Andreev Reflection in an s-Type Superconductor Proximized 3D Topological Insulator

Tikhonov, E.S.; Shovkun, D.V.; Snelder, M.; Stehno, M.P.; Huang, Y.; Golden, M.S.; Golubov, A.A.; Brinkman, A.; Khrapai, V.S.

DOI
10.1103/PhysRevLett.117.147001

Publication date
2016

Document Version
Other version

Published in
Physical Review Letters

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Andreev reflection in s-type superconductor proximized 3D topological insulator. Supplemental Material.

E.S. Tikhonov,¹,² D.V. Shovkun,¹,² V.S. Khrapai,¹,² M. Snekler,³ M.P. Stehno,³ Y. Huang,⁴ M.S. Golden,⁴ A.A. Golubov,³,² and A. Brinkman³

¹Institute of Solid State Physics, Russian Academy of Sciences,

142432 Chernogolovka, Russian Federation

²Moscow Institute of Physics and Technology,

Dolgoprudny, 141700 Russian Federation

³MESA+ Institute for Nanotechnology,

University of Twente, Enschede, the Netherlands

⁴Van der Waals - Zeeman institute,

University of Amsterdam, the Netherlands.
DIFFERENTIAL RESISTANCE IN A WIDE BIAS RANGE

In all N-TI-S devices studied the differential resistance, R_{diff}, behaves similarly to the reference N-TI-N device and exhibits no AR related features. This is verified in Figs. 1a and 1b for two representative devices in a wide bias range. Just like in the reference N-TI-N device, see Fig. 1c, the small zero bias feature in $B = 0$ develops into a pronounced resistance peak in a magnetic field $B \sim 1$ T. This behavior is qualitatively consistent with a scenario of competing quantum corrections, weak anti-localization and Altshuler-Aronov, among which the former is suppressed by a perpendicular magnetic field and both are suppressed by a high bias owing to dephasing, see, e.g. Ref. 1.

![Graphs showing differential resistance](image)

FIG. 1. Differential resistance in N-TI-S devices s2 (a) and s3 (b) and reference N-TI-N device n (c). The data is taken simultaneously with the main text noise data in Fig. 3 (s2), Fig. 4 (s3) and Fig. 2 (n).

ELECTRON-PHONON ENERGY RELAXATION

As discussed in the main text, at large biases, $|V| > 0.8$ mV, the data deviate below the $q = e$ fit, both in zero and finite B-field, which is a result of shot noise suppression via electron-phonon (e-ph) energy relaxation2,3. We have checked that for $T_N > 5$ K the e-ph cooling dominates the noise response and is consistent with the linear dependence $P_J \propto T_N^\alpha - T^\alpha$, where P_J is the total dissipated Joule heat power and the exponent varies between $\alpha \approx 3$ and $\alpha \approx 4$ in different devices, see Fig. 2. A cooling rate of this type might
arise from the interaction with two-dimensional (e.g., surface) acoustic phonons4,5, similar to graphene6–8, or the interplay of e-ph and impurity scattering9. Note, that the doping dependence of the surface electrons’ cooling rate in 3D TI10 Bi$_2$Se$_3$ at much higher T is consistent with the relaxation via surface acoustic phonons.

FIG. 2. E-ph energy relaxation in the strongly non-equilibrium transport regime. Close to linear dependence $T_N^2 \propto P_J$ at bath temperatures of $T = 0.6$ K (blue curves) and $T = 4.2$ K (red curves) in devices s1(a), s2(b), n(d) and at bath temperature of $T = 0.6$ K at zero (blue curve) and nonzero (green curve) magnetic field in device s3(c).

\[\text{[2]} \text{ K. E. Nagaev, Physics Letters A 169, 103 (1992).} \]
\[\text{[3]} \text{ Y. Blanter and M. B"{u}ttiker, Physics Reports 336, 1 (2000).} \]
\[\text{[4]} \text{ S. S. Kubakaddi, Phys. Rev. B 79, 075417 (2009).} \]
\[\text{[5]} \text{ J. K. Viljas and T. T. Heikkil"{a}, Phys. Rev. B 81, 245404 (2010).} \]
\[\text{[8]} \text{ K. C. Fong and K. C. Schwab, Phys. Rev. X 2, 031006 (2012).} \]
\[\text{[9]} \text{ A. Sergeev and V. Mitin, Phys. Rev. B 61, 6041 (2000).} \]