Adhesion GPCRs CD97 and GPR56: From structural regulation to cellular function

Hsiao, C.-C.

Publication date
2015

Document Version
Final published version

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Adhesion GPCRs CD97 and GPR56: From structure regulation to cellular function

Cheng-Chih Hsiao

Cells correspond with their environment through receptors that translate extracellular signals into intracellular messages. Members of the large superfamily of G protein-coupled receptors (GPCRs) control various physiological functions and have been implicated in numerous diseases. Adhesion GPCRs are noncanonical GPCRs with a bipartite structure that results from an autocatalytic cleavage event. The design of adhesion GPCRs and their ability to interact with matricellular molecules have raised questions regarding their mechanism of activation and molecular functions. This thesis focuses on the mechanism and implications of autoproteolysis as well as on the functions of adhesion GPCRs CD97 and GPR56. We show that N-glycosylation affects autoproteolysis in CD97 and demonstrate that autoproteolytic cleavage is necessary for CD97 to perform cellular functions in cell aggregation, adhesion, migration, tumorigenesis, and apoptosis. A second part of the thesis indicates molecular mechanisms by which GPR56 mutations cause a cortical malformation, known as bilateral frontoparietal polymicrogyria, and describes a novel role of GPR56 in immunity. We obtained evidence that GPR56 in human natural killer cells is induced by the transcription factor Hobit, inhibits immediate effector functions by associating with the tetrspanin CD81, and declines upon cellular activation. GPCRs are known for the excellent duggability; about 50% of all modern therapeutic drugs target GPCRs and, obviously, adhesion GPCRs, like CD97 and GPR56, hold promises for the development of novel intervention strategies.
Adhesion GPCRs CD97 and GPR56:
From structural regulation to cellular function

Cheng-Chih Hsiao
The printing of this thesis was financially supported by:
Academic Medical Center
BD Biosciences
Miss I-Shan Shih
BIOTOOLS CO LTD
Layout and printing: Off Page (www.offpage.nl)
Cover design: Daisy
Copyright © 2015 by C.C.Hsiao. All rights reserved.
No part of this thesis may be reproduced or transmitted in any form
or by any means without permission of the author or the publishers of
the included scientific papers.
Adhesion GPCRs CD97 and GPR56:
From structural regulation to cellular function

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom
ten overstaan van een door het College voor Promoties ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel
op donderdag 25 juni 2015, te 12:00 uur

door

Cheng-Chih Hsiao
geboren te Chia-Yi, Taiwan
Promotiecommissie

<table>
<thead>
<tr>
<th>Promotor:</th>
<th>Prof. dr. R.A.W. van Lier</th>
<th>Universiteit van Amsterdam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copromotores:</td>
<td>Dr. J. Hamann</td>
<td>Universiteit van Amsterdam</td>
</tr>
<tr>
<td></td>
<td>Prof. dr. H.H. Lin</td>
<td>Chang Gung University, Taiwan</td>
</tr>
<tr>
<td>Overige leden:</td>
<td>Prof. dr. T.B.H. Geijtenbeek</td>
<td>Universiteit van Amsterdam</td>
</tr>
<tr>
<td></td>
<td>Prof. dr. E.F. Eldering</td>
<td>Universiteit van Amsterdam</td>
</tr>
<tr>
<td></td>
<td>Prof. dr. L. Meyaard</td>
<td>Universiteit Utrecht</td>
</tr>
<tr>
<td></td>
<td>Prof. dr. M.J. Smit</td>
<td>Vrije Universiteit Amsterdam</td>
</tr>
<tr>
<td></td>
<td>Dr. M. Spaargaren</td>
<td>Universiteit van Amsterdam</td>
</tr>
<tr>
<td></td>
<td>Dr. T. Langenhan</td>
<td>Universität Würzburg, Germany</td>
</tr>
</tbody>
</table>

Faculteit der Geneeskunde
Contents

Chapter 1 Introduction 7

Published in part in Wikipedia

Chapter 2 Site-specific N-glycosylation regulates the GPS auto-proteolysis of CD97

Chapter 3 GPS autoproteolysis is required for CD97 to up-regulate the expression of N-cadherin that promotes homotypic cell–cell aggregation

Chapter 4 CD97 inhibits cell migration in human fibrosarcoma cells by modulating TIMP-2/MT1-MMP/MMP-2 activity – role of GPS autoproteolysis and functional cooperation between the N- and C-terminal fragments

FEBS J. 2014 Nov;281(21):4878-91

Chapter 5 The Adhesion GPCR CD97 inhibits apoptosis

Submitted for publication

Chapter 6 Disease-associated GPR56 mutations cause bilateral frontoparietal polymicrogyria via multiple mechanisms

J Biol Chem. 2011 Apr 22;286(16):14215-25

Chapter 7 The adhesion G protein-coupled receptor GPR56 is a differentiation marker and inhibitory receptor on human NK cells

Submitted for publication

Chapter 8 Discussion 149

Appendix English summary 163
Nederlandse samenvatting 167
Abbreviations 171
Acknowledgments 173
List of publications 175
PhD Portfolio -Summary of PhD training 177
Curriculum Vitae 179