Low-Valent Iron(I) Amido Olefin Complexes as Promotors for Dehydrogenation Reactions

Lichtenberg, C.; Viciu, L.; Adelhardt, M.; Sutter, J.; Meyer, K.; de Bruin, B.; Grützmacher, H.

DOI
10.1002/anie.201411365
10.1002/ange.201411365

Publication date
2015

Document Version
Final published version

Published in
Angewandte Chemie, International Edition

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):
Low-Valent Iron(I) Amido Olefin Complexes as Promoters for Dehydrogenation Reactions**

Crispin Lichtenberg,* Liliana Viciu, Mario Adelhardt, Jörg Sutter, Karsten Meyer, Bas de Bruin,* and Hansjörg Grützmacler*

Abstract: Fe⁺ compounds including hydrogenases show remarkable properties and reactivities. Several iron(I) complexes have been established in stoichiometric reactions as model compounds for N₂ or CO₂ activation. The development of well-defined iron(I) complexes for catalytic transformations remains a challenge. The few examples include cross-coupling reactions, hydrogenations of terminal olefins, and azide functionalizations. Here we report the syntheses and properties of bimetallic complexes [MFe⁺(trop-dae)(solv)] with a d⁷ Fe low-spin valence-electron configuration (M = Na, solv = 3thf; M = Li, solv = 2Et₂O; trop = 5H-dibenzo[a,d]cyclohepten-5-yl, dae = (N-CH₂-CH₂-N) with a d⁷ Fe low-spin valence-electron configuration are reported. Both compounds promote the dehydrogenation of N,N-dimethylaminoborane, and the former is a precursor for the dehydrogenative alcoholysis of silanes. No indications for heterogeneous catalyses were found. High activities and complete conversions were observed particularly with [NaFe⁺(trop-dae)(thf)]₃.

Fe⁺ compounds including hydrogenases[1–6] show remarkable properties and reactivities. The anion [Fe(C(SiMe₃)₂)₅]⁻ is a single-molecule magnet with a high spin-reversal barrier.[22] In stoichiometric reactions, iron(I) diketiminates, iron(I) tris(phosphino)borates, and related species have been established as model compounds for N₂ activation[6–9,10,11] and for the cleavage and coupling of CO₂.[12] The development of well-defined iron(I) complexes for catalytic transformations, however, remains a challenge. The few examples include cross-coupling reactions,[12b,13] hydrogenations of terminal olefins,[14] and azide functionalizations.[15,16] Here we report the syntheses and properties of bimetallic complexes [MFe⁺(trop-dae)(solv)] with a d⁷ Fe low-spin valence-electron configuration (M = Na, solv = 3thf (1); M = Li, solv = 2Et₂O (2); trop = 5H-dibenzo[a,d]cyclohepten-5-yl, dae = (N-CH₂-CH₂-N)). Compounds 1 and 2 promote the dehydrogenation of N,N-dimethylaminoborane, and 1 is a precatalyst for the dehydrogenative alcoholysis of silanes. No indications for heterogeneous catalyses were found. High activities and complete conversions were observed particularly with [NaFe⁺(trop-dae)(thf)]₁ (1).

The olefinic binding sites in trop-type ligands stabilize unusual low oxidations states of transition-metal centers.[7] We recently reported a low-valent Ru compound with a bis(trop)diamino ligand, [Ru²⁺(trop-dae)], which acts as a homogeneous molecular catalyst for the conversion of methanol and water into hydrogen and carbon dioxide.[8] This prompted us to investigate the H₂(trop-dae) ligand (Scheme 1) as a supporting ligand for new low-valent iron complexes.

Scheme 1. Synthesis of complexes 1 and 2 from [FeCl₂(thf)]₃: 1: n = 1.5; 2: n = 0.

The reaction of the amine H₂(trop-dae) with one equiv of [FeCl₂(thf)]₃ and three equiv of [Na(CH₂SiMe₃)]₃ as base and reducing agent in THF at –30°C gave the bis(amido)-diolefin complex [NaFe⁺(trop-dae)(thf)]₁ (1, Scheme 1). Compound 1 was isolated as a deep red, single-crystalline material, which is soluble in polar solvents such as THF but also in aromatic hydrocarbons. To study the influence of the counterion,[9] [LiFe⁺(trop-dae)(Et₂O)]₂ (2) was synthesized in a similar manner by using a slight excess of [Li(CH₂SiMe₃)].

Compound 2 was isolated as deep-red single crystals and shows a solubility similar to that of 1. The reactions leading to the formation of compounds 1 and 2 are complex and involve at some stage ligand coordination, deprotonation, salt meta-
thesis, and redox reactions. In this respect it is noteworthy that the presence of tetramethylethylene diamine (TMEDA) as a chelating ligand led to a possible intermediate en route to the formation of species analogous to 1 and 2, which could be isolated and fully characterized (see the Supporting Information, compound 3).

The solid-state molecular structures of 1 and 2 were determined by single-crystal X-ray diffraction studies (Figure 1). The iron atom in 1 is coordinated by the two amide functionalities and the two olefinic groups of the (trop$_2$dae)$^-$ ligand. Taking the centroids of the C=C$_{ole}$ units as coordination points, this results in a distorted square-planar coordination sphere around Fe1 ($\Sigma^2 = 369^\circ$). Planar coordination spheres have occasionally been reported for tetracoordinate iron(II) compounds, but are rare for iron(II) compounds.$^{[11]}$ The five-membered ring (Fe1-N1-C31-C32-N2) adopts a twisted conformation with the carbon atoms located above and below the N1-Fe1-N2 plane. As a consequence of the additional interaction with the sodium cation Na1, the Fe1-N1 distance (1.900(4) Å) is slightly longer than Fe1-N2 (1.860(3) Å) and N1 resides in a more pyramidal coordination sphere (Σ^2 (C/Fe-N1-C) = 84.77(14)-97.88(15); angle sum around Fe1 369.2). Fe1-N2 1.931(4), Fe1-(C4-C5) 1.924(4), Fe1-(C19-C20) 1.924(4), C4-C5 1.435(6), C19-C20 1.438(5), Na1-N1 2.469(4); (N/(C/Fe-N2-C) = 3.02–5.16 mms$^{-1}$). These quadrupole splittings fall in the usual range for literature-known Fe complexes (ΔE$_Q$ = 0.89–3.48 mms$^{-1}$).$^{[10,11,16]}$ However, other Fe complexes generally show larger isomer shifts (from $\delta = 0.28$ mms$^{-1}$ to 1.09 mms$^{-1}$, which indicates lower electron density in Fe s orbitals)$^{[10,16,17]}$ The low FeII/FeIII-like isomer shifts for 1 and 2 are possibly a consequence of metal-to-ligand electron back-donation. DFT calculations on 1 and 2 gave optimized structures in good agreement with the single-crystal X-ray data (see the Supporting Information). Derivatives [MFe(trop$_2$dae)(L)$_2$] (M = Li, Na; L = neutral ligand bound to M; $n = 0$–3) and counterion-free [Fe(trop$_2$dae)$^-$] were also investigated. All species are mainly metal-centered radicals with significant spin polarization to the nitrogen donors and olefinic carbon atoms of the (trop$_2$dae)$^-$ ligand (Figure 2a). Hence, they are best described as low-spin d^6 Fe species hosted by dianionic (trop$_2$dae)$^-$ ligands. Significant differences between the electronic structures of 1 and 2 arise from the larger g anisotropy, higher Fe spin density, and higher NBO charge at Fe for 2 (see Table S2 in the Supporting Information). These differences are mainly due to the coordination mode of the alkali metal (terminal as in

![Figure 1](image1.png)

Figure 1. Molecular structure of [NaFe(trop$_2$dae(thf))$_2$] 1 (a, left) and [LiFe(trop$_2$dae(OEt)$_2$)$_2$] 2 (b, right) in the solid state.$^{[11]}$ Displacement ellipsoids are shown at the 50% probability level; annulated C atoms of THF ligands, and hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: 1: Fe1-N1 1.900(4), Fe1-N2 1.860(3), Fe1-(C4-C5) 1.924(4), C4-C5 1.435(6), C19-C20 1.438(5), Na1-N1 2.469(4); (N/(C/Fe-N2-C) = 84.77(14)-97.88(15); angle sum around Fe1 369.2. Fe1-N1 1.899(3), Fe1-N2 1.931(4), Fe1-(C4-C5) 1.926(4), Fe1-(C19-C20) 1.939(6), Li1-N1 2.160(11), Li1-N2 2.095(11), C4-C5 1.416(8), C19-C20 1.415(10), Fe1-Li1 2.756(8); (N/(C/Fe-N1-C) = 79.37(18)-97.08(10); angle sum around Fe1 362.8.

![Figure 2](image2.png)

Figure 2. a) Spin density plot of [Fe(trop$_2$dae)]$^-$ (for colored Figure see the Supporting Information); b) experimental and simulated X-band EPR spectrum of 2 in THF containing 0.1 m [N(nBu)$_2$]$_2$PF$_6$.
I versus bridging as in 2), which can be controlled by choice of the neutral ligand L (see derivatives 2b–d in the Supporting Information). The nature of the alkali metal itself has a smaller effect.

The electronic structures of 1 and 2 were further investigated by EPR spectroscopy at 20 K. Undiluted powdered solids of 1 and 2 gave X-band EPR spectra of reasonable quality which are clearly distinct from each other (see Figure S10 in the Supporting Information). The X-band EPR spectra of 1 and 2 in frozen THF containing 0.1 M [N(nBu)]PF$_6$ are highly similar, thus indicating the formation of the free anion [Fe(trop-dae)]$^-$ in both cases. Rhombic signals without any (resolved) hyperfine couplings were observed which are characteristic for low-spin d2Fe species (Figure 2b).

The experimental g values ($g_\| = 2.009$, $g_s = 2.060$, $g_\perp = 2.160$) are in reasonable agreement with those predicted by DFT calculations (see Table S2 in the Supporting Information). Unexpectedly, EPR spectroscopic analysis of 1 and 2 in toluene glasses at 20 K revealed broad and complex signals which are ascribed to aggregation phenomena (see Figure S13 in the Supporting Information). The spectra also show weak “half-field signals” which can be observed when $S = 1/2$ systems weakly interact in the matrix (see Figure S14 in the Supporting Information). The spectra of 1 and 2 in toluene are clearly different, thus indicating distinct aggregation behavior.

The low-spin d2 electron configuration of 1 was further confirmed by SQUID magnetization measurements. In an applied field of 1 T, an effective magnetic moment of $\mu_{eff} = 1.96$ μ_B at 300 K was determined, which is almost invariant over a temperature range of 10–300 K (see the Supporting Information).[19] This value is close to the spin-only value of 1.80 μ_B for one unpaired electron (for $g = 2.076$). In good agreement with this result, determination of the effective magnetic moment in benzene solution by the Evans method gave $\mu_{eff} = 2.0(1) \mu_B$ for compounds 1 and 2. A cyclic voltammogram of 1 in THF at 23°C as a scan rate of 0.2 V s$^{-1}$ shows a quasireversible redox wave with $E_{1/2} = -2.24$ V versus Fe/Fe$^+$ (see the Supporting Information), probably for an Fe$^+$ to Fe0 conversion, while irreversible oxidation half-waves were recorded at -0.56 V and at 0.05 V versus Fe/Fe$^+$. The large splitting of about 1.7 V between the oxidation and reduction waves indicates a high stability of the Fe complexes 1 and 2 with respect to disproportionation.

No reaction of 1 with H$_2$ (1.5 bar, $T = 25^\circ$C) was observed in nonpolar solvents.[20] However, substrates with “krypto”-hydrogen, that is hydrogen in the form of H$_2$, H$_2^-$,[21] such as N,N-dimethylaminoborane (DMAB; Me$_2$HN-BH$_3$), are efficiently dehydrogenated.[22] Few iron-based catalysts have been reported for the dehydrogenation of DMAB.[23] Recent studies by Manners and co-workers show that in situ generated Fe nanoparticles are frequently catalytically active and only [Fe(C$_5$H$_4$)(CO)$_2$] acts as a homogeneous catalyst.[24] In an open system, 5 mol % of 1 and 2 were used as catalysts for the dehydrogengation of DMAB in toluene at room temperature (Table 1 and see the Supporting Information). Under these conditions, the LiFe$^+$ species 2 showed only moderate activity (4 h, 35%, entry 1) and [LiFe(trop-dae)-

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cat.</th>
<th>Additive/poison (equiv)</th>
<th>t [h]</th>
<th>Conv. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>–</td>
<td>4.0</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>2d</td>
<td>–</td>
<td>4.0</td>
<td><5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>–</td>
<td>4.0</td>
<td>>99a</td>
</tr>
<tr>
<td>4c</td>
<td>1</td>
<td>–</td>
<td>1.3</td>
<td>>99</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>15-crown-5 (1)</td>
<td>10</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>[(nBu)$_2$N]Br (1)</td>
<td>5.1</td>
<td>>99</td>
</tr>
<tr>
<td>7d</td>
<td>1</td>
<td>–</td>
<td>10</td>
<td>>99</td>
</tr>
<tr>
<td>8e</td>
<td>1</td>
<td>–</td>
<td>3×4</td>
<td>3×>99</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>THF as solvent</td>
<td>2.5</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>PPh$_3$ (0.2)</td>
<td>5.4</td>
<td>>99</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>P(OMe)$_3$ (0.1)</td>
<td>5.9</td>
<td>>99</td>
</tr>
</tbody>
</table>

a Conditions: 0.048 M DMAB in toluene, 5 mol% catalyst. b 4 was identified by 11B NMR spectroscopy after completion of the reaction. c Overall concentrations increased by a factor of two. d Me$_2$DN-BH$_3$ was used as a substrate. e 3×20 equiv of DMAB used in consecutive additions.

When the reaction is carried out in THF, the conversion rate drops significantly (entry 9). In selective-poisoning experiments (with 0.2 equiv of PPh$_3$ or 0.1 equiv of P(OMe)$_3$, (thf)$_3$) 2d was almost inactive (entry 2). In contrast, the NaFe$^+$ compound 1 led to full conversion after 4 h (entry 3), giving the 1,3-diaza-2,4-diborete 4 as sole product (see Table 1). The rate constant k_{catal}, of early stages of the reaction increased by a factor of 2.1(2) upon increasing the overall concentrations by a factor of 2.0, and full conversion was reached after 1.3 h (entry 4, see also the Supporting Information). In contrast, additives such as 15-crown-5 or [(nBu)$_2$N]Br decrease the reaction rate, which suggests that a solvent-separated ion pair with the [Fe(trop-dae)$^-$] anion is not the most active species (entries 5 and 6). The use of deuterated Me$_2$NDBH$_3$ as a substrate and 1 as a catalyst revealed a kinetic isotope effect of 2.0(2), thus indicating that deprotonation of the amino group is one of the rate-limiting steps (entry 7, and see the Supporting Information). Reactions of 1 with stoichiometric amounts of Me$_2$NBH$_3$ showed no H abstraction; however, an alteration of the B-H stretching frequencies in the solid-state IR spectrum of the solid obtained after workup indicate weak interactions of the BH$_3$ group with 1. According to 11B NMR studies, such interactions might be present in toluene solutions of 1, but not of 2 (see the Supporting Information). Catalyst 1 remains active after dehydrogenation of 20 equiv of DMAB, which was shown by consecutive addition of fresh substrate. Overall, at least 3×20 equiv of DMAB are dehydrogenated without any loss of activity (entry 8). In a closed system, the linear species 5 (see Table 1) was detected as the major intermediate by 11B NMR spectroscopy.[25–27] Only traces of monomeric intermediate Me$_2$N=BH$_3$ were detected.
per Fe)[34] with 1 as catalyst, the reactions proceed to completion albeit at decreased rates (entries 10 and 11). Time-conversion plots for DMAB dehydrogenation with 1 as a catalyst do not show an induction period. Small aliquots of the reaction solutions were analyzed by scanning electron microscopy (SEM) and gave no indications for the formation of Fe nanoparticles. Although the reaction mechanism remains obscure, these results indicate that 1 acts as a homogeneous catalyst in the dehydrogenation of DMAB. Catalyst 1 has a very high activity compared to [Fe-(C\textsubscript{6}H\textsubscript{5})\textsubscript{2}(CO)\textsubscript{3}], which requires 9 h and continuous irradiation with UV light for full conversion.[34] The counterion effect, Na+ > Li+, may indicate that catalytically more-active aggregated species are formed with compound [Na(thf)\textsubscript{3}]+ and/or more effective substrate coordination by the [Na(thf)\textsubscript{3}]−–containing species.

Complex 1 also efficiently catalyzes the reaction of silanes with alcohols as an intermolecular variant of the release of “krypto”-hydrogen.[30] We are especially interested in the dehydrogenative alcoholysis of silanes with diols to yield oligo- or poly(alkyl silyl ethers) which has been scarcely exploited to date.[31–33] The use of iron-based catalysts for this type of reaction is unprecedented. The simple methanalysis of PhSiH\textsubscript{3} [34] is efficiently catalyzed with 3 mol\% of 1 (1 mol\% per Si–H bond), and complete conversion is reached after 5 min in toluene (\(T = 25^\circ\text{C}\)). The reaction solution remains homogeneous and at least three consecutive catalytic runs can be performed without apparent loss in activity (see the Supporting Information). In reactions between 1,4-benzenedimethanol as the diol and phenylsilane or diphenylsilane, three or two equivalents of H\textsubscript{2} are released and full conversion is reached after 15 min or 54 min, respectively (Scheme 2).

![Scheme 2. Dehydrogenative coupling of alcohols with silanes catalyzed by 1.](image)

Three products \(\text{6, 7, and 8} \) were isolated as off-white solids with at least nine (in the case of 6) or nineteen (in the case of 7) repeating units with respect to Si, as indicated by mass spectrometric analysis.

In summary, the trop-amine-type ligand (trop,dae)− strongly stabilizes low-valent iron species, thereby allowing the synthesis of rare examples of heterobimetallic d1 iron(I) amide complexes and their application as homogeneous catalysts. The structures, electronic properties, aggregation behavior in solution, and especially the reactivities depend sensitively on the counterion \([\text{Na(thf)}]^{-}\) versus \([\text{Li(ET}_{2}O)]^{-}\). Although the benchmark performance of \([\text{Ni(OOC\textsubscript{3}CF\textsubscript{3}})-(\text{NHtrop})]^{2-}\)--another metallo-radical first row transition-metal complex, but with a low-valent d1 nickel(I) center—is not reached, \([\text{NaFe(trop,dae)(thf)}]^{-}\) (1) is a remarkable dehydrogenation catalyst especially for the syntheses of oligo/poly(silyl ethers) from polyols and silanes. We believe that this reaction has the potential of becoming an atom-economic method for the synthesis of oligo- and polymeric alkyl silyl ethers under mild conditions, generating no waste, only hydrogen as a valuable by-product.

Keywords: aminoboranes · condensation reactions · dehydrogenation · heterometallic complexes · low-valent iron.

How to cite: Angew. Chem. Int. Ed. 2015, 54, 5766–5771

Angew. Chem. 2015, 127, 5858–5863
It is important to note that the role of the neutral ligands Li and Na₁ is found in an distorted trigonal bipyramidal coordination of the trop moiety in the apical positions.

These compounds show high-spin electron configurations, which also contributes to their higher isomer shifts.

Under similar conditions, decomposition of I was observed in polar media such as THF (see the Supporting Information) and olefins such as 1-octene (10 equiv) were not hydrogenated.

The same behavior was assumed for [Fe(1CH₂ClCO₂)₃][Fe(1CH₂ClCO₂)] and [Fe(1CH₂ClCO₂)](THF)X (X = BF₄, SBF₆) but not analyzed in detail.

Na(tropo[eq]), generated in situ from H₂tropo[eq] and 2 equiv of NaN₃(NMe₂)_₃, was inactive for DMAB dehydrogenation under identical conditions.

The catalysts applied for this type of reaction are precious-metal catalysts (Pd, Rh), which mostly require long reaction times or slightly elevated reaction temperatures (Ref. [32a–c]), a notable

In a lower applied field of 0.01 T, an increased effective magnetic moment of μeff = 3.25 μB at 300 K was determined, which could be due to uncompensated interfacial ferromagnetically aligned spins oriented by small magnetic fields (for details and discussion see the Supporting Information).

Under similar conditions, decomposition of I was observed in polar media such as THF (see the Supporting Information) and olefins such as 1-octene (10 equiv) were not hydrogenated.

The same behavior was assumed for [Fe(1CH₂ClCO₂)₃][Fe(1CH₂ClCO₂)] and [Fe(1CH₂ClCO₂)](THF)X (X = BF₄, SBF₆) but not analyzed in detail.

The catalysts applied for this type of reaction are precious-metal catalysts (Pd, Rh), which mostly require long reaction times or slightly elevated reaction temperatures (Ref. [32a–c]), a notable
exception is $[\text{B(CF}_3)_3]$ for the synthesis of poly(aryl silyl ethers) (Ref. [32d]).

[34] Simple alcoholysis reactions $R_{n-1}\text{SiH}_x + x\text{ROH} \ (x \geq n)$ have been reported: a) S. Chang, E. Scharer, M. Brookhart, J. Mol. Catal. A 1998, 130, 107–119; b) S. Rommel, L. Hettmanczyk, J. E. M. N. Klein, B. Plietker, Chem. Asian J. 2014, 9, 2140–2147.

[35] CCDC 999856 (1), 999857 (2), 999858 (3), 1033680 (2b), 1033681 (2c), 1033682 (2d), contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Received: November 24, 2014
Published online: March 12, 2015