Clean Quantum and Classical Communication Protocols

Buhrman, H.; Christandl, M.; Perry, C.; Zuiddam, J.

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.117.230503

Citation for published version (APA):
Clean Quantum and Classical Communication Protocols

Harry Buhrman,1 Matthias Christandl,2 Christopher Perry,2 and Jeroen Zuiddam1
1QuSoft, CWI Amsterdam and University of Amsterdam, Science Park 123, 1098 XG Amsterdam, Netherlands
2QMATH, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
(Received 1 July 2016; published 1 December 2016)

By how much must the communication complexity of a function increase if we demand that the parties not only correctly compute the function but also return all registers (other than the one containing the answer) to their initial states at the end of the communication protocol? Protocols that achieve this are referred to as clean and the associated cost as the clean communication complexity. Here we present clean protocols for calculating the inner product of two n-bit strings, showing that (in the absence of preshared entanglement) at most $n + 3$ qubits or $n + O(\sqrt{n})$ bits of communication are required. The quantum protocol provides inspiration for obtaining the optimal method to implement distributed CNOT gates in parallel while minimizing the amount of quantum communication. For more general functions, we show that nearly all Boolean functions require close to $2n$ bits of classical communication to compute and close to n qubits if the parties have access to preshared entanglement. Both of these values are maximal for their respective paradigms.

DOI: 10.1103/PhysRevLett.117.230503

In a communication task, two players, Alice and Bob, receive inputs x and y and wish to calculate the value of some function f. To achieve this, messages will have to be exchanged between them, and, depending on the resources available to them, these may consist of classical or quantum communication in the form of bits and qubits, respectively. Typically, in such scenarios one is interested in minimizing the amount of communication that has to take place to evaluate the function, and the number of bits (qubits) that must be exchanged to do this is referred to as the classical (quantum) communication complexity [1,2].

A protocol for calculating a function will act on three distinct types of registers. Each player will receive an input register, containing x or y, and an ancillary working space, initialized in some standard state such as a string of bits all set to 0, a number of qubits provided in the $|0\rangle$ state, or possibly containing entangled states shared between the parties. The final type of register is the answer register, which will contain the value of $f(x, y)$ at the end of the protocol. On the completion of a generic protocol for computing f, the input and ancillary registers will no longer be in their starting states and will depend upon both x and y.

However, leaving these registers in such states can be problematic. First, if Alice and Bob wish to keep private the particular protocol that they ran, then discarding these unclean states may leak information regarding this to a third party. Second, in the quantum setting, if the players wish to run the protocol over a superposition of input states (perhaps as a subroutine of a larger computation), then allowing the ancillary registers to end up in some unclean, input-dependent state and then discarding them can lead to a loss of coherence in the superposition over answers. Finally, the players’ computational space may be in short supply, and without knowing the registers’ final states they cannot easily use them for future calculations.

To avoid such issues, we can demand that a protocol (in addition to computing f) returns the input and ancillary registers to their starting state. Following Ref. [3], we call such a protocol clean, and the minimum number of bits or qubits that a clean protocol needs to exchange to compute a given function is the clean communication complexity. We shall denote these quantities by $C_{\text{clean}}(f)$ and $Q_{\text{clean}}(f)$. In the case where the players have access to preshared entanglement (which they must restore at the end of the protocol), the associated cost will be written Q_{clean}. We focus on the scenario where the players must compute the function exactly.

In all three scenarios, an unclean communication protocol can be converted into a clean one at the cost of doubling the communication. To do this, the players run the unclean protocol, copy the output to another location, and then run the unclean protocol backwards. At first glance, it may appear that clean, classical protocols are even easier to construct: The players keep a copy of their input and then simply erase all ancillary bits once the protocol is complete. However, Landauer’s principle [4–6] implies that such irreversible manipulations will generate heat or else cost work. As such, if one is interested in avoiding such costs, it makes sense to consider protocols where all operations must be reversible. In light of these constructions, it is natural to ask: Do more efficient clean protocols, without this doubling in communication, exist?

We first focus on the clean communication complexity of computing the inner product of two distributed bit strings of length n, showing that (without preshared entanglement) this can be done by exchanging $n + 3$ qubits. As a clean
protocol for this function must exchange at least \(n + 1 \) qubits, this is very close to tight. We also provide a clean, classical protocol that computes the inner product while exchanging only \(n + O(\sqrt{n}) \) bits. This provides a saving over the most obvious protocol which, as we shall show, is close to optimal for the clean, classical computation of most functions.

A variation on our quantum protocol can be used to implement \(n \) copies of a CNOT gate in parallel by exchanging \(n + 1 \) qubits. In a quantum computing architecture consisting of distributed clusters of highly controllable qubits linked by quantum communication (such as that envisaged in Ref. [7]), it is prudent to minimize the number of qubits exchanged. Our implementation is optimal.

Next, we turn to the clean communication complexity of random functions on inputs of length \(n \). We show here that, in contrast to the inner product, nearly all functions are such that \(C_{\text{clean}}(f) \) is close to the maximal \(2n \): The simple method of generating clean protocols discussed above is near optimal. On the quantum side, we find that \(Q_{\text{clean}}(f) \) is close to \(n \) for most functions. As superdense coding [8] allows all functions to be uncleanly computed while exchanging \(n/2 \) qubits when the players preshare entanglement, this is again close to maximal. Whether similarly \(Q_{\text{clean}}(f) \) is close to \(2n \) remains an open question.

Appendices can be found in Supplemental Material [9].

Clean protocols.—Clean protocols have a long history in proving bounds in the model of quantum communication complexity with free entanglement assistance [16]. For example, considering clean, quantum protocols for the inner product function was used to imply that any entanglement-assisted quantum protocol for this function must use at least \([n/2] \) qubits [3]. Clean protocols have also been used to lower bound the entanglement-assisted, quantum communication complexity [17] and to show that, in this model of communication, most functions have complexity that scales linearly in \(n \) [18]. Cleanliness has also been used to analyze privacy among honest players [19], to bound the amount of quantum communication required to implement distributed quantum computation [20], and for constructing resource inequalities that carefully account for the way protocols can be combined [21,22].

More formally, a clean, quantum protocol for computing a function \(f : \{0,1\}^n \rightarrow \{0,1\} \) is defined as follows [3]. The initial state at the beginning of the protocol is of the form

\[
|x\rangle_A |0\rangle_{A_0} |y\rangle_B |0\rangle_{B_0} |\Phi\rangle_{A_1 B_1} |z\rangle_{B_{\text{ms}}},
\]

where \(|x\rangle_A = \bigotimes_{i=1}^n |x_i\rangle_{A_i} \) and \(|y\rangle_B = \bigotimes_{i=1}^n |y_i\rangle_{B_i} \) are Alice and Bob’s respective inputs stored in \(n \) qubits, \(|0\rangle_{A_0} \) and \(|0\rangle_{B_0} \) their qubit ancillas, \(|\Phi\rangle_{A_1 B_1} \) their preshared entanglement (if supplied), and \(|z\rangle_{B_{\text{ms}}} \) is the initial state of the answer register with \(z \in \{0,1\} \). Throughout this Letter, we will assume that at the beginning and end of a protocol the answer register is held by Bob.

Players then take turns to act on their share of the qubits. In each turn, a player will apply a unitary transformation to the qubits in their possession and then send some subset of them to the other player. The protocol computes \(f \) cleanly if the final state of the qubits is

\[
|x\rangle_A |0\rangle_{A_0} |y\rangle_B |0\rangle_{B_0} |\Phi\rangle_{A_1 B_1} |z\rangle_{B_{\text{ms}}} = \bigoplus_{x,y} f(x,y) |x\rangle_A |y\rangle_B |\Phi\rangle_{A_1 B_1} |z\rangle_{B_{\text{ms}}},
\]

where the addition in the answer register is modulo 2. Clean classical protocols are defined similarly but with registers and communication given in terms of bits rather than qubits and no entanglement. All transformations must be reversible.

Inner product.—The specific function that we shall focus on in this paper is the inner product function \(IP_n \). This is defined by

\[
IP_n : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\},
\]

\[
IP_n(x,y) = \sum_{i=1}^n x_i \cdot y_i \mod 2.
\]

It is well known that, for both players to know the answer, at least \(n \) bits of classical communication are needed to (uncleanly) compute \(IP_n \) exactly (Example 1.29 in Ref. [23]). For quantum strategies in which the players preshare entanglement, \([n/2] \) qubits must be sent [3] to achieve the same goal. In Ref. [3], it is also shown that clean, quantum protocols for computing \(IP_n \) must exchange at least \(n \) qubits. The quantum communication required to uncleanly compute \(IP_n \) without prior entanglement is unknown (though it must lie between \([n/2] \) and \(n \)). For quantum protocols that are allowed to err with a fixed probability less than 1/2, the complexity is still \(\Omega(n) \) [24].

Here we examine the clean communication complexity of \(IP_n \) without entanglement assistance. To this end, we first consider the quantum communication complexity of implementing the transformation:

\[
|x\rangle_A |y\rangle_B \mapsto (-1)^{x \cdot y} |x\rangle_A |y\rangle_B,
\]

i.e., the distributed computation of the inner product of \(x \) and \(y \) in the phase. Such a transformation corresponds to performing controlled-Z gates across \(n \) pairs of qubits, and by a suitable local basis change this can be converted into an implementation of \(n \)-fold CNOTs.

In Ref. [25], it was shown that two qubits of communication together with sharing four ebits is exactly equivalent as a resource to the ability to implement two CNOT gates and sharing four ebits. As such, this provides a protocol for implementing \(IP_n \) in the phase using \(n + 8 \) qubits of communication and eight ancilla qubits (for even \(n \)). This can be adapted to give a protocol requiring \(n + 2 \) qubits of communication for even \(n \) and \(n + 3 \) qubits when \(n \) is odd. In the following lemma, we give an improved, optimal protocol.
FIG. 1. Clean, quantum protocol for calculating IP_n in the phase. Here we illustrate the first four rounds of communication. In each round, a player cleans up the message they sent previously, applies the relevant global phase, and communicates the next bit of their input string.

Lemma 1.—The clean, quantum communication complexity of exactly implementing IP_n in the phase satisfies

$$Q_{clean}(IP_n^{\text{phase}}) = n + 1. \quad (5)$$

One ancilla qubit is required. (Without using ancilla qubits, $n + 1$ qubits for odd n and $n + 2$ for even n suffice.)

Proof.—The $n + 1$ qubit protocol for even n is as follows. Alice initially prepares an ancilla qubit in the state $|x_1\rangle$ and sends it to Bob, who applies a phase of $(-1)^{x_1\cdot y_1}$. He then adds y_2 to the communication qubit and sends it back to Alice in the state $|x_1 \oplus y_2\rangle$. Now, Alice cleans up her previous communication by subtracting x_1 from the communication and then uses the value of y_2 to apply the phase $(-1)^{x_2\cdot y_2}$. She then adds x_3 to the communication qubit to leave it in the state $|y_2 \oplus x_3\rangle$ and sends it back to Bob. A schematic of these first rounds is given in Fig. 1.

The players then proceed similarly, with each round of communication being used to convey a new bit to the other party and send a received bit back in order to clean the ancilla qubit. After n rounds, the global phase will be $(-1)^{x_n\cdot y_n}$, and Alice will hold the communication qubit in the state $|y_n\rangle$. She sends this back to Bob, who cleans it, completing the protocol using $n + 1$ qubits of communication and the change in ownership of one ancilla qubit. For odd n, Alice will perform the final cleaning step. The protocol to implement the transformation without an ancilla qubit is given in Appendix B1 [9].

No ancilla qubits are required.

Generic functions.—In contrast to Theorem 3, we will show that nearly all Boolean functions on n-bit inputs require $2n - O(\log n)$ bits of classical communication to compute cleanly. The proof follows from the following two lemmas. In what follows, X and Y are the random variables for Alice and Bob’s inputs, and A and B are the random variables received by Alice and Bob, respectively, over the course of the protocol. By $|a|$ and $|b|$, we denote the number of bits received by Alice and Bob.

Lemma 4.—Consider picking uniformly at random a Boolean function f_n on n-bit inputs. Then with probability $1 - o(1)$, all protocols that compute f_n exactly are such that either 1. Alice must receive

$$|a| \geq n - \log(n + 1) - 2 \quad (8)$$

bits and there exists a uniform distribution over at least half the pairs of inputs such that

$$I(Y:AX) \geq n - \log(n + 1) - 3, \quad (9)$$

or 2. Bob must receive

$$|b| \geq n - \log(n + 1) - 2 \quad (10)$$

bits and there exists a uniform distribution over at least half the pairs of inputs such that
FIG. 2. Partitions of the communication matrix into rectangles.
Note that knowledge of y, together with knowledge of which rectangle the players’ input pair belongs to, allows Bob to correctly deduce the value of $f(x,y)$. (a) As there exists a protocol for computing f that partitions M^f into large rectangles, the Kolmogorov complexity of M^f is low. (b) For M^f to have high Kolmogorov complexity, all protocols for computing f must partition M^f into either very narrow or very thin rectangles. To produce the bound in Eq. (9), we take a distribution over the shaded rectangles.

$$I(X:BY) \geq n - \log(n+1) - 3.$$ \hspace{1cm} (11)

Proof.—The full proof is given in Appendix C1a [9].

To prove the first two bounds, begin by noting that the communication matrix M^f [defined by $M^f_{xy} = f(x,y)$] of a random Boolean function has large Kolmogorov complexity with high probability. However, a classical protocol for computing f partitions the matrix into rectangles (see Appendix A2 [9]), each of which has low Kolmogorov complexity. If one of these rectangles is large enough (which happens when the amount of communication that takes place in one direction is small), then the Kolmogorov complexity of M^f will also be low. Such an M^f is shown in Fig. 2(a). Comparing these two statements leads to the bounds on $|a|$ and $|b|$.

These bounds imply that the rectangles induced by any protocol for computing most f_n must be either very short or very thin as shown in Fig. 2(b). In fact, they cannot be larger than $4(n+1) \times 2^n$ or $2^n \times 4(n+1)$. Either at least half the inputs will belong to very short rectangles or at least half the inputs will belong to very thin ones. By taking a distribution over the larger set, we induce a direction into the communication that occurs in the protocol to ensure that one of Eqs. (8) and (10) holds and bound the related mutual information. For example, consider the case where more than half the input pairs lie in rectangles of a size less than $2^n \times 4(n+1)$ (as shown in the figure) and the distribution over x and y is formed by picking Alice and Bob’s inputs uniformly at random from such rectangles. Then, at the end of the protocol, Alice will know that Bob received one of at most $4(n+1)$ inputs and Eq. (8) will hold. Hence,

$$I(Y:AX) = H(Y) - H(Y|AX) \geq n - \log(n+1) - 3,$$

as required.

Lemma 5.—Let f be a Boolean function and its inputs be chosen according to some distribution. Then, in a clean protocol for exactly computing f,

$$|b| \geq I(Y:XA) - I(X:Y)$$ \hspace{1cm} (12)

and

$$|a| \geq I(X:YB) - I(X:Y) - 1.$$ \hspace{1cm} (13)

Proof.—The full proof can be found in Appendix C1b [9]. It revolves around considering a protocol as r rounds in which each player speaks (see Fig. 3). The bounds are then constructed by noting that in each round the players’ messages are produced by a deterministic, reversible function of their inputs, local memory (denoted by A_i' and B_i'), and the last message received. To obtain (for example) Eq. (13), the chain rule for the conditional mutual information can then be used to write

$$I(X:YB) = I(X:Y) + I(X:B_i'|Y)$$

$$+ \sum_{i=1}^r I(X:A_i|YB'B_{i+1}B_{i+2}...B_r)$$

$$\leq I(X:Y) + 1 + |a|,$$

where in the last line we have used the fact that the protocol is clean and that the conditional mutual information can be upper bounded by the number of bits contained in A_i.

Combining these two lemmas, together with the fact that $I(X:Y) \leq 1$ for uniform distributions over at least half the possible inputs, we obtain the following theorem.

Theorem 6.—Consider exactly computing a Boolean function f_n on n-bit inputs that has been picked uniformly at random. Then with probability $1 - o(1)$

FIG. 3. Schematic of a classical communication protocol. Here we show how the random variables held by each player change during round i of a communication protocol. Primed variables denote local memories, while nonprimed variables are communication. Each player uses a deterministic, reversible function (S_i and T_i) to determine their next message and update their local memory.

The previous lemma indicates that, to compute most functions, either Alice or Bob must receive close to the entirety of the other player’s input. We now show that a similar amount of information (and hence communication) must flow back in the other direction to make the protocol clean.

Lemma 5.—Let f be a Boolean function and its inputs be chosen according to some distribution. Then, in a clean protocol for exactly computing f,

$$|b| \geq I(Y:XA) - I(X:Y)$$ \hspace{1cm} (12)

and

$$|a| \geq I(X:YB) - I(X:Y) - 1.$$ \hspace{1cm} (13)

Proof.—The full proof can be found in Appendix C1b [9]. It revolves around considering a protocol as r rounds in which each player speaks (see Fig. 3). The bounds are then constructed by noting that in each round the players’ messages are produced by a deterministic, reversible function of their inputs, local memory (denoted by A_i' and B_i'), and the last message received. To obtain (for example) Eq. (13), the chain rule for the conditional mutual information can then be used to write

$$I(X:YB) = I(X:Y) + I(X:B_i'|Y)$$

$$+ \sum_{i=1}^r I(X:A_i|YB'B_{i+1}B_{i+2}...B_r)$$

$$\leq I(X:Y) + 1 + |a|,$$

where in the last line we have used the fact that the protocol is clean and that the conditional mutual information can be upper bounded by the number of bits contained in A_i.

Combining these two lemmas, together with the fact that $I(X:Y) \leq 1$ for uniform distributions over at least half the possible inputs, we obtain the following theorem.

Theorem 6.—Consider exactly computing a Boolean function f_n on n-bit inputs that has been picked uniformly at random. Then with probability $1 - o(1)$
We thank Aram Harrow for helpful discussions and for bringing Ref. [25] to our attention. H. B. was partially funded by the European Commission, through the SIQS project, and by the Netherlands Organisation for Scientific Research (NWO) through gravitational grant Networks. M. C. and C. P. acknowledge financial support from the European Research Council (ERC Grant Agreement No. 337603), the Danish Council for Independent Research (Sapere Aude), VILLUM FONDEN via the QMath Centre of Excellence (Grant No. 10059), and the Swiss National Science Foundation (Project No. PP00P2_150734). J. Z. is supported by NWO through the research program 617.023.116 and by the European Commission through the SIQS project.

