Andreev Reflection in an s-Type Superconductor Proximized 3D Topological Insulator

Tikhonov, E.S.; Shovkun, D.V.; Snelder, M.; Stehno, M.P.; Huang, Y.; Golden, M.S.; Golubov, A.A.; Brinkman, A.; Khrapai, V.S.

DOI
10.1103/PhysRevLett.117.147001

Publication date
2016

Document Version
Other version

Published in
Physical Review Letters

Citation for published version (APA):
Andreev reflection in s-type superconductor proximized 3D topological insulator. Supplemental Material.

E.S. Tikhonov,1,2 D.V. Shovkun,1,2 V.S. Khrapai,1,2 M. Snekler,3 M.P. Stehno,3 Y. Huang,4 M.S. Golden,4 A.A. Golubov,3,2 and A. Brinkman3

1Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russian Federation
2Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Russian Federation
3MESA+ Institute for Nanotechnology, University of Twente, Enschede, the Netherlands
4Van der Waals - Zeeman institute, University of Amsterdam, the Netherlands.
DIFFERENTIAL RESISTANCE IN A WIDE BIAS RANGE

In all N-TI-S devices studied the differential resistance, R_{diff}, behaves similarly to the reference N-TI-N device and exhibits no AR related features. This is verified in Figs. 1a and 1b for two representative devices in a wide bias range. Just like in the reference N-TI-N device, see Fig. 1c, the small zero bias feature in $B = 0$ develops into a pronounced resistance peak in a magnetic field $B \sim 1$ T. This behavior is qualitatively consistent with a scenario of competing quantum corrections, weak anti-localization and Altshuler-Aronov, among which the former is suppressed by a perpendicular magnetic field and both are suppressed by a high bias owing to dephasing, see, e.g. Ref.1.

![Graphs showing differential resistance](image)

FIG. 1. Differential resistance in N-TI-S devices s2 (a) and s3 (b) and reference N-TI-N device n (c). The data is taken simultaneously with the main text noise data in Fig. 3 (s2), Fig. 4 (s3) and Fig. 2 (n).

ELECTRON-PHONON ENERGY RELAXATION

As discussed in the main text, at large biases, $|V| > 0.8$ mV, the data deviate below the $q = e$ fit, both in zero and finite B-field, which is a result of shot noise suppression via electron-phonon (e-ph) energy relaxation2,3. We have checked that for $T_N > 5$ K the e-ph cooling dominates the noise response and is consistent with the linear dependence $P_J \propto T_N^\alpha - T^\alpha$, where P_J is the total dissipated Joule heat power and the exponent varies between $\alpha \approx 3$ and $\alpha \approx 4$ in different devices, see Fig. 2. A cooling rate of this type might
arise from the interaction with two-dimensional (e.g., surface) acoustic phonons4,5, similar to graphene6–8, or the interplay of \(e-ph \) and impurity scattering9. Note, that the doping dependence of the surface electrons’ cooling rate in 3D TI10 \(\text{Bi}_2\text{Se}_3 \) at much higher \(T \) is consistent with the relaxation via surface acoustic phonons.

FIG. 2. \(e-ph \) energy relaxation in the strongly non-equilibrium transport regime. Close to linear dependence \(T^2_N \propto P_J \) at bath temperatures of \(T = 0.6 \text{K} \) (blue curves) and \(T = 4.2 \text{K} \) (red curves) in devices s1(a), s2(b), n(d) and at bath temperature of \(T = 0.6 \text{K} \) at zero (blue curve) and nonzero (green curve) magnetic field in device s3(c).
