Andreev Reflection in an s-Type Superconductor Proximized 3D Topological Insulator

Tikhonov, E.S.; Shovkun, D.V.; Snelder, M.; Stehno, M.P.; Huang, Y.; Golden, M.S.; Golubov, A.A.; Brinkman, A.; Khrapai, V.S.

DOI
10.1103/PhysRevLett.117.147001

Publication date
2016

Document Version
Other version

Published in
Physical Review Letters

Citation for published version (APA):
Andreev reflection in s-type superconductor proximized 3D topological insulator. Supplemental Material.

E.S. Tikhonov,¹,² D.V. Shovkun,¹,² V.S. Khrapai,¹,² M. Smeekers,³ M.P. Stehno,³ Y. Huang,⁴ M.S. Golden,⁴ A.A. Golubov,³,² and A. Brinkman³

¹Institute of Solid State Physics, Russian Academy of Sciences,
142432 Chernogolovka, Russian Federation

²Moscow Institute of Physics and Technology,
Dolgoprudny, 141700 Russian Federation

³MESA+ Institute for Nanotechnology,
University of Twente, Enschede, the Netherlands

⁴Van der Waals - Zeeman institute,
University of Amsterdam, the Netherlands.
Differential resistance in a wide bias range

In all N-TI-S devices studied the differential resistance, R_{diff}, behaves similarly to the reference N-TI-N device and exhibits no AR related features. This is verified in Figs. 1a and 1b for two representative devices in a wide bias range. Just like in the reference N-TI-N device, see Fig. 1c, the small zero bias feature in $B = 0$ develops into a pronounced resistance peak in a magnetic field $B \sim 1$ T. This behavior is qualitatively consistent with a scenario of competing quantum corrections, weak anti-localization and Altshuler-Aronov, among which the former is suppressed by a perpendicular magnetic field and both are suppressed by a high bias owing to dephasing, see, e.g. Ref. 1.

FIG. 1. Differential resistance in N-TI-S devices s2 (a) and s3 (b) and reference N-TI-N device n (c). The data is taken simultaneously with the main text noise data in Fig. 3 (s2), Fig. 4 (s3) and Fig. 2 (n).

Electron-phonon energy relaxation

As discussed in the main text, at large biases, $|V| > 0.8$ mV, the data deviate below the $q = e$ fit, both in zero and finite B-field, which is a result of shot noise suppression via electron-phonon (e-ph) energy relaxation2,3. We have checked that for $T_N > 5$ K the e-ph cooling dominates the noise response and is consistent with the linear dependence $P_J \propto T_N^\alpha - T^\alpha$, where P_J is the total dissipated Joule heat power and the exponent varies between $\alpha \approx 3$ and $\alpha \approx 4$ in different devices, see Fig. 2. A cooling rate of this type might
arise from the interaction with two-dimensional (e.g., surface) acoustic phonons4,5, similar to graphene6–8, or the interplay of \textit{e-ph} and impurity scattering9. Note, that the doping dependence of the surface electrons’ cooling rate in 3D TI10 Bi\textsubscript{2}Se\textsubscript{3} at much higher \(T \) is consistent with the relaxation via surface acoustic phonons.

\[T_N^\alpha \propto P_J \]

FIG. 2. E-ph energy relaxation in the strongly non-equilibrium transport regime. Close to linear dependence \(T_N^\alpha \propto P_J \) at bath temperatures of \(T = 0.6 \text{ K} \) (blue curves) and \(T = 4.2 \text{ K} \) (red curves) in devices s1(a), s2(b), n(d) and at bath temperature of \(T = 0.6 \text{ K} \) at zero (blue curve) and nonzero (green curve) magnetic field in device s3(c).

\[\]

