymer Institute, P.O.Box 902, 5600 AX Eindhoven, project # 674.
Contents

1 Introduction 1

1.1 Decisive mechanisms and issues 1
 1.1.1 Degree of branching 1
 1.1.2 Random scission 2
 1.1.3 Combination termination 3
 1.1.4 Multiradicals 4
 1.1.5 Gelation 4
 1.1.6 Tubular reactor versus continuous stirred tank reactor 5

1.2 Methods 5
 1.2.1 Population balance modeling 5
 1.2.2 The Galerkin method 6
 1.2.3 Pseudo distributions approach 6
 1.2.4 Monte Carlo simulations 6
 1.2.5 Multidimensional population balances 7

1.3 Aims and outline 7

2 Modeling of ldPE molecular weight/branching distributions; topological scission and combination termination 9

2.1 Introduction 9

2.2 Reaction equations 10

2.3 Linear scission versus topological scission 11

2.4 Population balance equations 12

2.5 MWD modeling and the Galerkin method 15
 2.5.1 Description of the Galerkin method 15
 2.5.2 Mathematical modeling of ldPE molecular weight distribution with Galerkin-FEM 17
 2.5.3 Implementation of topological scission using a sharp fragment length distribution; FLD 21
 2.5.4 Implementation of combination termination 23
 2.5.4.1 Procedure to compute the convolution term and grid refinement 23
 2.5.4.2 Addressing the non-linearity due to combination termination 25
 2.5.5 Implementation of branching pseudo-distribution approach 26

2.6 Kinetic data and parameter setting 26

2.7 Monte Carlo sampling procedure 26

2.8 Results 30
 2.8.1 Comparison to previous model 30
 2.8.2 Comparison to Monte Carlo simulations 33
 2.8.3 Comparison to experimental data from SEC-MALLS 35

2.9 Conclusions 36

3 Modeling of molecular weight/branching distributions; under gel condition and allowing for multiradicals 37

3.1 Introduction 37
3.2 Multiradical pseudo-distribution model with linear and topological scission
 3.2.1 Formulation of reaction and population balance equations
 3.2.2 Validity of the model in the gel regime
 3.2.3 Model implementation
 3.2.4 Monte Carlo simulations

3.3 Results
 3.3.1 Termination by disproportionation only
 3.3.1.1 Effect of scission
 3.3.1.2 Role of multiradicals
 3.3.1.3 Bimodal distributions from multiradical model
 3.3.1.4 Behavior at higher scission rates
 3.3.2 Termination by combination and disproportionation, no scission
 3.3.2.1 Behavior in sol and gel regime
 3.3.2.2 Assuming absence of gel
 3.3.3 Termination by combination and disproportionation, scission effect
 3.3.3.1 Topological scission
 3.3.3.2 Linear scission

3.4 Conclusions

4 Modeling of molecular weight/branching distributions; series of continuous stirred tank reactors versus tubular reactor
 4.1 Introduction
 4.2. Reaction mechanisms and population balance equations (BPEs)
 4.2.1 Reaction equations
 4.2.2 Population balance model
 4.2.2.1 Multiradical model
 4.2.2.2 Numerical implementation
 4.2.2.2.1 Galerkin-FEM scheme
 4.2.2.2.2 Implementation of series of CSTRs
 4.2.2.2.3 Weighting procedure
 4.2.2.2.4 Numerical implementation of series of CSTRs
 4.2.3 Monte Carlo simulations
 4.3 Reactor configuration and kinetic data
 4.3.1 Sources of kinetic data
 4.3.2 Various reactor configurations
 4.4 Results
 4.4.1 Outline
 4.4.2 Various reactor configurations under different kinetic conditions
 4.4.2.1 Disproportionation only, no scission
 4.4.2.2 Disproportionation only, topological and linear scission
 4.4.2.3 Combination termination, no scission
 4.4.2.4 Combination termination, with topological scission
 4.4.3 More realistic reactor configurations for ldPE
 4.4.3.1 Autoclave reactor simulated as series of 4 CSTRs
4.4.3.2 Non-isothermal tubular reactor under realistic conditions

81

4.5 Conclusions

83

5 Branching determination from radius of gyration contraction factor

85

5.1 Introduction

85

5.2 Zimm and Stockmayer revisited

86

5.3 Radius of gyration distribution for terminal branching

88

5.4 Radius of gyration contraction factor dependent on kinetics

90

- 5.4.1 Reaction and population balance equations, various distributions
- 90
- 5.4.2 Generating architectures by conditional Monte Carlo sampling
- 92
- 5.4.2.1 The algorithm to generate architectures and branching determination
- 92
- 5.4.2.1.1 Outline of the algorithm
- 92
- 5.4.2.1.2 Probability density functions
- 94

5.5 Determination of radius of gyration using graph theory

96

5.6 Results

98

- 5.6.1 Comparison kinetic-based to terminal branching-based contraction factors
- 99
- 5.6.2 Effect of termination mode on radius of gyration contraction factor
- 100
- 5.6.3 Consequences for interpreting measured contraction factors
- 103
- 5.6.4 Computational considerations
- 103

5.7 Conclusions

104

6 Modeling of full 2D molecular weight/distribution; 2D topological scission

106

6.1 Introduction

106

6.2 Two-dimensional population balance equations

107

- 6.2.1 Scission aspects
- 107
- 6.2.1.1 Linear and topological scission
- 107
- 6.2.1.2 2-dimensional branch points redistribution on scission fragments
- 109

6.3 The 2D Galerkin method

111

- 6.3.1 Galerkin representation
- 112
- 6.3.2 Implementation of the bivariate ldPE molecular weight/branching distribution into a 2D Galerkin-FEM scheme
- 114
- 6.3.3 Transformation by expansion into 2D Chebyshev polynomials
- 115
- 6.3.4 Gauss quadrature operation in two dimension
- 115
- 6.3.5 An example for propagation terms
- 122
- 6.3.6 Structure of the two-dimensional A-matrix
- 125
- 6.3.7 Implementation of topological scission by 2D fragment length distribution functions
- 127

6.4 Results

128

- 6.4.1 Choice of numbers of intervals and nodes in relation to accuracy
- 129
- 6.4.2 Branching distribution
- 130
- 6.4.3 Results in 2D
- 131
 - 6.4.3.1 No scission, no combination
 - 131
 - 6.4.3.2 No combination, linear and topological scission
 - 132
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5 Conclusions</td>
<td>135</td>
</tr>
<tr>
<td>7 Modeling of 3D molecular weight/branching distribution; combination termination</td>
<td>137</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>137</td>
</tr>
<tr>
<td>7.2 Reaction and Population balance equations in full 3 dimensions</td>
<td>138</td>
</tr>
<tr>
<td>7.2.1 Reaction equations and 3D formulation</td>
<td>138</td>
</tr>
<tr>
<td>7.2.2 3D pseudo distributions of combination points distribution-moments</td>
<td>139</td>
</tr>
<tr>
<td>7.2.3 Zeroth CPD-moment: CLD/DBD-balances</td>
<td>140</td>
</tr>
<tr>
<td>7.2.4 First and second CPD-moments</td>
<td>141</td>
</tr>
<tr>
<td>7.2.5 Model validation in the gel regime</td>
<td>142</td>
</tr>
<tr>
<td>7.3 The 2D Galerkin method and modeling molecular weight/branching distribution</td>
<td>143</td>
</tr>
<tr>
<td>7.3.1 Galerkin method</td>
<td>143</td>
</tr>
<tr>
<td>7.3.2 Convolution procedure in two dimensions</td>
<td>144</td>
</tr>
<tr>
<td>7.3.2.1 Principle of treating convolution in Galerkin scheme</td>
<td>144</td>
</tr>
<tr>
<td>7.3.2.2 Extension of convolution algorithm to 2 dimensions</td>
<td>146</td>
</tr>
<tr>
<td>7.3.2.3 Saving of storage requirement in convolution procedure</td>
<td>146</td>
</tr>
<tr>
<td>7.3.3 Implementation of combination points pseudo distribution approach</td>
<td>148</td>
</tr>
<tr>
<td>7.4 Results</td>
<td>149</td>
</tr>
<tr>
<td>7.4.1 2D model without and with gel formation</td>
<td>149</td>
</tr>
<tr>
<td>7.4.2 2D model with combination points pseudo distribution approach</td>
<td>151</td>
</tr>
<tr>
<td>7.5 Conclusions</td>
<td>154</td>
</tr>
<tr>
<td>Bibliography</td>
<td>156</td>
</tr>
<tr>
<td>Appendix</td>
<td>162</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>166</td>
</tr>
<tr>
<td>Summary</td>
<td>167</td>
</tr>
<tr>
<td>Samenvatting</td>
<td>170</td>
</tr>
<tr>
<td>Publications</td>
<td>174</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>175</td>
</tr>
</tbody>
</table>