Nanosecond photochromic molecular switching of a biphenyl-bridged imidazole dimer revealed by wide range transient absorption spectroscopy

Yamaguchi, T.; Hilbers, M.F.; Reinders, P.P.; Kobayashi, Y.; Brouwer, A.M.; Abe, J.

Published in:
Chemical Communications

DOI:
10.1039/c4cc06001f

Citation for published version (APA):
Nanosecond photochromic molecular switching of a biphenyl-bridged imidazole dimer revealed by wide range transient absorption spectroscopy†

Tetsuo Yamaguchi,§Michiel F. Hilbers,§ Paul P. Reinders,§ Yoichi Kobayashi,§ Albert M. Brouwer§ and Jiro Abe*§

We demonstrate that a biphenyl-bridged imidazole dimer exhibits fast photochromism with a thermal recovery time constant of \(~100\) ns, which is the fastest thermal back reaction in all reported imidazole dimers. Sub-ps transient absorption spectroscopy reveals that the generation process of the colored species occurs within 1 ps.

Microsecond time scales cover various phenomena such as electronic relaxation processes of triplets and charge transfer states, molecular diffusion, enzyme reactions, folding of proteins, etc. To trigger and precisely control these phenomena by external stimuli, switches are necessary that respond faster than these time scales. Photochromic molecules are the best candidates for such switch molecules because they can modulate various properties such as color, conductivity,1,2 chirality,3,4 intermolecular interaction,5 etc. As compared to the structural changes during the electronic relaxation pathways from the Franck–Condon state to the lowest excited state (\(S_1\)), photochromic reactions induce drastic structural changes repeatedly. Therefore, photochromic molecular switches have a potential to produce mechanical work6–8 and to act as optical logic gate systems to control electronic relaxation processes such as charge transfer and coupling.9–13

There are some reports on photochromic compounds whose switch cycles at ambient temperature are completed on sub-\(\mu\)s time scales such as certain oxazine and azo derivatives.14,15 The switching materials that show fast photochromism on the ns time scale offer novel applications such as high speed optical actuators16–17 with MHz repetition frequencies.

We have developed a series of bridged imidazole dimers which act as sub-second to \(\mu\)s fast molecular switches.18–22 However, there are few compounds which act as sub-\(\mu\)s photochromic switches in bridged imidazole dimers.23 In our previous study,24 we reported that bisDMDPI-BP (Fig. 1a and b) did not give any photochromic signals later than the \(\mu\)s time scale while other similar derivatives were reported to exhibit the characteristic negative photochromism. On the other hand, quantum chemical calculations of bisDMDPI-BP suggest a similarity of bisDMDPI-BP to the reported photochromic imidazole dimers. Quantum chemical calculations of the reported photochromic imidazole dimers suggest that the C–N bond between the two imidazole rings has an anti-bonding character in the LUMO (Fig. 1b, DFT MPW1PW91/6-31G(d) level).25 The calculations of bisDMDPI-BP also suggest that the C–C bond between the two imidazole rings has an anti-bonding character in the LUMO. This similarity implicitly suggests that bisDMDPI-BP is very likely to show photoinduced bond cleavage of the C–C bond between the two imidazole rings as similar processes as the reported photochromic imidazole dimers.

In this study, we apply sub-ps and sub-\(\mu\)s transient absorption spectroscopy to reveal the photochromism of bisDMDPI-BP.
We found that bisDMDPI-BP indeed undergoes the expected ring opening (Fig. 1a) and is one of the fastest photochromic compounds, with the ring opening within 1 ps and a thermal lifetime of the open form of \(~\sim 100\) ns. The fast and large conformational change of bisDMDPI-BP offers great potential for a molecular device to produce large mechanical work and for a trigger to induce a local conformational change to macro-molecular and biological organizations.

Imidazole dimers are categorized into several isomers depending on the binding manner between two imidazole rings. BisDMDPI-BP is the 2,2'-isomer, in which the C-C bond is formed between the 2-position of an imidazole ring and the 2'-position of the other imidazole ring,\(^{24}\) while almost all reported bridged imidazole dimers are the 1,2'- or the 1,4'-isomers, in which a C-N bond is formed between the two imidazole rings.\(^{18,20,21,26}\) While there are several reports on the 2,2'-isomers of hexaarylbiimidazole (HABI) derivatives,\(^{27,28}\) they are sensitive to temperature and pressure, and easily converted to the photochromic 1,2'-isomers via the imidazolyl radical formed by thermo- or piezochromism. Therefore, the stable 2,2'-isomer of bisDMDPI-BP offers a unique opportunity to reveal the photochromism of a representative 2,2'-isomer.

BisDMDPI-BP was synthesized according to our previous report.\(^{24}\) The steady-state absorption spectrum of bisDMDPI-BP is shown in Fig. S1 (ESI\(^+\)). The absorbance of bisDMDPI-BP increases rapidly at wavelengths shorter than \(~\sim 370\) nm. Prior to time-resolved experiments, we examined the durability of bisDMDPI-BP by repetitive exposures to ns laser pulses (see the ESI\(^+\) for details). The absorption spectra and HPLC analyses reveal that bisDMDPI-BP almost does not decompose even after 10,000 laser shots under an O\(_2\) atmosphere (Fig. S2 and S3 in ESI\(^+\)). It shows that bisDMDPI-BP has high durability and the decomposition during the laser experiments is negligible. We set the excitation wavelength to 305 nm for ns and 310 nm for fs transient absorption measurements. The details of the experimental setup were reported previously\(^{29,30}\) and are briefly shown in the ESI.\(^+\)

Fig. 2a shows ns transient absorption spectra of bisDMDPI-BP at different time delays at room temperature (\(~\sim 20\) °C). We observed two absorption bands at \(~\sim 380\) and 595 nm superimposed on a broad background, and the whole spectrum decays exponentially. The transient spectrum is very similar to those of the radical species of bridged imidazole dimers reported previously.\(^{21,24}\) The quantum chemical calculations suggest that the absorption band at 550–650 nm can be attributed to the \(\pi-\pi^*\) like transition (Fig. S13 and S14 in ESI\(^+\)). In addition, the calculations also suggest that the dihedral angle of the bridging biphenyl moiety changes from 20 to 91° by the photochromic reaction (Fig. S11 and S12 in ESI\(^+\)). The ns transient absorption experiment shows that the colored species of bisDMDPI-BP has a weak and broad background at \(> 700\) nm, where the absorption band due to the radical–radical interaction was observed in the previously studied bridged imidazole dimers.\(^{20,21,26}\) Our previous work demonstrated that the absorption band due to the radical–radical interaction decreases, becomes broad, and shifts to longer wavelengths with decreasing radical–radical interactions.\(^{21}\) Since bisDMDPI-BP has little transient absorption at \(> 700\) nm as compared to that of reported bridged imidazole dimers,\(^{20,21}\) it indicates that the radical–radical interaction of the colored species of bisDMDPI-BP is weak because of the large dihedral angle of the bridging biphenyl. The calculations and experimental results show that the photochromism of bisDMDPI-BP induces a large conformational change due to the rotation of the biphenyl moiety.

Fig. 2b shows the decay profile of the colored species of bisDMDPI-BP observed at 400 nm at room temperature. The decay is fitted with a single exponential function and the lifetime and the rate constant are 103 ns and \(9.7 \times 10^5\) s\(^{-1}\) at room temperature, respectively. This lifetime shows that bisDMDPI-BP exhibits the fastest thermal back reaction in all reported imidazole dimers. The decays at other wavelengths are quite similar (see Fig. S4 in the ESI\(^+\)), indicating that there is a single transient species that decays with first order kinetics, as expected for the biradical.

To reveal the details of the bond cleavage process of bisDMDPI-BP, we conducted sub-ps transient absorption spectroscopy in which the sample was excited at 310 nm with a pulse duration of \(~\sim 200\) fs. Fig. 3a and b show the transient absorption spectra and dynamics of bisDMDPI-BP at different time delays, respectively. The grey dots and solid red curves show the experimental data and fitted spectra (and dynamics) obtained by the global analyses as explained later. We found that the transient absorption spectra until 1 ps are quite broadened and the spectra after 3 ps look very similar to those
species are not distinguishable and give a single transient signal.

We propose that the precursor state of the colored species is formed via vibrational cooling. In addition to the transition from the S\(_1\) state to the higher vibrational state of the colored species, the higher excited state of the colored species may also contribute to the bond cleavage process through the coupling with the S\(_1\) state of the colorless species. Therefore, we apply sequential kinetic models for the global analyses.

After the photoexcitation, the dynamics from 430 to 750 nm show a fast decay and a very slow decay. On the other hand, the transient absorption at 380 nm only shows a fast rise and a very slow decay. The slow decay is attributed to the colored photo-product, which is almost stationary on this time scale. Firstly, we applied the two-state sequential model as follows:

\[
[S_0] \xrightarrow{h\nu} \text{[Component 1]} \xrightarrow{\tau_1} \text{[Colored species]} \quad (1)
\]

In this model, we assume that the precursor states of the colored species are not distinguishable and give a single transient signal (Component 1). This model qualitatively explains the transient spectra and decays, and that the time constant of the generation process of the colored species (\(\tau_1\)) is 760 fs (Fig. S7 in ESI†). However, it is difficult to reproduce the small amount of another rise component appearing in the range 520–600 nm (indicated by black arrows in Fig. S8, ESI†). The rise component does not look like noise or an artifact. To give a better explanation for the transient signals, we introduced the three-state sequential model as follows.

\[
[S_0] \xrightarrow{h\nu} \text{[Component 1]} \xrightarrow{\tau_1} \text{[Component 2]} \xrightarrow{\tau_2} \text{[Colored species]} \quad (2)
\]

The model assumes that the precursor state of the colored species can be split into two states and they sequentially generate and decay. The model fits the transient spectra and decays very well and the time constants \(\tau_1\) and \(\tau_2\) are both found to be 420 fs. The fitted spectra and decay curves are shown as the red curves in Fig. 3. The fitted spectra of the individual species and time traces of their population are given in Fig. S9 (ESI†). This well-fitted global analysis suggests that the bond cleavage process consists of at least two distinct processes. The second component in the spectral evolution looks like a somewhat shifted and broadened version of the spectrum of the colored species (Fig. S9 in ESI†). First and second transient species are therefore best assigned as the transient absorption of the S\(_1\) state and the vibrationally hot electronic ground state of the colored species formed during the dissociation process, respectively.

In conclusion, sub-ps to sub-\(\mu\)s transient absorption spectroscopy reveals that bisDMDPI-BP exhibits extremely fast photochromism with a large conformational change. The colored species of bisDMDPI-BP forms within 1 ps after the excitation and the thermal back reaction of the colored species takes only ~100 ns. As compared to other ns-scale switching molecules, the advantage of using bisDMDPI-BP is the easy functionalization with sustained fast photochromic properties because the rates of the photochromic properties in bridged imidazole dimers are mostly dominated by the bridging unit: biphenyl in the present case. These properties of the imidazole dimer support the potential of bisDMDPI-BP as ns-time scale photoswitching materials.

This work was supported partly by the Core Research for Evolutionary Science and Technology (CREST) program of the Japan Science and Technology Agency (JST) and a Grant-in-Aid for Scientific Research on Innovative Areas “Photosynergetics” (No. 26107010) from MEXT, Japan. T. Yamaguchi appreciates the Research Fellowships of JSPS for Young Scientists.

Notes and references

25 M. J. Frisch, Gaussian09, Revision D.01; —full reference in ESI†.