Machine Learning to the Rescue
Visser, A.; Nardin, Luis Gustavo; Castro, Sebastian

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Machine Learning to the Rescue
A Workshop for the RoboCup Rescue Simulation

Joint Rescue Forces
Arnoud Visser¹, Luis Gustavo Nardin², Sebastian Castro³
¹University of Amsterdam, The Netherlands
²Brandenburg University of Technology, Cottbus, Germany
³MathWorks, Natick, Massachusetts

Workshop Goals

• Instruct how to use the MATLAB® Statistics and Machine Learning Toolbox™ through interactive applications to analyze and model disaster scenario data for developing more elaborated rescue decision-making algorithms.
• Demonstrate how to incorporate state-of-the-art machine learning algorithms into RoboCup Rescue competition code using the MATLAB® Engine API for Java.

Supervised Learning

Analysis of the disaster scenario could be used to learn associations between observable variables and hidden variables (part of a causal model of the world).
• Firefighters can optimize their decisions by estimating buildings’ danger of fire ignition (discrete state – classification).
• Ambulances can optimize their rescue operations by predicting more accurately the chance of potential victims to survive (continues state – regression).

Pre-Compute

Before the actual run, an agent of each type can do map reconnaissance. In this phase, agents can precompute the paths and segment the map into sectors.
• Path Planning with MATLAB®:
 o Shortest-path algorithms based on breadth-first, Dijkstra or A* [1].
 o The agents receive the possible path sorted on distance.
 o During the competition each agent can modify the unobstructed distances in its own copy of the graph based on observed or cleared blockades.
• RoboCup teams may divide the work of the agents over different sectors of the map [2].

Results

In Statistics and Machine Learning Toolbox™, data can be preprocessed with dimensionality reduction methods like principal component analysis (PCA) or singular-value decomposition (SVD), followed by classification methods, or linear/non-linear regression methods.

Regression Learner MATLAB® app showing predictions of the chance to survive of buried civilians.
Classification Learner MATLAB® app showing the predicted versus actual state of the rescue civilians at the end of the simulation.

In the regression, when the remaining hit points (HP) at the end of the scenario is estimated with the Gaussian Process Regression [4] the remaining root mean square error (RMSE) is the lowest, i.e., RMSE 1346.

The best classification is estimated with the Ensemble Bagged Trees with PCA enabled and component reduction criterion set to 2 specific components out of 4, achieving accuracy of 75.5%.

Conclusion

By giving a workshop to the RoboCup teams on how to separate machine learning algorithms from the actual code to control the agents / robots, teams can concentrate on the learning aspect.

The algorithms implemented in the workshop are examples of common challenges in this competition, but the approach should extend to any algorithm available/developed in MATLAB®.

References