Diversity and complexity of cardiac sodium channel (dys)function
Rivaud, M.

Link to publication

Citation for published version (APA):
Rivaud, M. (2018). Diversity and complexity of cardiac sodium channel (dys)function: Relevance for arrhythmias in inherited and acquired diseases
Diversity and complexity of cardiac sodium channel (dys)function

relevance for arrhythmias in inherited and acquired diseases

Mathilde Rivaud

Thursday 31 May 2018, 14:00

Agnietenkapel
Ouderzijds Voorburgwal 231
1012 EZ Amsterdam

There will be a reception afterwards

Celebration 20:30 - 00.00
Green Duck
Amsterdamsestraatweg 1
1391 AA Abcoude

Paranimfen
Nicoline Smit
nicolinewsmit@gmail.com
06 43705725

Nina de Groot
n.e.degroot@amc.uva.nl
06 13574720
Diversity and complexity of cardiac sodium channel (dys)function -relevance for arrhythmias in inherited and acquired diseases-

Mathilde Rivaud
© Mathilde Rivaud, 2018
All rights reserved. No part of this thesis may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without permission of the author or the copyright owning journal.

Financial support from the Dutch Heart Foundation for the publication of this thesis is gratefully acknowledged.

Additional generous financial support for the printing of this thesis was kindly provided by Biosemi B.V., Academic Medical Center – University of Amsterdam.
Diversity and complexity of cardiac sodium channel (dys)function - relevance for arrhythmias in inherited and acquired diseases -
The research described in this thesis was supported by a grant of the Dutch Heart Foundation (DHF NHS2010/B201)

Financial support by the Dutch Heart Foundation for the publication of this thesis is gratefully acknowledged
Pour papa et maman
Table of contents

Chapter 1 Introduction and scope of the thesis

Chapter 2 Multifunctionality of the cardiac sodium channel Na\textsubscript{\textit{V}}1.5: from ionic to non-ionic function
\textit{(in preparation)}

Chapter 3 Enhanced late sodium current underlies pro-arrhythmic intracellular sodium and calcium dysregulation in murine sodium channelopathy
\textit{(International Journal of Cardiology, 2018, in press)}

Chapter 4 A common co-morbidity modulates disease expression and treatment efficacy in inherited cardiac sodium channelopathy
\textit{(European Heart Journal, 2018, in press)}

Chapter 5 Modulation of atrio-ventricular conduction by enhanced late sodium current and calcium-dependent signaling in \textit{Scn5a\textsubscript{1798insD/+}} mice
\textit{(in preparation)}

Chapter 6 Sodium channel remodeling in subcellular microdomains of murine failing cardiomyocytes
\textit{(Journal of the American Heart Association, 2017;6(12))}

Chapter 7 Misinterpretation of the mouse ECG: 'Musing the waves of \textit{mus musculus}'
\textit{(Journal of Physiology, 2014;592(21)4613-26)}

Chapter 8 General discussion and future perspectives

Chapter 9 Summary
Samenvatting
Résumé

Appendix About the author
List of publications
PhD Portfolio
Contributing authors
Acknowledgements