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Abstract: Several prominent neurocomputational models predict that an increase of choice alternatives is
modulated by increased activity in the subthalamic nucleus (STN). In turn, increased STN activity allows
prolonged accumulation of information. At the same time, areas in the medial frontal cortex such as the ante-
rior cingulate cortex (ACC) and the pre-SMA are hypothesized to influence the information processing in
the STN. This study set out to test concrete predictions of STN activity in multiple-alternative decision-mak-
ing using a multimodal combination of 7 Tesla structural and functional Magnetic Resonance Imaging, and
ancestral graph (AG) modeling. The results are in line with the predictions in that increased STN activity
was found with an increasing amount of choice alternatives. In addition, our study shows that activity in the
ACC is correlated with activity in the STN without directly modulating it. This result sheds new light on the
information processing streams between medial frontal cortex and the basal ganglia. Hum Brain Mapp
36:4041–4052, 2015. VC 2015 Wiley Periodicals, Inc.

Key words: decision-making; basal ganglia; computational modeling; ultrahigh field magnetic reso-
nance imaging; functional magnetic resonance imaging; diffusion weighted imaging
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INTRODUCTION

Decision-making is ubiquitous in everyday life, and has
attracted much attention in the empirical and neurocomputa-
tional neurosciences [Forstmann et al., 2008; Gold and Shad-
len, 2007; Ho et al., 2009]. However, many studies focus on
two-alternative forced-choice decision-making tasks, limiting
the ecological validity of these studies [Churchland et al., 2008;
Churchland and Ditterich, 2012]. To address this issue, recent
animal studies have adapted the frequently used binary-
choice random dot motion (RDM) paradigm by increasing the
number of alternatives, showing that an increase in choice
options prolonged the accumulation of evidence [Churchland
et al., 2008]. To incorporate such results in the theoretical
framework of decision-making, quantitative mathematical and
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neurocomputational models have been developed that make
predictions about the latent psychological processes and brain
structures involved in multiple-choice decision-making
[Bogacz and Gurney, 2007; Bogacz et al., 2007; Chau et al.,
2014; Churchland et al., 2008; Frank, 2006; van Maanen et al.,
2012]. Several of these models focus on information processing
in the basal ganglia (BG), and describe the computations of its
different structures, including the STN. Despite its small size,
the STN is thought to play an important role in action selection
due to its unique anatomical position. The STN neurons pro-
ject to inhibitory neurons in the output nuclei of the BG, and
thus STN activity effectively inhibits movements. Further-
more, individual STN neurons project to a wide range of the
output nuclei neurons[Parent, 1995] and thus the individual
STN neurons are thought to contribute to inhibiting multiple
motor plans [Gurney et al., 2001].

The function of the STN has been the subject of several
hypotheses. First, it has been proposed that while one
action is being selected, the STN inhibits all actions. As
only the activity of neurons representing the winning
action can overcome the STN inhibition, the STN activity
results in “surround inhibition” of the other actions [Mink,
1996]. Second, it has been suggested that when conflicting
information is present that supports more than one choice,
STN neurons selective for all the supported choices
become active. This result in an increase in inhibition of
all actions, which postpones movement initiation until the
conflict has been resolved [Frank, 2006]. As predicted by
this theory, using deep brain stimulation, it has been dem-
onstrated that the STN responds to conflict and that this is
reflected in an increased response threshold [Cavanagh
et al., 2011; Coulthard et al., 2012; Frank et al., 2007; Green
et al., 2013; Zavala et al., 2014]. Third, it has been sug-
gested that activity in the BG approximates a decision pro-
cedure, known as the Multiple Sequential Probability Ratio
Test (MSPRT) [Baum and Veeravalli, 1994], and computes
the probabilities that different actions will be appropriate
according to Bayes’ theorem [Bogacz and Gurney, 2007].
This model suggests that the STN effectively computes the
normalization term in Bayes’ theorem, which ensures that
probabilities of all actions add up to 1. In this model, the
STN fulfills the functions assigned to it by the surround
inhibition and conflict theories. When the probability of
one action increases, the STN ensures that the probabilities
of other actions decrease (to maintain a sum of 1). Further-
more, when two actions receive equal support, the STN
ensures that their probabilities do not exceed 0.5, so that
neither of the action probabilities can exceed a higher
threshold of confidence until the conflict is resolved.

Each of the above theories predicts that STN activity
during decision-making should increase with the number
of choice alternatives. With more alternatives competing
for selection, more STN neurons will be selective for these
alternatives, inhibiting other options; there will be higher
conflict and a prolonged need for movement inhibition
until the conflict is resolved; and there will be a need for

more extensive normalization of action probabilities. Here,
by simulating the MSPRT model we generated predictions
on how the activity in the STN and the observed behavior
respond to the number of choice alternatives in a multiple-
choice RDM task. These MSPRT predictions were then
tested by acquiring 7Tesla (T) functional Magnetic Reso-
nance Imaging (MRI) data while 15 participants complete
a multiple-choice decision-making RDM task with three,
five or seven alternatives (see Fig. 1).

The information processing in the BG is thought to be
modulated by areas such as the pre-supplementary motor
area (pre-SMA) and the ACC. These two structures are
known to be involved in perceptual decision-making
[Keuken et al., 2014b; Ridderinkhof et al., 2004] and are
anatomically connected to the STN [Keuken et al., 2012;
Lambert et al., 2012]. Previous work has shown that the
pre-SMA modulates the response threshold [Forstmann
et al., 2008], while the ACC is implicated in switching
between response regimes [vanMaanen et al., 2011]. Tak-
ing these anatomical and functional findings into account,
these two areas may have an important modulatory role
on the STN activation in multiple-choice decision-making.

This study also addressed a question of the directionality of
the connection between cortical and subcortical areas. More
specifically, we tested the functional and effective connectiv-
ity between the pre-SMA, ACC, and STN during decision-
making using a novel multimodal combination of 7T struc-
tural and functional MRI, Diffusion Weighted Imaging (DWI)
data, and AG modeling [Waldorp et al., 2011] (see Fig. 1A).
AG is a type of graphical modeling that enables the testing of
the presence and nature of functional and effective connec-
tions between nodes or regions of interest (ROI).

EXPERIMENTAL PROCEDURES

Participants

Fifteen healthy participants (nine female, mean age 5 23.7,
SD age 5 1.58) were scanned. All participants had normal or
corrected to normal vision and no history of neurological or
psychological disorders. All participants were right-handed,
as confirmed by the Edinburgh Inventory [Oldfield, 1971].
The study was approved by the local ethical committee of the
Max Planck Institute for Human Brain and Cognitive Sciences
in Leipzig. All participants gave written informed consent
and received a monetary reward for their participation.

General Procedure

The experimental session lasted for two hours, during
which the participant underwent a behavioral session and
a session in a 7T MRI scanner. The behavioral sessions
consisted of a calibration procedure to determine the indi-
vidual subjects’ sensitivity to the random-dot motion stim-
ulus. This entailed a binary choice random-dot motion
task where the coherence was varied between 0, 10, 20, 40,
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and 80%. The calibration procedure started with a practice
block of 20 trials to ensure that the participant understood
the task and got familiar with using a joystick. The actual
calibration task was similar to the practice block but incor-
porated more trials, that is, 400 trials in total, resulting in
80 trials per coherence level.

After the calibration task, the participants performed
one short practice block of 54 trials of the multiple-choice
random-dot motion task. Once this was completed, the
participant was placed in the scanner and the practice
block was repeated to familiarize with the scanner compat-

ible joystick, which was different than the joystick used in
the calibration session. Finally, the participant started with
the actual experiment, which consisted of two blocks of
100 trials each.

Random-Dot Motion Paradigm

The stimuli were displayed using Presentation (version
16.1) and consisted of white dots on a black background
with a size of 3 3 3 pixels. The dots moved within a circle
with a diameter that reflected a visual angle of 58, with a

Figure 1.

The analysis pipeline and methods. (A) Using individually seg-

mented STN masks as a ROI in a standard fMRI analysis the ques-

tion is addressed whether the STN is involved in multiple-

alternative choice decision-making. To answer the question

whether the pre-SMA or ACC modulate the activity in the STN

the BOLD signal is extracted per trial in the three ROI’s. Using

DWI tractography only the voxels that are probabilistically con-

nected between the pre-SMA or ACC and STN are selected. (B)

The level of coherently moving dots was determined per individ-

ual. This was done by interpolating from the psychometric curve

produced by the proportional-rate diffusion and selecting the

coherency level that was associated with 85% accuracy. (C) Each

trial lasted for nine seconds. The duration of the fixation dot was

jittered and varied between 500, 1,000, and 1,500 ms. The cue

was always valid and the locations of the targets did not vary

within or between subjects. A response was considered correct if

the final location of the joystick was within 208 of the correct tar-

get. If the response was outside of this window the response was

considered incorrect. The participants were aware of this

response window and were instructed to respond as fast and as

accurate as possible. Seven percent of the trials were neutral trials

in which a fixation dot was displayed for 9 s.
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speed of 58/s. The overall dot density was 16.7 dots/
deg2/s. On the first three frames of the motion stimulus,
the dots were located in random positions. For each of
these frames, the dots were repositioned after two subse-
quent frames. The dots were generated in a similar man-
ner as the Variable Coherence Random-Dot Motion library
(www.shadlen.org/Code/VCRDM). The participant was
instructed to move a joystick toward one of the targets to
which the direction of motion was perceived. For the
binary calibration session two targets were placed at the
left and right side of the cloud of dots. For the multiple-
choice decision-making task, there were three, five, and
seven targets equally spaced around the moving dot
cloud. The locations of the targets did not vary within or
between subjects. A response was considered correct if the
final location of the joystick was within 208 of the correct
target. This response window was equal for the two, three,
five, or seven choice alternatives and assured that any dif-
ference in response time or accuracy between the choice
alternatives was not due to motor response difficulty. If
the response was outside of this window, the response
was considered incorrect. The participants were made
aware of this response window and were instructed to
respond as fast and as accurate as possible.

Calibration Coherence Level

Using the proportional-rate diffusion model, the level of
coherence was determined for each individual separately
at a level that corresponded to an accuracy level of 85%
correct for two alternatives [Palmer et al., 2005]. This
coherence level was determined by interpolating from the
psychometric curve produced by the proportional-rate dif-
fusion model. This value was then used for the ensuing
multiple-choice random-dot motion task in the scanner to
ensure equal task difficulty across participants [Winkel
et al., 2014]. See Figure 1B for an illustration of how the
level of coherence was determined using the psychometric
curve derived from proportional-rate diffusion model fit.
Observing the behavior of the first participant during the
fMRI session it became clear that the determined coher-
ence was too difficult and in line with previous work [van
Maanen et al., in press]; therefore, the individual deter-
mined coherences were multiplied with a factor of 1.3 for
the ensuing participants. For example, if a coherence level
of 10% was determined to correspond to an 85% accuracy
level, a coherence level of 13% was used in the scanner.
This multiplication factor was decided on arbitrarily. Each
trial lasted for 9 s, corresponding to three MR volumes per
trial. If the participant responded within 200 ms of stimu-
lus onset, the participant received “Too Fast” as feedback.
If the participant responded between 1,750 and 2,000 ms,
the participant received “Too Slow” as feedback. If the
participant failed to respond within 2,000 ms, the partici-
pant received “No Response” as feedback. Figure 1C illus-
trates the layout and timing of a single trial.

MRI Data Acquisition

All MRI data were acquired using a whole body 7T
scanner (MAGNETOM, Siemens Medical Solutions, Erlan-
gen, Germany) using a 24 channel head coil (Nova Medi-
cal). All subjects underwent three separate MRI sessions,
one for the structural T1 and T2* weighted anatomical
scans, one session for the DWI scans, and finally a func-
tional MRI session which was preceded by the behavioral
calibration session.

Structural Scans

The structural data that were used to segment the ROI’s
consisted of three sequences: a whole brain MP2RAGE
[Marques et al., 2010]; a zoomed MP2RAGE and a zoomed
FLASH [Haase et al., 1986]. The whole brain MP2RAGE had
240 sagittal slices with an acquisition time of 10:57 min (rep-
etition time (TR) 5 5,000 ms; echo time (TE) 5 2.45 ms;
inversion times TI1/TI2 5 900/2,750 ms; flip angle 5 58/38;
bandwidth 5 250 Hz/Px; voxel size 5 0.7 mm isotropic).
The whole brain MP2RAGE had 240 sagittal slices with an
acquisition time of 10:57 min (repetition time (TR) 5 5,000
ms; echo time (TE) 5 2.45 ms; inversion times TI1/
TI2 5 900/2,750 ms; flip angle 5 58/38; bandwidth 5 250
Hz/Px; voxel size 5 0.7 mm isotropic). The zoomed
MP2RAGE slab consisted of 128 slices with an acquisition
time of 9:07 min (TR 5 5,000 ms; TE 5 3.71 ms; TI1/
TI2 5 900/2,750 ms; flip angle 5 58/38; bandwidth 5 240
Hz/Px; voxel size 5 0.6 mm isotropic) and was acquired to
facilitate the registration of the FLASH image to the whole
brain MP2RAGE. The zoomed FLASH slab consisted of 128
slices with an acquisition time of 17:18 min (TR 5 41 ms and
three different echo times (TE): 11.22/20.39/29.57 ms; flip
angle 5 148; bandwidth 5 160 Hz/Px; voxel size 5 0.5 mm
isotropic). Both of the slab sequences consisted of axial slices
covering the midbrain. All MP2RAGE and FLASH scans are
freely available (http://www.nitrc.org/projects/atag_mri_
scans) [Forstmann et al., 2014].

Diffusion Weighted Imaging

The DWI scans were used to select only those voxels
within the ACC, pre-SMA, and the STN ROI’s which were
connected with one and other according to probabilistic
tractography. The DWI data was acquired using spin-echo
echo planar imaging (EPI) [Heidemann et al., 2010] and
consisted of 100 axial slices with a total acquisition time of
54:16 min (TR 5 11.3 s, TE 5 67 ms, voxel size 5 1.0 mm
isotropic, GRAPPA acceleration factor 5 3, diffusion
weighting was isotropically distributed along 60 direc-
tions, b-value 5 1,000 s/mm2, AV= 4, for each repetition 7
images with no diffusion weighting (b0) was acquired).
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Functional MRI

The fMRI images were acquired using a zoomed Field
of View (FOV) covering a similar FOV as the zoomed ana-
tomical slabs [Heidemann et al., 2012] as previously used[-
Forstmann et al., 2008]. The two EPI runs consisted of 36
slices with an acquisition time of 15:17 min per run (EPI
2D, TR= 3,000 ms, TE= 19 ms. 36 slices, voxel size=
1.5 mm isotropic, phase encoding direction r ! l,
GRAPPA acceleration factor 3. Number of pulses 300,
bandwidth 1,056 Hz/px, echo spacing 1.05 ms, and partial
Fourier 6/8). This was followed by the acquisition of a B0
field map helping to correct geometric distortions due to
inhomogeneity’s in the B0 field. The FOV of the field map
was identical as the FOV for the EPI with an acquisition
time of 4:53 min (TR 5 1,500 ms, DTE 5 1.02 ms, 27 slices,
voxel size 5 2.0 mm isotropic, phase encoding direction
r ! l).

ROI Segmentation for Ancestral Graph Model

The STN segmentation was done on the individual
FLASH images according to the previously described seg-
mentation protocol [Forstmann et al., 2008, 2012; Keuken
et al., 2013, 2014a]. The resulting mean (SD) STN inter-
rater volume was 62.25 (15.19) mm3. The mean (SD)
Cohen’s Kappa was 0.74 (0.09) indicating a good inter-
rater reliability. The pre-SMA was identified using the
coordinates reported by Johansen-Berg et al. [2004]. The
ACC was defined as the gray matter tissue between the
pre-SMA and the Corpus Callosum. The posterior border
of the ACC was based on the posterior border of the pre-
SMA and the anterior border was based on the most ante-
rior part of the Corpus Callosum. This anterior border was
chosen due to the coverage of the zoomed EPI, which for
all participants at least covered the entire anterior part of
the Corpus Callosum. The anterior border excluded the
most frontal and the subgenual part of the ACC. Based on
the functional meta-analysis of the ACC this is not a con-
found as most reported activations relevant for the current
task are in the more posterior region of the ACC which
are included in the ACC mask [Ridderinkhof et al., 2004].
The pre-SMA and the ACC masks were segmented on the
0.4 mm3 MNI template provided by the CBS High-Res
Brain Processing Tools (http://www.cbs.mpg.de/insti-
tute/software/cbs-hrt/index.html). The masks were regis-
tered to the individual whole brain MP2RAGE scan using
a linear 12 DOF automatic registration algorithm imple-
mented in MIPAV. Since both the pre-SMA and ACC
masks are coordinate-based, no inter-rater value was
computed.

Functional MRI Analyses

To investigate whether the STN is involved in multiple-
choice decision-making, single trial betas were acquired by
modeling the data according to the Least Squares-Separate

as proposed by Mumford et al. [2012] (see Jahfari et al.
[2011] for a similar approach). The single trial RT was
used as a coregressor to ensure that any effect found in
the STN was not solely due to differences in motor
response. The fMRI data was B0 unwarped, motion cor-
rected, high-pass filtered at 100 s, and slice-time corrected.
All analyses were done in individual space and a statisti-
cal threshold of P 5 0.01 (uncorrected) was used. To pre-
serve the spatial resolution and anatomical specificity, no
smoothing was applied. Finally, using featquery, the mean
beta of the entire STN ROI was extracted, per hemisphere,
per trial, and used in a linear mixed effect model. All
fMRI analyses were done using FEAT (distributed in FSL
version 5.0.1) and focused on stimulus-locked
presentation.

Functional MRI Single-Trial Analyses

For the AG analysis, the same single trial betas were
used as described above but now the ROI’s also included
the ACC, and the pre-SMA. To select only those voxels in
the STN, ACC, and pre-SMA that were anatomically con-
nected with high probability, the following steps were
computed. First, a single image without diffusion weight-
ing (b 5 0) was extracted from the DWI data and nonbrain
tissue was removed using BET to create a brain-mask
which was used in the subsequent analyses. Second, DTI-
FIT was applied to fit a tensor model at each voxel of the
data. Probabilistic tractography using bedpostx (distrib-
uted in FSL version 5.0.1) and subsequent seed-based clas-
sification were performed using the STN, pre-SMA, and
ACC masks per hemisphere using 5,000 samples, estimat-
ing 2 fibers per voxel, and a curvature threshold of 0.2
[Behrens et al., 2003]. Subsequent classification masks were
thresholded at 50 and were used as a ROI for the AG anal-
ysis. Finally, using featquery and the classification masks
obtained from probabilistic tractography, the average beta
values per probabilistically connected ROI, per trial, and
per subject, were extracted.

MSPRT

Optimal behavior in perceptual decision-making is
defined here as minimizing the mean response time at a
fixed level of accuracy [Draglia et al., 1999; Wald and
Wolfowitz, 1948]. Such behavior is achieved in the MSPRT
model by continuously calculating for each alternative the
posterior probability that that alternative is the correct
answer given the observed stimuli. This can be expressed
with Bayes’ rule, which quantifies the posterior probability
of hypothesis Hi that alternative i is the correct alternative
given the set of motion samples S as the relative likelihood
of the motion (S) under hypothesis Hi compared to the
sum of the likelihoods under all competing hypotheses:
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PðHijSÞ ¼
PðSjHiÞX

j
PðSjHiÞ

:

The posterior probability of each alternative is updated
at each time step until a predetermined response criterion
(h) is surpassed. This determines the moment of choice,
with the choice outcome determined by the highest poste-
rior probability at this time. Changes in the posterior prob-
abilities of each alternative are mediated by two
mechanisms (see also [van Maanen et al., 2012] for a simi-
lar model): (1) The number of alternatives influences the
posterior probabilities of each alternative because the like-
lihood of each alternative is scaled by the sum of likeli-
hoods. (2) The spatial proximity between alternatives
influences the posterior probabilities because spatially
close alternatives receive similar evidence from the
stimulus.

Following Bogacz and Gurney [2007], we implemented
the MSPRT model in a neural network model, to study
how changes in cortical input layers affected STN activa-
tion. For the network to reach a decision, evidence for the
various choice alternatives is required as input. The
MSPRT model assumes that evidence integration takes
place in cortical neural populations that each code for one
choice alternative:

CXi ¼
XT

t¼1
xiðtÞ:

Here we assume a discrete representation of time. At
each time step t in the interval [1,T] an evidence sample is
accumulated that represents the evidence for one choice
alternative (i) at that time (with xiðtÞ � Nðli;riÞ). For
example, in the task described in this article, xi(t) could
indicate a location on a tuning curve in motion sensitive
areas in the brain (e.g., [Jazayeri and Movshon, 2006; van
Maanen et al., 2012]). If motion is perceived that provides
evidence for choice alternative i, then xi(t) is high, yielding
strong evidence accumulation.

The neural network implementation of MSPRT makes a
choice by inverting the signal from the cortical integrators
in inhibitory signals to the output nuclei. This inhibitory
signal is combined with a diffuse excitatory signal from
STN that activates the output nuclei (see [Bogacz and Gur-
ney, 2007; Gurney et al., 2001] for details):

OiðtÞ ¼ 2CXiðtÞ1
X

j

STNjðtÞ

Because the default operation of the output nuclei (O) is
to inhibit possible actions, inhibition of the output nuclei
themselves leads to activation of target structures related
to possible actions. In particular, as soon as the activation
of one of the output nodes falls below a particular thresh-
old, an action is performed (h*, note that this differs from
the threshold h used to set the response criterion for the
posterior probabilities).

Under the assumption that the BG implement the
MSPRT [Draglia et al., 1999], the activation of STN should
be [Bogacz and Gurney, 2007]:

STNðtÞ ¼ ln
X

j
expðCXjðtÞÞ

� �

Thus, the activation of STN at time t is independent of
the choice alternatives, and depends on the strength of the
cortical integrators.

We simulated behavioral responses and STN activation
under the hypothesis that there were N independent corti-
cal integrators. The correct alternative (without loss of gen-
erality, this is referred to as alternative 1) was represented
by a signal taken from a sampling distribution with a
mean l1 5 1. The mean signal in the remaining N – 1 corti-
cal integrators drops with spatial proximity to emulate the
experimental design deployed here (Fig. 1C). Specifically,
the signal of each distractor is determined by the angle to
the correct alternative, using a Von Mises distribution
function [van Maanen et al., 2012]:

f ðuijjÞ ¼
expðjcosðuiÞÞ

2pI0ðjÞ
;

where Io(x) is the modified Bessel function of order 0, j
the precision of the Von Mises function, and ui the angle
between alternative i and the correct alternative. To ensure
that all signals are proportional to the signal of the correct
alternative (�ı1 5 1), the signals are normalized (this also
cancels out the Bessel function):

li6¼1 ¼
expðjcosðuiÞÞ

expðjÞ :

In our simulations, j was set at j 5 0.3, the standard
deviation of all cortical integrators was ri 5 0.25, and the
shared response threshold h* was set at h* 5 0.8.

We performed 50,000 simulated trials with these parame-
ters. In each simulation, we computed the values for CXi

and STN on the time interval [0, 500], and recorded the first
time step when the value of Oi fell below h*. Also, we
recorded which alternative was the first to be below h* (i.e.,
which choice was made, Fig. 2A), and what was the value of
STN at this time step (Fig. 2C). R code implementing this
simulation is available as Supporting Information.

Ancestral Graph Analysis

To investigate whether the pre-SMA and the ACC act as
modulating cortical areas for the STN, AG analysis was
employed. AG is a type of graphical modeling which allows
testing the presence and nature of functional connections
between nodes or ROI’s. We tested AG models with two dif-
ferent types of connections. These connections are undir-
ected and directed. Although the AG model allows for
bilateral connections this was not feasible with the network
configuration that we tested [Waldorp et al., 2011].
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An undirected connection between two nodes reflects
two nodes being functionally correlated but does not cau-
sally influencing each other (represented as the following
connection: A – B). Directed connections between two
nodes reflect two nodes being functionally correlated
while additionally one node causally influences the other
(A ! B) [Jahfari et al., 2011; Waldorp et al., 2011]. These
different connections are determined by testing the likeli-
hood that the distribution of activation values (e.g.,
BOLD) across trials and ROIs is consistent with a distri-
bution with particular conditional dependencies. The AG
analysis allowed us to test whether the STN is function-
ally connected (undirected connection) to the pre-SMA
and ACC and whether these connections are also effec-
tively connected (directed connection) [Waldorp et al.,
2011]. Note that there is no prior preference for a directed
or an undirected graph in the AG method [Pearl, 2000].
This is because directed and undirected segments of the
graph are associated with different properties of the

covariance matrix between the beta distributions of the
three ROIs. To illustrate this, a simulation was run in
which 200 observations were sampled from three nodes
in a network. The simulated network is similar in archi-
tecture to the tested brain network of the ACC, pre-SMA,
and STN. The covariance structure of the observations is
either “random,” “directed,” or “undirected,” and we fit-
ted a directed as well as an undirected AG to these data.
Supporting Information Figure S1 shows the proportion
of simulations in which the undirected model is preferred
versus the standard deviation of the data, averaged over
1,000 simulations. The preference is based on the AIC val-
ues of the directed and undirected models. Supporting
Information Figure S1 illustrates that the models nicely
disambiguate between situations in which the covariance
structure in the data is clear. If there is no covariance in
the data (the “random” data), the AICs are similar, and
the preferred model is not biased toward directed- or
undirectedness.

Figure 2.

The MSPRT predictions and the behavioral and fMRI results. (A)

The MSPRT predictions for the RT and accuracy. (B) The behav-

ioral results that were normalized within subjects and averaged

over the entire group. (C) The MSPRT predictions for the

BOLD signal change in the STN. (D) The mean percent BOLD

signal change in the bilateral STN, normalized within subjects

and averaged over the entire group. The red line corresponds

to the incorrect responses; the green line corresponds to the

correct response. Error bars reflect the standard error.
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The 12 AG networks that were tested are shown in
Figure 3. To be able to fit the AG models for each partic-
ipant, we computed single-trial beta weights of the
BOLD response (as described above), for the left and the
right pre-SMA, the left and the right ACC, and left and
right STN, respectively. Next, we fitted the graph models
in Figure 3 to the data and computed the AIC values
[Waldorp et al., 2011] and Akaike weights [Wagenmakers
and Farrell, 2004]. Finally the evidence ratios (the ratio of
Akaike weights) were computed to determine the proba-
bility that the data was generated under any of the alter-
native models that were tested [Wagenmakers and
Farrell, 2004].

RESULTS

MSPRT Predictions

The MSPRT model simulation predicts that increasing
the number of choice alternatives prolongs the decision
time, decreases accuracy, and increases the BOLD
response in the STN. Figure 2A illustrates the predicted
behavior, and Figure 2C illustrates the dependence of
STN activity on the number of alternatives, based on a
simulation of the MSPRT model. See Supporting Informa-
tion 1 for R code implementing this MSPRT model
simulation.

Figure 3.

The undirected and directed AG models. The first and third col-

umn shows the six tested AG models that incorporate the

hypothesis of functional connectivity. These models have undir-

ected connections between the cortical nodes and the STN,

which would mean that for instance the pre-SMA and the STN

would be correlated but do not directly influence each other.

The second and fourth column shows the six tested AG models

that incorporate the hypothesis of effective connectivity. These

models have directed connections from the cortical nodes

toward the STN, which would mean that for instance the pre-

SMA would directly influence the activity in the STN. The white

arrows indicate the direction of the connection. In red the indi-

vidual segmented STN, in green the coordinate based pre-SMA

mask and in blue the coordinate based ACC mask. Plots in this

figure are constructed using the actual DWI tractography data

from a representative subject. Visualization was done using

trackvis (http://trackvis.org).
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Behavioral Results

The 15 participants performed a multiple-alternative
RDM task in the MRI scanner for two blocks of 100 trials
each (see Fig. 1C). The reaction time (RT) data was nor-
malized for each participant using a z-transformation and
all data points smaller or larger than 2.5 were removed
from the analysis. This resulted in an exclusion of 1.76% of
the total amount of data. A two-way repeated measure
ANOVA showed that with more alternatives the RT
increased (F(2,13)=9.69, P<0.001) and that participants
responded slower for incorrect trials compared to correct
trials (F(1,14)=8.25, P=0.003). There was no interaction
between the number of alternatives and accuracy on RT.
Post hoc tests, using a Bonferroni correction for multiple
comparisons, showed that the mean RT for the three
groups all differed significantly (three versus five alterna-
tives: t(14)=4.89, P<0.001; three versus seven alternatives:
t(14)=6.69, P<0.001; five versus seven alternatives t(14)=3.69,
P=0.007). For response accuracy a separate two-way
repeated measure ANOVA showed that with an increase
of alternatives participants were less accurate (F(2,13)=76.41,
P<0.001).

In sum, as expected, participants become slower and
less accurate with an increasing number of choice alterna-
tives. At the same time, slower RTs are observed on incor-
rect compared to correct trials (see Fig. 2B).

fMRI Results

To investigate whether the STN is involved in multiple-
choice decision-making, single trial betas were extracted
from the individual STN. To ensure that the findings in the
STN were not solely due to differences in motor response,
the single trial RT was used as a coregressor in the fMRI
analysis. The percentage BOLD signal change in the left and
right STN for choice versus neutral trials was significantly
above zero (left STN: t(236.82)=23.81, P<0.001, right STN:
t(236.02)=22.86, P=0.005). These findings show that the STN is
bilaterally involved in perceptual decision-making. Using a
linear mixed-effect model with participant as a random
effect and hemisphere as a fixed effect, there was a signifi-
cant increase of percentage BOLD signal change in the STN
with an increase of choice alternatives (t(3,941)=2.12,
P=0.034). There was no significant effect of accuracy
(t(3,941)=1.03, P=0.30) or hemisphere (t(14)=20.67, P=0.51;
see Fig. 2 panel C for the MSPRT BOLD predictions and
panel D for the BOLD results for the STN). There was no
interaction between accuracy and the number of alternatives
(t(3,941)=21.50, P=0.13). To exclude the alternative hypothe-
sis that the observed increase of BOLD was not specific to
the STN, a similar analysis was computed on a combined
mask of the ACC and pre-SMA. This analysis showed no
main effect of the number of choice alternatives on the per-
centage BOLD signal change in these cortical regions
(t(7,911)=21.65, P=0.10). A similar analysis for only the ACC

also showed no main effect of the number of alternatives on
the percentage BOLD signal change (t(7,911)=20.96, P=0.34).

In sum, both the behavioral and fMRI results corrobo-
rate the hypothesis that the STN is sensitive to the number
of choice alternatives.

Ancestral Graph Analysis

To investigate whether the pre-SMA and the ACC act as
modulating cortical areas for the STN, the undirected and
direct AG models shown in Figure 3 were fit to the data.
From the model fits the Akaike Information Criterion
(AIC) values were computed. The AIC values for both
direct and undirected models were used to calculate the
evidence ratio, which reflects the probability that the data
was generated by that specific model given the other mod-
els that were tested.

The AIC evidence ratio revealed that the six undirected
models are always preferred over the six directed models
(Table I). These results show that there is no evidence that
the pre-SMA or the ACC directly modulates the STN.
Additional analyses showed that the undirected STN—
ACC model fits the data better than the undirected STN—
pre-SMA model or the undirected STN—pre-SMA and
ACC model (left: summed AIC weight 1.0, preferred for 8
out of 15 participants; right: summed AIC weight 1.0, pre-
ferred for 9 out of 13 participants—two participants did
not have any voxels in the left pre-SMA that were proba-
bilistically connected to the right STN). Therefore, net-
works involving the right STN are tested in only 13
participants. In sum, this result shows that the ACC and
STN are correlated, but without clear evidence that the
ACC directly influences the STN.

TABLE I. The results of the ancestral graph analysis

AIC evidence ratio

Directed Undirected

1) L STN—pre-SMA 0.0 (0) 1.0 (15)
2) L STN—ACC 0.0 (1) 1.0 (14)
3) L STN—pre-SMA/ACC 0.0 (3) 1.0 (12)
4) R STN—pre-SMA 0.0 (1) 1.0 (12)
5) R STN—ACC 0.0 (0) 1.0 (13)
6) R STN—pre-SMA/ACC 0.0 (5) 1.0 (8)

According to the DWI voxel selection, two participants did not
have any voxels in the left pre-SMA that were probabilistically
connected to the right STN. Therefore, networks involving the
right STN are tested only in data of 13 participants.

The summed evidence ratios (the ratio of the Akaike weights)
for the directed and undirected models across all the participants.
AIC evidence ratios can be anywhere between 0 and 1 and reflect
the normalized probability of one model being more likely than
the other tested model. Between brackets is the number of partici-
pants that favored that specific model over the other model
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DISCUSSION

Using a similar paradigm as Churchland et al. [2008] in
primates, this study shows that the STN is involved in
multiple-alternative perceptual decision-making, in line with
the computational models. The behavioral data and the 7T
fMRI BOLD results for the STN activity support the MSPRT
predictions: both the reaction time and the STN’s BOLD sig-
nal increased with the number of choice-alternatives,
whereas accuracy decreased with the number of alternatives.

The current findings support the hypothesis that the
STN functions as a general brake mechanism when there
is increased choice difficulty in perceptual decision-
making. Based on current and previous results, it is possi-
ble that the brake function of the STN is a general mecha-
nism, independent of the perceptual decision-making
domain [Florio et al., 2001; Wylie et al., 2010]. Such an
interpretation is supported by previous functional MRI
and electrophysiological work that has attributed a pivotal
role to the STN in solving the speed-accuracy trade-off,
response inhibition, and task switching, all proposed via
the mechanism of braking the motor output [Aron et al.,
2007; Bogacz et al. 2010; Cavanagh et al., 2011; Forstmann
et al., 2012; Frank et al., 2007; Green et al., 2013; Jahfari
et al., 2011; Mansfield et al., 2011; Zavala et al. 2013;
Zavala et al., 2014]. We speculate that this brake mechanism
reflects an increasing decision threshold, in line with previ-
ous work [Cavanagh et al. 2011; Frank et al., 2015; Green
et al., 2013; Mansfield et al., 2011]. To directly investigate the
role of the STN in the setting of the decision threshold, Green
et al. [2013] used a SAT manipulation while stimulation the
STN with DBS on or off. Their results showed that when
stimulating the STN with DBS, the response threshold was
less influenced by the SAT indicating that indeed the STN is
involved in setting the decision-threshold [ Bogacz et al.,
2010; Heitz 2014; Zavala et al. 2013].

The combination of DWI and AG analysis was used to
test whether a cortico-subcortical structural network was
functionally involved in perceptual decision-making, and
more specifically, whether there was any evidence for the
cortical regions directly influencing the STN. Results from
the AG analysis provide no evidence for a directional
functional influence of the ACC on the STN, but confirms
that the activity of these two regions is correlated during
perceptual decision-making. The function of the ACC has
been related to performance monitoring [Ridderinkhof
et al., 2004; van Maanen et al., 2011]. More specifically, it
has been proposed that the ACC detects situations where
errors are likely to occur, and thus more attention is
required [Botvinick et al., 2001; Carter et al., 1998]. The
current findings suggest that both the ACC and the STN
are involved in perceptual decision-making: however, they
may implement different functions. The ACC may help to
increase attention during more difficult situations, that is,
more choice alternatives, while elevated STN activity may
be related to an increased need to withhold a response.
This would allow more information to be accumulated

during multiple-alternative decision-making, increasing
the likelihood of selecting the correct response.

There are some limitations that need to be addressed. The
first limitation is that while we used the MSPRT model to
predict the involvement of the STN in multiple-choice deci-
sion-making, we did not actually fit the model to the data.
The reason for this was the relative low number of trials in
total and few errors in the three choice alternative condition.
Fitting a relatively complex model as the MSPRT to the data
would become unreliable because the uncertainty around the
estimated model parameters would be substantial. For these
reasons, we decided for a simulation analysis using the
MSPRT model instead. Another limitation that follows from
not fitting the MSPRT model to the data is that it does not
allow for a comparison between different theoretical models
regarding the STN in decision-making. Three prominent the-
ories (action inhibition theory [Mink, 1996], the reduction of
conflict [Frank, 2006], or the computation of the normaliza-
tion term in Bayes theorem [Bogacz and Gurney, 2007]) all
predict that the STN becomes more active with more choice
alternatives. To be able to distinguish between these three
theoretical models, a future study is needed where the
MSPRT predictions can be fitted to the actual data.

Another limitation is related to the AG model. The net-
works that were tested incorporate direct structural con-
nections between the ACC and pre-SMA to the STN. The
hypothesis was that cortical areas (ACC and pre-SMA)
would modulate activity in the STN. The results show that
there is an undirected AG connection between the ACC
Heitz et al. 2014; and the STN. Given the nature of this
undirected connection, it is possible that both the ACC
and the STN directly influence a hidden node that was not
captured in the a priori hypothesized networks.

In conclusion, by means of the excellent spatial resolu-
tion and sensitivity provided by ultrahigh field MRI and
fMRI, the MSPRT predictions regarding the involvement
of the STN in multiple-alternative decision-making were
confirmed. When the number of alternatives increases task
difficulty, the STN becomes more active. To the best of our
knowledge, this is the first study to show the functional
role of the STN in multiple-choice decision-making using
fMRI [see de Hollander et al., 2015 for a review on fMRI
activation reported in the STN].

The results support the view that the STN functions as a
brake mechanism, thereby facilitating the accumulation of
more evidence for the choice at hand. Additionally, using
a novel combination of DWI, fMRI, and AG modeling, it
was shown that the ACC correlates with, but no evidence
was found that it directly modifies the activity in the STN
during multiple-choice decision-making.
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