Editorial
Zaura, E.; Mira, A.

Published in:
Frontiers in Cellular and Infection Microbiology

DOI:
10.3389/fcimb.2015.00039

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Editorial: The oral microbiome in an ecological perspective

Egija Zaura1* and Alex Mira2

1 Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, Netherlands, 2 Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain

Keywords: metatranscriptomics, horizontal gene transfer, fungal–bacterial interactions, quorum sensing, immune system, dental plaque, biofilm, oral ecology

Pure cultures have been the basis for microbiology research over a century. However, although working with clonal lineages in the laboratory has allowed fundamental advances in microbial physiology and genetics, microorganisms are never alone. Even extreme environments like hypersaline waters or acidic ponds are not formed by single species. The human body is no exception, and the oral cavity contains hundreds of bacterial species, that together with fungal and viral inhabitants form highly complex communities where they interact with each other and with the host. These interactions include physical coaggregation, chemical signaling, transfer of genetic information, stimulation of the immune system, metabolic complementation, growth synergism and antagonism or pH buffering among others, and they are so intricate that the final contributing output of the whole community is much larger than the addition of the individual species forming it. This is why the use of holistic, metagenomic approaches to study oral microbial ecology becomes fundamental to understand the ecosystem in health and disease.

The advent of high throughput sequencing techniques has allowed gathering a wealth of data on the bacterial content of the oral cavity. However, most of this work has initially been focused on descriptive studies in which the general taxonomy composition of microbial communities was depicted. We must now enter a second phase in which more functional approaches are performed, including bona fide metagenomic and metatranscriptomic approaches in which the total gene repertoire and actively expressed genes in the community are identified under different circumstances, without the biases imposed by PCR or cloning procedures. Experimental approaches are also required to validate the correlations that may have been suggested by taxonomic studies and to describe the molecular basis for inter-species interactions. Finally, we cannot forget the physical environment where oral microbes thrive and where the immune system probably plays a crucial role in selecting for a given community. We believe that understanding the basis for these ecological interactions will provide formidable insights to diagnose oral diseases and to prevent its development, and hope that this special issue may contribute to that purpose.

In this topic two functional studies have been included, in which RNAseq strategy has allowed researchers to describe the mRNA populations of dental plaque in twins, in an attempt to normalize for genetic host factors (Peterson et al., 2014); and to focus on the gene expression patterns of different Veillonella species within caries lesions (Do et al., 2015). One of the consequences of the close physical interaction in oral biofilms is the possibility for horizontal gene transfer (reviewed by Roberts and Kreth, 2014), with important consequences in relation to antibiotic resistance. As Bachtiar and colleagues show, inter-species interactions are not limited to closely related organisms but can actually cross kingdom borders, and the authors describe a surprising case of quorum sensing signals produced by a gram-negative bacterium that inhibits biofilm formation in Candida (Bachtiar et al., 2014). In fact, the ecology of fungal–bacterial interactions may be instrumental for development of oral biofilms. Microbiome studies have been severely biased toward the prokaryotic component, assuming that fungal species only play a role as opportunistic
taxonomical accuracy and sequencing bias. Schulze-Schweifing and colleagues compare the different approaches for microbiome characterization: culture, traditional cloning and sequencing as well as high throughput sequencing (Schulze-Schweifing et al., 2014), while Lazarevic and colleagues demonstrate the difficulties in work with low DNA yield samples (Lazarevic et al., 2014).

The overall purpose of the studies on ecological interactions of oral microbial communities is to be able to apply that knowledge to understand and prevent oral diseases. In this direction, Rosier and colleagues present a comprehensive and helpful review on the historical hypotheses that have attempted to explain the development of oral diseases (Rosier et al., 2014). With this topic we have summarized the current insights and identified the goals for future research in oral microbial ecology. We believe the field will benefit enormously from these ecological approaches, which certainly show that oral microbial communities cannot be understood by the isolated study of their individual microorganisms and that they are much more complex than the addition of its microbial and host components.

Funding

This work was funded by grant BIO2012-40007 from Spanish MINECO to AM.

References


