Regulation of Cardiac Form and Function
small RNAs and large hearts

W.J. Wijnen
Regulation of cardiac form and function
small RNAs and large hearts

Winandus Johannes Wijnen
The research described in this thesis was performed at the Heart Failure Research Center (HFRC) of the Academic Medical Center, Amsterdam, the Netherlands.

Printing of this thesis was financially supported by the University of Amsterdam and Perkin-Elmer. Financial support by the Dutch Heart Foundation for the printing of this thesis is gratefully acknowledged. The research described in this thesis was supported by a grant of the Dutch Heart Foundation (NHS2007-B167). Research in this thesis was performed as part of the CTMM TRIUMPH project and in collaboration with ICIN.

Copyright © 2015 by W.J. Wijnen. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the author.
Regulation of Cardiac Form and Function
small RNAs and large hearts

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom
ten overstaan van een door het College voor Promoties
ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel
op donderdag 21 mei 2015, te 10:00 uur

door

Winandus Johannes Wijnen

geboren te Gulpen
Promotiecommissie

Promotor: prof. dr. Y.M. Pinto
Co-promotor: dr. E.E.J.M. Creemers

Overige leden: prof. dr. C.J.F. van Noorden
prof. dr. V.M. Christoffels
prof. dr. M.P.J. de Winther
prof. dr. D.J.G.M. Duncker
prof. dr. J. van der Velden
dr. S.M. Houten

Faculteit der Geneeskunde
To the past, on which we build
Table of contents

Preface 11

Chapter 1 Introduction 13

Chapter 2 Hypertrophy of cultured neonatal rat cardiomyocytes 25

Chapter 3 A high-content siRNA screen for the identification of regulators of cardiomyocyte hypertrophy 39

Chapter 4 The therapeutic potential of miRNAs in cardiac fibrosis; where do we stand? 59

Chapter 5 Decreased miRNA-30c expression does not affect cardiac remodelling 75

Chapter 6 Cardiomyocyte-specific miRNA30c over-expression causes dilated cardiomyopathy 93

Chapter 7 Discussion 115

Addendum 127

Summary 128
Samenvatting 130
Riassunto 132
Dankwoord 134
Curriculum Vitae 136
List of publications 137
Preface

Investments in life science research hold the promise to improve disease treatment and preventive care, thereby increasing general health levels and life expectancy. A deeper understanding of the general and specific biological processes that underlie cellular (patho)physiology has already proven beneficial in the prevention and treatment of many, previously deadly, diseases. Sanitary improvements, vaccination, antibiotics and the cardiac pacemaker are among the abundant examples where insights in the disease mechanisms led to the reduction or eradication of previously common diseases. Consequently, this has resulted in a shift of the causes of mortality in the developed world from infectious diseases and acute events to more chronic diseases. Currently, the main causes of morbidity and mortality are represented by cancer, type II diabetes and chronic cardiovascular diseases like atherosclerosis, hypertension and heart failure. With increasing life expectancies and an ageing population, the need for treatment of these chronic diseases is increasing.

In the Netherlands cardiovascular diseases rank second among the general causes of mortality. As a whole its incidence has been decreasing over the period from 1991-2013 (1, 2). This decrease in mortality is however mainly due to better treatment of acute cardiovascular events and masks the shift towards chronic heart disease like heart failure (2). The ageing population also puts more people at risk to develop heart failure. Chronic cardiovascular disease and heart failure in particular therefore pose an increasing socio-economic burden to society, making prevention and treatment top priorities for research.

The research described in this thesis aims to provide better insights in the molecular biology underlying cardiac disease, and heart failure in particular. Hopefully some of these findings will eventually find their translation into clinical practice and contribute to improve patient care, while others provoke original thoughts that will stimulate additional research.

-------

The doctor provides immediate care for the individual patient
The scientist seeks knowledge to help many in the long run

It is however the synergy between the two that holds the key to successful disease treatment