Dinuclear Palladium Complexes with Two Ligand-Centered Radicals and a Single Bridging Ligand: Subtle Tuning of Magnetic Properties

DOI
10.1002/chem.201500084

Publication date
2015

Document Version
Final published version

Published in
Chemistry - A European Journal

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):
Dinuclear Complexes

Dinuclear Palladium Complexes with Two Ligand-Centered Radicals and a Single Bridging Ligand: Subtle Tuning of Magnetic Properties

Abstract: The facile and tunable preparation of unique dinuclear ([L]Pd–X–Pd(L)) complexes (X = Cl or N3), bearing a ligand radical on each Pd, is disclosed, as well as their magnetochemistry in solution and solid state. Chloride abstraction from [PdCl(NNO)2] ([NNO = iminosemiquinonato]) with TIPF6 results in an unusual monochlorido-bridged dinuclear open-shell diradical species, ([Pd(NNO)2]+(µ-Cl)+, with an unusually small Pd-Cl-Pd angle (ca. 93°, determined by X-ray). This suggests an intramolecular d6–d8 interaction, which is supported by DFT calculations. SQUID measurements indicate moderate antiferromagnetic spin exchange between the two ligand radicals and an overall singlet ground state in the solid state. VT EPR spectroscopy shows a transient signal corresponding to a triplet state between 20 and 60 K. Complex 2 reacts with PPh3 to generate [Pd(NNO)2(PPh3)]+ and one equivalent of [PdCl(NNO)2]. Reacting an 1:1 mixture of [PdCl(NNO)2] and [Pd(N3)2(NNO)2] furnishes the 1,1-azido-bridged dinuclear diradical ([Pd(NNO)2]2(µ-1,N3;µ-1,N3)2+, with a Pd-N-Pd angle close to 127° (X-ray). Magnetic and EPR measurements indicate two independent S = 1/2 spin carriers and no magnetic interaction in the solid state. The two diradical species both show no spin exchange in solution, likely because of unhindered rotation around the Pd–X–Pd core. This work demonstrates that a single bridging atom can induce subtle and tunable changes in structural and magnetic properties of novel dinuclear Pd complexes featuring two ligand-based radicals.

Introduction

Dinuclear transition metal complexes are receiving widespread attention as both structural mimics for naturally occurring metalloenzyme active sites—where metal-metal interactions play an important role in the cooperative activation of small molecules[1]—and for their potential use in bimetallic catalysis.[2] Systems with metal–metal bonds are particularly interesting due to their potential use as electron-reservoirs.[3] A special class are dimers of square-planar Rh, Ir, Pt2 and Pd2 complexes that display (weak) metal-metal bonds due to d6–d8 interactions. These interactions arise from overlap in the axial direction between the valence dπ orbitals of the two square planar metal centers, resulting in both filled bonding (dπ) and anti-bonding (dπ∗) orbitals. There is a net overall bonding interaction due to symmetry-allowed mixing with the (n + 1) metal p orbitals.[4] Few dinuclear Pd2 complexes with intramolecular d6–d8 interactions have been identified to date. In most cases, a bridging acetate[5] or neutral ligand[6] is required to pre-organize both metals for this bonding interaction to occur, but an unsupported Pd–Pd interaction has also been reported.[6] However, dinuclear palladium complexes bridged by a single donor ligand are scarce and none featuring an intramolecular d6–d8 interaction have been reported to the best of our knowledge (Figure 1).

Redox-active ligands have recently emerged as an attractive strategy to provide necessary redox equivalents for bond-activation and bond-formation processes.[6] As a logical extension, dinuclear transition metal complexes containing redox-active ligand radicals are receiving significant attention lately.[7]
Scheme 1. Redox states of PdII-coordinated NNO ligand.

Bridgehead donor X influences

\[\text{d}^8-\text{d}^8 \text{ interaction} \quad \text{radical–radical exchange} \]

\[\text{Small } \theta: \text{Singlet ground state} \quad \text{Large } \theta: \text{Triplet ground state} \]

Figure 1. Schematic representation of the potentially tunable spin-exchange interaction in dinuclear palladium complexes with redox-active ligand diradicals.

Diradicals are intriguing species which show interesting properties and can potentially trigger or facilitate special (e.g., spin-forbidden) reactions. However, our current understanding of the properties of diradicals is limited, and a deeper understanding is important to allow the targeted synthesis of diradicals with predefined properties and/or reactivity patterns. Furthermore, exchange interactions between the unpaired electrons can allow for facile tuning of the exchange interactions through changes in the linker between the metal centers. This strategy would permit the use of redox-active metals and metalloids, which greatly widens the synthetic scope compared to systems where the diradical character is purely metal-based. Strikingly, the synthesis of dinuclear complexes with one redox-active ligand on each metal is ill-explored and hence little is known about magnetic exchange phenomena for such species.

Especially in case of only a single bridging ligand, subtle variations potentially influence the overall magnetic properties of the system. Depending on the relative orientation and/or distance between the two spin carriers, diradicals can exist in a triplet (ferromagnetic coupling) or singlet (antiferromagnetic coupling) ground state due to spin-exchange coupling (J)\cite{9, 10, 11}. These species are of interest for applications in tunable electronic switching and molecular magnetic materials\cite{12, 13}.

Modular synthesis routes that allow facile installment of different types of bridging ligands would be of interest in order to quickly assess their impact on the magnetic properties of these complexes.

We recently reported novel paramagnetic PdII complexes bearing a redox-active NNO ligand (Scheme 1) or a phosphine derivative thereof (PNO), which were shown to undergo selective intramolecular ligand-to-substrate single-electron transfer upon one-electron reduction\cite{14}. Inspired by these results, we herein detail our efforts to manipulate the neutral PdII-radical [PdCl(NNOSG)] (1) and to investigate its behavior upon substitution of the chloride ligand. This has resulted in the unique dinuclear Pd[Cl(μ-Cl)] complex ([Pd(NNOSG)(μ-Cl)]$^+$ (2), featuring a ligand-centered radical on each [Pd(NNO)] moiety and a very small bond angle for the Pd-Cl-Pd fragment. A combined experimental and computational study suggests a favorable d8–d8 interaction for the chloride bridged dinuclear complex in the solid state. Besides this monohalide bridgehead structure, we also developed a selective route to a dinuclear Pd complex bearing a single pseudo-halide bridging ligand. Given the frequent use of complexes with a bridging azide ligand in molecular magnetism studies\cite{15}, the Pd-(N$_3$)-Pd core was deemed a relevant target. Using the first example of a palladium azide bearing a ligand radical, the 1,1-bridged azide-analogue of 2 is reported. Magnetic measurements show that there is a significant influence of the bridging atom on the electron exchange in the ligand-centered diradicals. The underlying facile heterocoupling chemistry of two different Pd precursors illustrates the convenient synthesis of these species, which might aid the development of versatile routes to other dinuclear ligand diradical complexes.

Results and Discussion

Synthesis and characterization of dinuclear Pd complex 2 in solution

Abstraction of the chlorido ligand in complex 1 with Ag salts resulted in one-electron oxidation of the ligand backbone to give diamagnetic cationic [PdCl(NNOSG)]$^+$ species (Scheme 1). Treatment of 1 with the soffer, non-oxidizing thallium(I) hexafluorophosphate (TlPF$_6$) in a non-coordinating solvent (CH$_2$Cl$_2$) led to a color change from brown to brownish-green (Scheme 2). CSI-MS studies indicate the presence of an intact dinuclear species in solution with m/z 923.2468 [M]$^+$, indicating the formation of diradical 2. Notably, addition of up to five equivalents of TIPF$_6$ resulted in the same product, with no indication for additional chloride abstraction. Dark-brown single crystals of 2 suitable for X-ray structure determination were obtained by diffusion of pentane into a CHCl$_3$ solution.

The molecular structure (Figure 2) exhibits slightly distorted square-planar geometries around both metal centers and a single bridging chlorido ligand. Well-defined dinuclear palladium complexes with just a single chlorido bridging ligand are
rare[15] and no examples bearing ligand radicals have been reported. The intra-ligand bond lengths are characteristic for the iminosemiquinonato (NNOISQ) oxidation state[16] for both ligands. The two Pd/C0 bond lengths are similar and slightly longer than for complex 1. Most noteworthy is the very small Pd-Cl-Pd angle of 93.11(2), which hints at an interaction between the two \{Pd(NNO)\} segments.[17] Other crystallographically characterized dinuclear (Pd\textsubscript{j}(μ-Cl)) species have much larger Pd-Cl-Pd angles of 120–130\textdegree.[15] The short Pd–Pd distance of 3.4083(3)Å is longer than the sum of the van der Waals radii (3.26 Å), ruling out a formal bond. The torsion angle of 66\textdegree between the two (Pd(NNO)POO) segments seems to rule out any involvement of π–π stacking between the ligands, but rather suggests the existence of a dπ–dπ interaction.

To find an explanation for the unusually skewed [LPd–Cl–PdL] geometry, complex 2 was studied computationally by using DFT calculations (Figure 3, top). It was found that dispersion corrections[18] were essential to obtain structures that were in good agreement with the experimental data (Figure 3, middle). This is in agreement with earlier reports which also state that dπ–dπ–dπ–dπ interactions are best described as dispersion interactions.[19] Employing either i) the b3-lyp-D3 functional with the def2-TZVP basis-set or ii) the PBE0-D3 functional with the 6-31+G(d,p) basis-set for light atoms and the LanL2DZ-mod basis-set for Pd afforded a geometry in agreement with the experimental parameters. Notably, where the b3-lyp-D3/def2-TZVP combination slightly overestimated the Pd–Pd distance (\alpha) and the Pd-Cl-Pd angle (\beta), the PBE0-D3/6-31+G(d,p)/LanL2DZ-mod combination slightly underestimated both. AIM analysis showed no formal bond between the Pd atoms, but it provided support for a possible interaction involving d orbitals.[20] The CPK model of the optimized structure (Figure 3, bottom) suggests a close contact between one tBu group of fragment and one of the gem-Me groups of the second fragment. To exclude that the respective van der Waals interaction is the sole contributor to the short intramolecular Pd–Pd distance, the structure was optimized with the tBu groups removed.[20] Analysis of the resulting structure showed a shortening of the Pd–Pd distance suggesting that the steric bulk of the tert-butyl groups actually weakens any interaction between the two dπ metal centers.

The open-shell singlet (OSS) and the (optimized) triplet state lie very close in energy (EOSS = ET = –0.3 kcal mol–1), indicative of a moderate spin-exchange interaction (2\textsuperscript{J_{calc}} = –106.1 cm–1; b3-lyp-D3/def2-TZVP). In both the OSS and triplet state, both unpaired electrons reside on separate iminosemiquinonato fragments (Figure 4, left). Analysis of the molecular orbitals clearly indicates a weak bonding overlap between the dπ orbitals of the two metal centers (Figure 4, right). Indeed, as is common for dπ–dπ interactions, a weakly antibonding orbital (ca. 0.25 eV higher in energy) is also filled.[20] Natural bond order (NBO) analysis showed a bonding interaction of approximately 6 kcal mol–1.

![Figure 2](image-url) Left: Displacement ellipsoid plot (50% probability level) of complex 2. Hydrogen atoms, PF\textsubscript{6} anion and lattice solvent molecules are omitted for clarity. Right: Table showing relevant bond lengths.

![Figure 3](image-url) Top: DFT optimized geometry and relevant experimental and computational metric parameters. Bottom: CPK model of DFT optimized geometry of complex 2 (b3-lyp-D3/def2-TZVP).

![Figure 4](image-url) Left: Spin density plots of the OSS (top) and triplet (bottom) spin states. Right: Bonding orbital between the two Pd atoms (Triplet α HOMO-5, b3-lyp-D3/def2-TZVP).
Magnetic behavior of complex 2 in the solid state

For a definitive insight into the magnetic behavior of complex 2, magnetic measurements were performed on a polycrystalline sample using a SQUID magnetometer. The χ_T value at room temperature is approximately 0.6 cm3/mol/K, corresponding to an effective magnetic momentum of 2.19 μ_B. Upon lowering the temperature, χ_T approaches to zero, revealing a singlet ground state. The χ vs. T plot (Figure 5, inset) exhibits a broad maximum at 110 K, again indicating an antiferromagnetic (AF) interaction. Modeling the experimental data using a fitting procedure to the Heisenberg–Dirac–van Vleck (HDvV) spin Hamiltonian for isotropic exchange coupling and Zeeman splitting (Eq. (1)) leads to an exchange coupling constant $J = -63$ cm$^{-1}$.

\[
\hat{H} = -2J\vec{S}_1\cdot\vec{S}_2 + g\mu_B\vec{B}\left(\vec{S}_1 + \vec{S}_2\right)
\]

Therefore the singlet–triplet energy gap ΔE_{S-T} (which is equal to $2J$) is -126 cm$^{-1}$ or -0.36 kcal/mol$^{-1}$, confirming a singlet ground state for 2 with a moderate spin-exchange interaction. These observations are fully supported by the DFT calculations, predicting a similarly moderate AF exchange coupling constant (ORCA, b3-lyp, def2-TZVP, D3ZERO: -45.3 cm$^{-1}$; Turbomole, b3-lyp, def2-TZVP, disp3: -53.1 cm$^{-1}$).

VT EPR spectroscopy on a polycrystalline sample of 2 is in agreement with the SQUID measurement revealing a triplet signal in the temperature range between 20–60 K (Figure 6). At temperatures >60 K the signal broadens and rapidly becomes very weak due to fast relaxation (likely induced by Pd).[20] Below 60 K the intensity of the triplet signal shows the typical temperature dependence expected for an AF coupled system, and the signal vanishes completely at temperatures below 20 K (Figure 6).[20] Fitting the temperature dependence of the triplet signal intensity versus T yielded an exchange coupling parameter $J = -47$ cm$^{-1}$, similar to the DFT-calculated value ($J = -45$ cm$^{-1}$) and the value obtained from the SQUID measurements ($J = -63$ cm$^{-1}$).[20]

Magnetic behavior complex 2 in solution

Interestingly, in solution there is no evidence for exchange coupling between the two unpaired electrons of complex 2. Contrary to the solid state data, the EPR spectrum of 2 in rapidly frozen toluene at 20 K shows only a $S = 1/2$ signal, reflecting a more random orientation of the two Pd subunits than in the crystalline solid state. In benzene solution at room temperature, a well-resolved $S = 1/2$ signal is observed, with similar hyperfine couplings as previously observed for 1 (Figure 7 and the Supporting Information). Magnetic susceptibility measurement of 2 at 298 K in CDCl$_3$ using Evans’ method[21] gave an effective magnetic moment (μ_{eff}) of 2.18 μ_B, which is close to the value predicted for a system with two noninteracting $S = 1/2$.
spins (2.45 μ). The UV/Vis spectrum of 2 in solution is similar to that of 1, with an additional absorption at 441 nm.

Paramagnetic 2 shows relatively sharp resonances in the 1H NMR spectrum at δ = -2–20 ppm at room temperature.[20] VT NMR spectroscopy of 2 in CDCl₃ showed a temperature dependence for the 1H NMR chemical shifts. Increasing the temperature from -60 to +60 °C led to a narrowing of the spectral range by ±8 ppm. Plots of the 1H NMR shifts versus T⁻¹ are shown in Figure 8. The linear dependence of the paramagnetic shift with T⁻¹ over this temperature range for all seven observable proton types (one signal is obscured by the tBu group) allowed for tentative assignment of the observed resonances.[20] The linear Curie plots reveal an uncomplicated spin state with no sign of exchange coupling in solution in this temperature range. The linearity of these plots, combined with the fact that no additional NMR signals are generated over the temperature range from -60 to +60 °C (dissociation of the dinuclear complex should result in additional) further indicates that the dinuclear complex stays intact in solution over this broad temperature range. These observations confirm that in solution the two unpaired electrons of 2 behave as essentially non-interacting spin carriers over a broad temperature range. Hence, the magnetic behavior of this complex in solid state and solution phase is very different, which is likely related to rotational flexibility in the Pd-Cl-Pd core (Figure 9). HR-MS data also support the proposal that 2 remains intact as a dinuclear species in solution.

To confirm whether this novel dinuclear diradical species only forms in the absence of suitable donor ligands, complex 2 was treated with one equivalent of PPh₃.[22] This led selectively to paramagnetic complex 3, together with one equivalent of complex 1 (Scheme 3). This result confirms that the chlorido-bridged dinuclear complex, although stable, does not persist in the presence of a better ligand. It also suggests that it might be possible to exchange bridgehead groups in case a non-neutral co-ligand is employed. When a solution of complex 1 in CH₂Cl₂ is treated with an equimolar amount of TIPF₆ in the presence of PPh₃, complex 3 is formed as the only product with full conversion of 1. Notably, 31P NMR spectroscopy on paramagnetic 3 reveals the coordinated phosphine as a sharp singlet at δ = 28.63 ppm (the chemical shift is indicative of coordination to Pd)[23] and the PF₆ ion as a fully resolved septet, while the 1H NMR spectrum displays four broad resonances between δ = 8.36 and 1.19 ppm.

Although it appears that dinuclear 2 is susceptible to reaction with additional ligand and potentially also metalloligand species, we reasoned that access to other monoatom-bridged dinuclear palladium diradical species could be more easily achieved by using a mixture of chloride species 1 and a neutral, non-chloride-containing analogue, [Pd(X)(NNO)]₄⁻[23]. The in situ-generated cationic (Pd(NNO)₄)⁺ species should then be trapped selectively by this non-chlorido derivative to form a new monoatom-bridged dinuclear diradical. Therefore, the azido derivative was prepared by substitution of the chlorido ligand in 1 through salt metathesis with sodium azide. The reaction proceeded smoothly in MeOH, yielding the corresponding [Pd(N₃)(NNO)₄] complex 4 as a purple crystalline material (Figure 10, top), which showed similar EPR spectral features as 1. The IR spectrum contains a strong absorption at ν = 2035 cm⁻¹, which is in the characteristic range for metal azides. Cyclic voltammetry of 4 in CH₂Cl₂ solution revealed fully reversible one-electron oxidation and reduction events at +0.07 V and -0.97 V vs. Fc/Fc⁺, respectively. The observed redox potentials reflect the higher electron-withdrawing character of the azido, relative to the chlorido ligand in complex 1 (–0.04 and –1.1 V),[33] showing that the redox behavior of the NNO ligand is also strongly dependent on the additional ligand. Similar to 1, in situ reduction using [CoCp]⁺[34] allowed for the formation of a diamagnetic species which could be characterized by NMR spectroscopy.[20] Crystals for neutral azido-species

Figure 8. Curie plots of the 1H NMR shifts versus T⁻¹ of complex 2 in CDCl₃ in the range –60 to +60 °C.

Figure 9. Solution vs. solid-state magnetic properties of 2.

Scheme 3. Reactivity of complex 2 with PPh₃ to form complex 3 and independent synthesis of 3 directly from 1.
showed a strong absorption at 2073 cm\(^{-1}\) that can be attributed to a palladium azide fragment, although this signal is clearly shifted to a higher wavenumber than found for 4 (\(\Delta \nu = 38 \text{ cm}^{-1}\)).

Dark yellowish-green needles suitable for X-ray diffraction were obtained by slow diffusion of pentane into a chloroform solution (Figure 11), which unambiguously confirmed the composition of complex 5 as \([\text{Pd(NNO\(^{(d6)}\))}_2(k^1-N_3_N_3_N_3)\text{PF}_6]\). The metric parameters for the intramolecular bond lengths are characteristic for the iminosemiquinonato oxidation state for both NNO ligands, just as in complex 2. Due to the 1,1-bridging mode of the azide, the Pd–N\(_x\) bonds are slightly elongated with respect to 4. The elongated Pd–Pd distance of 3.6843(3) Å and the large Pd-N-Pd angle of approximately 127° contradict the presence of a d\(^{10}\)-d\(^{10}\) interaction between the two metal centers, which is in stark contrast with what is observed for complex 2. Another interesting observation is the elongation of the N\(_x\)--N\(_\beta\) bond compared to the value in [Pd(N\(_{3}\)N\(_{3}\)N\(_{3}\))\(^{(d6)}\)]\((1.225(12) \text{ Å vs. 1.168(2) Å in 4})\) and a slight contraction of the N\(_\beta\)--N\(_\gamma\) bond (1.148(13) Å vs. 1.168(3) Å for 4), which is suggestive of azide activation.

The EPR spectrum of 5 at room temperature is similar to those of 1 and 2. EPR spectroscopy on a polycrystalline sample showed no triplet signal at both ambient and low temperatures. Notably, magnetic susceptibility measurements on the same solid (Figure 12, squares) showed a nearly temperature-independent \(\chi_sT\) value of 0.757 cm\(^3\)mol\(^{-1}\)K\(^{-1}\) (corresponding to 2.46 \(\mu_B\), as expected for two independent S = 1/2 spin carriers (2.45 \(\mu_B\) with no significant magnetic interaction. Hence, the magnetic behavior is similar to that of 1 (Figure 12, rounds), where no intramolecular spin-exchange is possible by default.

Conclusions

In conclusion, chloride abstraction from 1 in the absence of a suitable additional ligand results in the formation of the unique mono-chloride bridged dinuclear diradical 2, wherein the separated unpaired electrons are located on the redox-active NNO ligands. Single crystal X-ray crystallography indi-
This research was funded by the European Research Council (ERC Starting Grant 279097 to J.L.v.d.V.). We thank Prof. Franc Meyer (Göttingen) for generous access to SQUID equipment. The Bruker Apex II X-ray diffractometer was financed by the Netherlands Organization for Scientific Research (NWO). Konstantin Kottrup and Dr. Sylvestre Bonnet (both Univ. Leiden) are thanked for suggestions concerning the magnetoochemistry. We thank Ed Reijerse and Eckhard Bill (MPI CEC Mühlheim a/d Ruhr) for helpful discussions about the triplet EPR spectrum of complex 2.

Keywords: ligand effects · magnetism · open-shell systems · palladium · radicals

Figure 12. Temperature dependence of χ\textsubscript{m}T of complex 1 (circles) and complex 5 (squares).

[18] a) Support Information for details.

A Full Paper

Received: January 8, 2015
Published online on March 3, 2015