New strategies to enhance photodynamic therapy for solid tumors
Broekgaarden, M.

Citation for published version (APA):
Broekgaarden, M. (2016). New strategies to enhance photodynamic therapy for solid tumors

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
New Strategies to enhance photodynamic therapy for solid tumors.

Photodynamic therapy for cancer uses laser light to activate tumor-localized dyes (photosensitizers), resulting in the production of highly toxic reactive molecular species at the tumor site. As a result, tumor cells sustain massive intracellular damage, the blood vessels that provide the tumor with nutrients is destroyed, and the immune system is activated to remove residual tumor cells. Together, these events synergize to eliminate the malignant tissue. However, this potentially effective and patient-friendly therapy has seen limited clinical application due to the suboptimal characteristics of the photosensitizers, the inability of the photosensitizers to accumulate at the tumor tissue, and the inherent capability of tumor cells to adapt to therapy that enables their survival. To resolve these shortcomings and address these challenges, the aim of this research was to develop a drug delivery system that targets photosensitizers towards the tumor tissue and to investigate how tumor cells respond to the therapy in their attempt to survive. The results of these investigations were used to guide the design of photodynamic therapy-based combination treatments, in which photosensitizers and survival-inhibiting chemotherapeutics were simultaneously packaged into nanoparticulate formulations.

This thesis was prepared at the Department of Experimental Surgery of the Academic Medical Center, University of Amsterdam under the supervision of prof. dr. Thomas M. van Gulik and dr. Michal Heger.
NEW STRATEGIES TO ENHANCE PHOTODYNAMIC THERAPY FOR SOLID TUMORS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom

ten overstaan van een door het College voor Promoties ingestelde commissie,
ic het openbaar te verdedigen in de Agnietenkapel

op dinsdag 12 januari 2016, te 12:00 uur

door Mans Broekgaarden

egen te Barneveld
Promotiecommissie:

Promotor: prof. dr. T.M. van Gulik

Copromotor: dr. M. Heger

Overige leden: dr. M.R. Hamblin
prof. dr. G. Storm
prof. dr. J.P. Medema
prof. dr. R. Versteeg
prof. dr. C.J.F. van Noorden
prof. dr. U.H.W. Beuers

Universiteit van Amsterdam
Harvard Medical School
Universiteit Utrecht
Universiteit van Amsterdam
Universiteit van Amsterdam
Universiteit van Amsterdam

Faculteit der Geneeskunde
Table of contents

Chapter 1
Introduction, aims, and thesis outline 7

Chapter 2
Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery 11

Chapter 3
Development and in vitro proof-of-concept of interstitially targeted zinc-phthalocyanine liposomes for photodynamic therapy 47

Chapter 4
Nanobody-functionalized liposomes enhance photosensitizer uptake and photodynamic therapy efficacy 67

Chapter 5
Development of tumor vascular endothelium targeted liposomes containing zinc phthalocyanine for application in photodynamic therapy 83

Chapter 6
Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies 101

Chapter 7
Low-power photodynamic therapy induces survival signaling in perihilar cholangiocarcinoma cells 149

Chapter 8
Inhibition of hypoxia inducible factor 1 with acriflavine sensitizes tumor cells to photodynamic therapy with zinc phthalocyanine-encapsulating cationic liposomes 169

Chapter 9
Inhibition of hypoxia-inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinoma cells to photodynamic therapy 187

Chapter 10
Inhibition of NF-κB in tumor cells exacerbates immune cell activation following photodynamic therapy 205

Chapter 11
Photodynamic therapy with liposomal zinc phthalocyanine and tirapazamine increases tumor cell death via DNA damage 217

Chapter 12
Discussion, outlook, and conclusion 237

Summary/Samenvatting 247

Portfolio 249

Acknowledgements/Dankwoord 253