Classical simulation of entanglement swapping with bounded communication

Branciard, C.; Brunner, N.; Buhrman, H.; Cleve, R.; Gisin, N.; Portmann, S.; Rosset, D.; Szegedy, M.

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.109.100401

Citation for published version (APA):
Correlation from Protocol 1

We first note that the definitions of \(a = \text{sign}(\sin \phi_A) \) and of \(\phi'_A = (\phi_A - j A \frac{\pi}{4}) \mod \pi \) ∈ \([0, \frac{\pi}{4}]\) on Alice’s side, and the definitions of \(\beta = \text{sign}(\sin(\phi_B - j A \frac{\pi}{4})) \) (and then of \(b = \pm \beta \)) and of \(\phi'_B = (\phi_B - j A \frac{\pi}{4}) \mod \pi \) ∈ \([0, \pi]\) on Bob’s side, ensure that the following relations hold, as required:

\[
P(a = b|\phi_A, \phi_B) = P(a \neq b|\phi_A, \phi_B + \pi) = P(a \neq b|\phi_A + \pi, \phi_B) = P(a = b|\phi_A + \pi, \phi_B + \pi) = P(a = b|\phi_A + j \frac{\pi}{4}, \phi_B + j \frac{\pi}{4}) \text{ for any } j \in \mathbb{Z}.
\]

It is therefore sufficient to check that the correct correlation is obtained for \(\phi_A \in [0, \frac{\pi}{4}] \) and \(\phi_B \in [0, \pi] \).

For such values of \(\phi_A, \phi_B \) (for which \(\phi'_A = \phi_A \) and \(\phi'_B = \phi_B \)), the probability \(P(a = b|\phi_A, \phi_B) \) obtained from Protocol 1 can be calculated as follows:

\[
P(a = b|\phi_A < \phi_B - j B \frac{\pi}{4}) = \frac{16}{\pi} \left(\int_{0}^{\phi_A} d\lambda_{AR} \int_{0}^{\lambda_{AR}} d\lambda_{RB} \mathcal{V}_{010}^{\lambda_{AR}}(\phi_B-\lambda_{RB}) \right.
\]
\[
+ \int_{0}^{\phi_A} d\lambda_{AR} \int_{\lambda_{AR}}^{\phi_B-j A \frac{\pi}{4}} d\lambda_{RB} \mathcal{V}_{011}^{\lambda_{AR}}(\phi_B-\lambda_{RB}) + \int_{0}^{\phi_A} d\lambda_{AR} \int_{\phi_B-j A \frac{\pi}{4}}^{\frac{\pi}{4}} d\lambda_{RB} \mathcal{V}_{010}^{\lambda_{AR}}(\phi_B-\lambda_{RB})
\]
\[
+ \int_{\phi_B-j A \frac{\pi}{4}}^{\phi_B-j B \frac{\pi}{4}} d\lambda_{AR} \int_{0}^{\lambda_{AR}} d\lambda_{RB} \mathcal{V}_{011}^{\lambda_{AR}}(\phi_B-\lambda_{RB}) + \int_{\phi_B-j B \frac{\pi}{4}}^{\frac{\pi}{4}} d\lambda_{AR} \int_{\phi_B-j B \frac{\pi}{4}}^{\phi_B-j A \frac{\pi}{4}} d\lambda_{RB} \mathcal{V}_{011}^{\lambda_{AR}}(\phi_B-\lambda_{RB})
\]
\[
+ \int_{\phi_B-j B \frac{\pi}{4}}^{\frac{\pi}{4}} d\lambda_{AR} \int_{\phi_B-j B \frac{\pi}{4}}^{\phi_B-j A \frac{\pi}{4}} d\lambda_{RB} \mathcal{V}_{010}^{\lambda_{AR}}(\phi_B-\lambda_{RB}) + \int_{\phi_B-j B \frac{\pi}{4}}^{\phi_B-j B \frac{\pi}{4}} d\lambda_{AR} \int_{\phi_B-j B \frac{\pi}{4}}^{\phi_B-j B \frac{\pi}{4}} d\lambda_{RB} \mathcal{V}_{010}^{\lambda_{AR}}(\phi_B-\lambda_{RB})
\].
and

\[
P(a = b | \phi_A, \phi_B) = \frac{1 - \cos(\phi_A - \phi_B)}{2},
\]
as desired.

Correlation from Protocol 2

After running Protocol 2 for inputs \(x = (\sin \theta_A \cos \phi_A, \sin \theta_A \sin \phi_A, \cos \theta_A)\) and \(y = (\sin \theta_B \cos \phi_B, \sin \theta_B \sin \phi_B, \cos \theta_B)\), the probability that Alice and Bob’s outputs are the same is

\[
P(a = b | x, y) = \sum_{a_0, b_0 = \pm 1} P(a_0, b_0 | \phi_A, \phi_B) P(a = b | \theta_A, \theta_B, a_0, b_0) = \sum_{a_0, b_0 = \pm 1} P(a_0, b_0 | \phi_A, \phi_B) \frac{1 - \cos(a_0 \theta_A + b_0 \theta_B)}{2}
\]

\[
= P(a_0 = b_0 | \phi_A, \phi_B) \frac{1 - \cos(\theta_A + \theta_B)}{2} + P(a_0 \neq b_0 | \phi_A, \phi_B) \frac{1 - \cos(\theta_A - \theta_B)}{2}
\]

\[
= \frac{1 - \cos(\theta_A - \phi_B)}{2} \frac{1 - \cos(\theta_A + \theta_B)}{2} + \frac{1 + \cos(\phi_A - \phi_B)}{2} \frac{1 - \cos(\theta_A - \theta_B)}{2}
\]

\[
= \frac{1 - \cos \theta_A \cos \theta_B - \sin \theta_A \sin \theta_B \cos(\phi_A - \phi_B)}{2} = \frac{1 - x \cdot y}{2}.
\]

Protocol 2 thus reproduces the desired entanglement swapping correlation (equation (1) of the main text).