Classical simulation of entanglement swapping with bounded communication

Branciard, C.; Brunner, N.; Buhrman, H.; Cleve, R.; Gisin, N.; Portmann, S.; Rosset, D.; Szegedy, M.

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.109.100401

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
In this Supplementary material we prove that Protocols 1 and 2 generate the desired correlation (equation (1) of the main text), or in other terms, \(P(a = b\{x, y\}) = \frac{1 - \pi^2}{2}. \)

Correlation from Protocol 1

We first note that the definitions of \(a = \text{sign}(\sin(\phi_A)) \) and of \(\phi'_A = (\phi_A - jA \frac{\pi}{4} \mod \pi) \in [0, \frac{\pi}{4}] \) on Alice’s side, and the definitions of \(\beta = \text{sign}(\sin(\phi_B - jA \frac{\pi}{4})) \) (and then of \(b = \pm \beta \)) and of \(\phi'_B = (\phi_B - jA \frac{\pi}{4} \mod \pi) \in [0, \pi] \) on Bob’s side, ensure that the following relations hold, as required:

\[
P(a = b|\phi_A, \phi_B) = P(a \neq b|\phi_A, \phi_B + \pi) = P(a \neq b|\phi_A + \pi, \phi_B) = P(a = b|\phi_A + \pi, \phi_B + \pi) = P(a = b|\phi_A + j\frac{\pi}{4}, \phi_B + j\frac{\pi}{4}) \text{ for any } j \in \mathbb{Z}.
\]

It is therefore sufficient to check that the correct correlation is obtained for \(\phi_A \in [0, \frac{\pi}{4}] \) and \(\phi_B \in [0, \pi]. \)

For such values of \(\phi_A, \phi_B \) (for which \(\phi'_A = \phi_A \) and \(\phi'_B = \phi_B \)), the probability \(P(a = b|\phi_A, \phi_B) \) obtained from Protocol 1 can be calculated as follows:

\[
P(a = b|\phi_A < \phi_B - jB \frac{\pi}{4}) = \frac{16}{\pi} \left(\int_{0}^{\phi_A} d\lambda_{AR} \int_{0}^{\lambda_{AR}} d\lambda_{RB} \psi_{001}^{j\beta}(\phi_B - \lambda_{RB}) + \int_{\phi_A}^{\phi_B - jB \frac{\pi}{4}} d\lambda_{AR} \int_{\phi_{B - jB \frac{\pi}{4}}}^{\lambda_{AR}} d\lambda_{RB} \psi_{001}^{j\beta}(\phi_B - \lambda_{RB}) \right.
\]

\[
+ \int_{\phi_B - jB \frac{\pi}{4}}^{\phi_A} d\lambda_{AR} \int_{\phi_{B - jB \frac{\pi}{4}}}^{\lambda_{AR}} d\lambda_{RB} \psi_{011}^{j\beta}(\phi_B - \lambda_{RB}) + \int_{\phi_{B - jB \frac{\pi}{4}}}^{\phi_B - jB \frac{\pi}{4}} d\lambda_{AR} \int_{\phi_{B - jB \frac{\pi}{4}}}^{\lambda_{AR}} d\lambda_{RB} \psi_{011}^{j\beta}(\phi_B - \lambda_{RB})
\]

\[
+ \int_{\phi_B - jB \frac{\pi}{4}}^{\phi_A} d\lambda_{AR} \int_{\phi_{B - jB \frac{\pi}{4}}}^{\lambda_{AR}} d\lambda_{RB} \psi_{011}^{j\beta}(\phi_B - \lambda_{RB}) + \int_{\phi_{B - jB \frac{\pi}{4}}}^{\phi_B - jB \frac{\pi}{4}} d\lambda_{AR} \int_{\phi_{B - jB \frac{\pi}{4}}}^{\lambda_{AR}} d\lambda_{RB} \psi_{011}^{j\beta}(\phi_B - \lambda_{RB})
\]

\[
+ \int_{\phi_B - jB \frac{\pi}{4}}^{\phi_A} d\lambda_{AR} \int_{\phi_{B - jB \frac{\pi}{4}}}^{\lambda_{AR}} d\lambda_{RB} \psi_{011}^{j\beta}(\phi_B - \lambda_{RB}) + \int_{\phi_{B - jB \frac{\pi}{4}}}^{\phi_B - jB \frac{\pi}{4}} d\lambda_{AR} \int_{\phi_{B - jB \frac{\pi}{4}}}^{\lambda_{AR}} d\lambda_{RB} \psi_{011}^{j\beta}(\phi_B - \lambda_{RB})\right).
\]
and

\[P(a = b | \phi_A \geq \phi_B - j_B | \frac{\pi}{4}) = \frac{16}{\pi^2} \left(\int_0^{\phi_A - j_B \frac{\pi}{4}} d\lambda_A \int_0^{\lambda_{AR}} d\lambda_{RB} \right) \]

\[\times \left(\int_0^{\phi_B - j_B \frac{\pi}{4}} d\lambda_A \int_0^{\lambda_{RB}} d\lambda_{RB} \right) \psi_{00}^j(\phi_B - \lambda_{RB}) \]

\[+ \int_0^{\phi_A} d\lambda_A \int_0^{\lambda_{AR}} d\lambda_{RB} \psi_{001}^j(\phi_B - \lambda_{RB}) + \int_0^{\phi_A} d\lambda_A \int_0^{\lambda_{RB}} d\lambda_{RB} \psi_{000}^j(\phi_B - \lambda_{RB}) \]

\[+ \int_0^{\phi_A} d\lambda_A \int_0^{\lambda_{AR}} d\lambda_{RB} \psi_{000}^j(\phi_B - \lambda_{RB}) + \int_0^{\phi_A} d\lambda_A \int_0^{\lambda_{RB}} d\lambda_{RB} \psi_{010}^j(\phi_B - \lambda_{RB}) \]

\[+ \int_0^{\phi_A} d\lambda_A \int_0^{\lambda_{AR}} d\lambda_{RB} \psi_{010}^j(\phi_B - \lambda_{RB}) + \int_0^{\phi_A} d\lambda_A \int_0^{\lambda_{RB}} d\lambda_{RB} \psi_{100}^j(\phi_B - \lambda_{RB}) \]}

One can then check that with the choice of functions \(\psi_{ijar}^j \in [0, 1] \) indicated in Table I (see main text), this leads (for all values of \(j_B \)) to

\[P(a = b | \phi_A, \phi_B) = \frac{1 - \cos(\phi_A - \phi_B)}{2} \]

as desired.

Correlation from Protocol 2

After running Protocol 2 for inputs \(x = (\sin \theta_A \cos \phi_A, \sin \theta_A \sin \phi_A, \cos \theta_A) \) and \(y = (\sin \theta_B \cos \phi_B, \sin \theta_B \sin \phi_B, \cos \theta_B) \), the probability that Alice and Bob’s outputs are the same is

\[P(a = b | x, y) = \sum_{a_0, b_0 = \pm 1} P(a_0, b_0 | \phi_A, \phi_B) P(a = b | \theta_A, \theta_B, a_0, b_0) = \sum_{a_0, b_0 = \pm 1} P(a_0, b_0 | \phi_A, \phi_B) \frac{1 - \cos(\alpha_0 \theta_A + b_0 \theta_B)}{2} \]

\[= P(a_0 = b_0 | \phi_A, \phi_B) \frac{1 - \cos(\theta_A + \theta_B)}{2} + P(a_0 \neq b_0 | \phi_A, \phi_B) \frac{1 - \cos(\theta_A - \theta_B)}{2} \]

\[= \frac{1}{2} \frac{1 - \cos(\phi_A - \phi_B)}{2} \frac{1 - \cos(\theta_A + \theta_B)}{2} + \frac{1}{2} \frac{1 + \cos(\phi_A - \phi_B)}{2} \frac{1 - \cos(\theta_A - \theta_B)}{2} \]

\[= \frac{1}{2} \frac{1 - \cos \theta_A \cos \theta_B - \sin \theta_A \sin \theta_B \cos(\phi_A - \phi_B)}{2} = \frac{1 - x \cdot y}{2}. \]

Protocol 2 thus reproduces the desired entanglement swapping correlation (equation (1) of the main text).