Potential novel targets: Protease-activated receptors in idiopathic pulmonary fibrosis
Lin, Cong

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 6

High endogenous activated protein C levels afford protection against bleomycin-induced pulmonary fibrosis

Cong Lin¹, Jan von der Thüsen², Berend Isermann³, Hartmut Weiler⁴, Tom van der Poll¹, Keren Borensztajn¹,⁵ and C. Arnold Spek¹,†

¹Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands.
²Department of Pathology, Erasmus Medical Center, Rotterdam, 3000 CA, The Netherlands.
³Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, 39120 Germany.
⁴Department of Physiology, BloodCenter of Wisconsin, Milwaukee, WI 53226, United States.
⁵Inserm UMR1152, Medical School Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France.
⁶Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France.

†These authors contributed equally.

Manuscript submitted for publication
ABSTRACT

Background
Coagulation activation accompanied by reduced anticoagulant activity is a key characteristic of patients with idiopathic pulmonary fibrosis (IPF) and the consequent hypercoagulability may play an important role in the pathogenesis of IPF. Although the importance of coagulation activation in IPF has been well studied, the potential relevance of diminished endogenous anticoagulant activity in IPF progression remains elusive.

Aims
To assess the importance of the endogenous anticoagulant protein C pathway on disease progression during bleomycin-induced pulmonary fibrosis and to assess the underlying mechanism by which APC may modify fibrosis.

Methods
Wild-type mice and mice with high endogenous APC levels (APChigh) were intranasally instilled with bleomycin. After 14 and 28 days, pulmonary fibrosis was assessed by hydroxyproline and histochemical analysis. Macrophage recruitment to lungs of bleomycin-instilled mice was assessed immunohistochemically. In vitro, macrophage migration was analyzed by trans-well migration assays after stimulation with thrombin and/or recombinant APC.

Results
14 days after bleomycin instillation, APChigh mice developed pulmonary fibrosis to a similar degree as wild type mice as evident from similar Ashcroft scores and hydroxyproline levels. Interestingly however, Ashcroft scores as well as lung hydroxyproline levels were significantly lower in APChigh mice than in wild type mice on day 28. The reduction in fibrosis in APChigh mice was accompanied by reduced macrophage numbers in their lungs and subsequent \textit{in vitro} experiments show that APC inhibits thrombin-dependent macrophage migration.

Conclusion
High endogenous APC levels inhibit the progression of bleomycin-induced pulmonary fibrosis. We suggest that APC modifies pulmonary fibrosis by limiting macrophage recruitment.
INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a specific form of fibrosing idiopathic interstitial pneumonia, characterized by progressive and irreversible pathological changes, with a median survival of 3 years.1-2 IPF comprises a group of conditions characterized by the formation and proliferation of (myo)fibroblast foci and exaggerated extracellular matrix (ECM) accumulation.3 The current pathogenesis paradigm suggests that pulmonary fibrogenesis results from an uncontrolled wound healing response that is initiated after repeated epithelium injury.4

Beyond its primary role in hemostasis, coagulation activation in response to tissue injury seems to be a critical contributor in the pathogenesis of fibrotic lung disorders.5 A hypercoagulable state is commonly observed in IPF patients6,7 and coagulation factors, such as tissue factor (TF), factor (F)VII, FXa and thrombin, are increased in these patients. All these individual coagulation factors exert pro-fibrotic cellular effects through activation of the cell surface protease-activated receptors (PARs). Indeed, FVIIa may contribute to the development and/or progression of IPF by activating PAR-2, whereas FXa induces pro-fibrotic effects via either PAR-1 or PAR-2.8-11 Thrombin, as the best-described profibrotic coagulation factor, activates PAR-1 leading to myofibroblast accumulation and subsequent fibrotic responses of lung (myo)fibroblasts, such as proliferation, migration and ECM synthesis (e.g. collagen).12-14 The potential importance of coagulation factors in IPF is underscored by the fact that inhibiting coagulation limits pulmonary fibrosis in preclinical experimental animal models.10,15-17

The hypercoagulable state observed in IPF patients may not only be due to increased coagulation factor expression but may at least in part results from reduced anticoagulant activity. Indeed, the balance between pro- and anticoagulant pathways is compromised in patients with IPF, and especially the anticoagulant protein C pathway seems down regulated.18 Protein C, once activated by the thrombin-thrombomodulin complex, prevents excessive coagulation via inactivation of factors Va and VIIIa.19-20 Next to inhibiting coagulation, activated protein C (APC) exhibits anti-inflammatory and vascular protective effects through PAR-1, the same receptor activated by thrombin.21 In the context of lung injury, endogenous APC inhibits infection-induced coagulation activation22 and APC overexpression modifies neutrophil recruitment during experimental pneu-
mococcal pneumonia. Moreover, exogenous APC instillation limits bleomycin-induced pulmonary fibrosis probably through its anti-inflammatory activity.

Despite the clear potential importance of endogenous anticoagulant activity in IPF progression, previous studies mainly focussed on the importance of coagulation activation whereas the relevance of disturbed anticoagulant pathways in IPF has not been addressed. In the present study, we consequently aimed to assess the significance of the endogenous anticoagulant protein C pathway in IPF. To this end, we subjected mice with different endogenous APC levels to the preclinical bleomycin induced pulmonary fibrosis model.

MATERIALS AND METHODS

Animal Model of Pulmonary Fibrosis

Wild type (WT) C57Bl/6 mice were purchased from Charles River (Someren, Netherlands). APChigh mice, with plasma APC levels almost forty times higher than in WT mice, were generated and backcrossed to a C57BL/6 genetic background as described25 and bred at the animal care facility of the Academic Medical Center. All procedures were performed on eight to ten-week-old mice, and in accordance with the Institutional Standards for Humane Care and Use of Laboratory Animals. Experiments were approved by the Animal Care and Use Committee of the Academic Medical Center (Amsterdam, Netherlands). Bleomycin (Sigma, St-Louis, MO) was administered by intranasal instillation (1 mg/kg body weight) under anesthesia. Mice were sacrificed 14 or 28 days after bleomycin instillation, following which the left lungs were excised for histological analysis whereas the right lungs were homogenized for hydroxyproline and cytokine assays.

Cells and Reagents

Murine NIH3T3 fibroblasts and RAW264.7 macrophages were cultured in DMEM and IMDM, respectively, supplemented with 10% fetal calf serum (FCS). Cells were grown at 37°C in an atmosphere of 5% CO\textsubscript{2}. Unless indicated otherwise, cells were washed twice with PBS and serum-starved for 4 hours before stimulation. Thrombin was from Sigma (St-Louis, MO), recombinant human activated protein C (rhAPC; Xigris) was obtained from Eli Lilly (Houten, The Netherlands) and recombinant mouse monocyte chemotactic protein (MCP-1) was from R&D systems.
Cell Viability Assays
Cells were seeded in 96-well plates at a concentration of 5000 cells/well after which cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay at 24 hours according to routine procedures.

Wound Scratch Assay
Scratch assays were performed essentially as described before. In detail, fibroblasts were seeded in six-well plates in DMEM supplemented with 10% FCS. After the cells formed a confluent monolayer, a scratch was created in the center of the monolayer with a sterile p200 pipette tip. Next, medium was removed and cells were washed with serum-free medium to remove floating debris. The cells were subsequently incubated for 18 hours with serum-free medium without (negative control) or with 10 μM thrombin or APC. The ability of cells to close the wound was assessed by comparing the 0- and 18-hour phase-contrast micrographs of 6 marked points along the wounded area. The percentage of non-recovered wound area was calculated by dividing the non-recovered area after 18 hours by the initial area at 0 hour.

Western Blot
Fibroblasts were seeded in 12-well plates in DMEM supplemented with 10% FCS. After serum starvation for 4 hours, the cells were incubated with serum-free medium (negative control) with or without 10 μM thrombin or APC. Twenty four hours later, cells were lysed in Laemmlı lysis buffer and Western blots were performed as described before. In brief, protein samples were separated by 10% SDS gel electrophoresis and transferred to a PVDF membrane (Millipore, Billerica, MA). Membranes were blocked for 1 hour in 4% milk in TBST and incubated overnight with monoclonal antibodies against α-smooth muscle actin (a-SMA), GAPDH (both Santa Cruz, CA) or collagen (SouthernBiotech, AL) at 4°C. All secondary antibodies were horseradish peroxidase (HRP)-conjugated from DakoCytomation (Glostrup, Denmark) and diluted according to the manufacturer’s instructions. Blots were imaged using Lumilight plus ECL substrate from Roche (Almere, The Netherlands) on an ImageQuant LAS 4000 biomolecular imager from GE Healthcare (Buckinghamshire, U.K).

Trans-well Migration Assays
Serum starved 2×10⁴ RAW264.7 cells were transferred to 8 μm pore-size Cell Culture inserts coated with 0.1% (w/v) collagen. The cells were incubated in
serum-free medium with or without thrombin/APC, and the inserts were incubated at 37°C for 10 hours in serum-free medium with MCP-1 as chemoattractant. For microscopic analysis, cells on the upper side of the Transwell membrane were removed with a cotton swab after which the inserts were fixed and stained in a crystal violet solution as described.28 The membranes were subsequently mounted on a glass slide, and migrated cells were counted by light microscopy. Cells were counted in five different fields using a 200× magnification.

(Immunohisto)logical Analysis

Four-μm sections were deparaffinized and rehydrated. Slides were stained with hematoxylin and eosin (H&E) according to routine procedures. In H&E stainings, the severity of fibrosis was assessed according to the Ashcroft scoring system using a 100× magnification as described before.27 Two independent observers, blinded to the treatment group, scored the average Ashcroft score of 10 fields of each lung section as calculated by averaging the individual field scores. For F4/80 staining, endogenous peroxidase activity was quenched with 0.3% H2O2 in methanol and the F4/80 antibody was incubated for 24 hours at 4°C (1:500, AbD Serotec, Kidlington, UK). A horseradish peroxidase-conjugated polymer detection system (ImmunoLogic, Duiven, the Netherlands) was applied for visualization, using an appropriate secondary antibody and diaminobenzidine (DAB) staining. Slides were photographed with a microscope equipped with a digital camera (Leica CTR500). Pictures of F4/80 staining were taken to cover the entirety of all sections. Color intensity of stained areas was analyzed semi-quantitatively with ImageJ and expressed as percentage of the surface area essentially as described.29

ELISA

Active transforming growth factor-beta 1 (TGF-β1) was measured using a Mouse DuoSet kit (R&D systems, UK) as per the manufacturer’s instructions.

Hydroxyproline Assay

Hydroxyproline analysis was performed by the hydroxyproline assay kit as per the manufacturer’s instructions (Sigma, Netherlands) and as described before.27

Statistics

Statistical analyses were conducted using GraphPad Prism version 5.00 (GraphPad software, San Diego, CA, USA). Data were expressed as means ± SEM. Compar-
isons between two conditions were analyzed using two-tailed unpaired t-tests when the data were normally distributed, otherwise Mann-Whitney analysis was performed. P values of less than 0.05 were considered significant.

RESULTS

APC^{high} mice are protected from bleomycin-induced pulmonary fibrosis
To study the effect of high endogenous APC levels during the progression of pulmonary fibrosis, APC^{high} and wild type mice were subjected to bleomycin-induced fibrosis for either 14 or 28 days. As shown in Figure 1, bleomycin-induced extensive patchy areas of fibrosis were present to a similar extent in both wild type and APC^{high} mice on day 14. During disease progression, the inflam-

Figure 1. High endogenous APC levels limit the progression of pulmonary fibrosis. (A) Representative pictures of lungs of mice 14 and 28 days after saline bleomycin instillation (100× magnification). (B) Quantification of pulmonary fibrosis 14 and 28 days after bleomycin instillation using the Ashcroft score. (C) Collagen content in lung homogenates obtained 14 or 28 days after bleomycin instillation. (D) Transforming growth factor (TGF)-β1 levels in lung homogenates obtained 14 or 28 days after bleomycin instillation. Data are expressed as mean ± SEM (n=8 per group, *p<0.05 and **P<0.01).
Inflammatory and fibrotic effects culminated in severe pulmonary fibrosis at day 28 in wild type mice (Figure 1A). Interestingly however, the increase in pulmonary fibrosis over time was not observed in APChigh mice, and indeed Ashcroft scores are similar in APChigh mice at day 14 and day 28 (Figure 1B). In line with the Ashcroft scores, lung hydroxyproline levels did not show differences between APChigh and wild type mice on day 14, whereas these levels were significantly higher in wild type mice at 28 days after bleomycin instillation (Figure 1C). Similar to Ashcroft scores and hydroxyproline levels, TGF-β\textsubscript{1} concentrations are relatively low in wild type and APChigh mice at day 14. During disease progression, TGF-β\textsubscript{1} levels increase in both wild type and APChigh mice although the increase is clearly reduced in APChigh mice at day 28 (Figure 1D). Overall, these results show that high endogenous APC levels provide protection against bleomycin-induced pulmonary fibrosis.

APC inhibits thrombin-induced monocyte/macrophage recruitment during pulmonary fibrosis

Macrophage recruitment in response to inflammatory mediators produced by injured epithelial cells is a key process in fibrosis. Moreover, we recently showed that thrombin-dependent PAR-1 signaling potentiates macrophage migration towards bleomycin-treated epithelial cells, thereby driving pulmonary fibrosis (manuscript submitted). Consequently, we determined macrophage numbers in fibrotic lungs of both wild type and APChigh mice. As shown in Figure 2A, F4/80 positive macrophages were diffusely present in lungs of wild type mice 28 days after bleomycin instillation. In APChigh mice, macrophage numbers are reduced by around 50% as compared to wild type mice (Figure 2A-B). Interestingly, the reduced macrophage numbers in APChigh mice at day 28 after bleomycin- instillation are not due to a direct effect of APC on macrophage migration. As shown in Figure 2C, RAW264.7 macrophage migration towards MCP-1 in vitro was not modified by APC treatment. APC did however (almost) completely prevent thrombin-induced RAW264.7 cell migration towards MCP-1 (Figure 2D). Together, the results suggest that APC inhibits thrombin-induced macrophage migration during pulmonary fibrosis.

APC does not interfere with thrombin-induced profibrotic effects on fibroblasts

Thrombin induces several profibrotic processes on fibroblasts, such as fibroblast proliferation, migration, differentiation and ECM production. Therefore we
assessed whether APC may, next to reducing thrombin-dependent macrophage recruitment, also modify pulmonary fibrosis by inhibiting thrombin-dependent profibrotic responses in fibroblasts. As shown in Figure 3A-B, as opposed to APC treatment, thrombin stimulation increased fibroblast proliferation and migration. Interestingly, APC did not modify these thrombin-induced profibrotic responses. In line, APC also did not modify thrombin-induced fibroblast
differentiation and ECM synthesis (Figure 3C). Hence, APC neither directly affects fibrotic responses of fibroblasts nor does it limit thrombin-induced profibrotic effects of fibroblasts.

DISCUSSION

Coagulation activation is a frequent phenomenon in IPF and IPF patients are more than four times more likely to have a hypercoagulable state than general population controls.\(^5,7,18\) The presence of a hypercoagulable state is not only associated with disease severity at diagnosis but also adversely impacts on survival of IPF patients.\(^7\) At least in part, hypercoagulability in IPF patients may be due to
High APC levels limit bleomycin-induced pulmonary fibrosis

Reduced anticoagulant activity, and here we consequently addressed the importance of the endogenous protein C pathway. We show that endogenous APC modifies disease progression and affords protection against bleomycin-induced pulmonary fibrosis.

Mice expressing high endogenous APC levels (i.e. APC^{high} mice) are protected from bleomycin-induced pulmonary fibrosis as evident from reduced Ashcroft scores, hydroxyproline concentrations and TGF-β1 levels at day 28 after bleomycin instillation. The reduction in fibrosis in APC^{high} mice was accompanied by significantly decreased macrophage numbers in their lungs. This may be particularly important as macrophage recruitment in response to lung epithelial cell injury is a key process in pulmonary fibrosis. Recruited macrophages produce profibrotic cytokines like TGF-β that activate fibroblasts, thereby potentiating their profibrotic responses.4, 30

It is tempting to speculate that the reduction in pulmonary fibrosis observed at day 28 is explained by a direct inhibitory effect of endogenous APC on macrophage recruitment. Indeed, APC has previously been shown to inhibit migration of lymphocytes toward IL-8, RANTES and MCP-1³¹ and to limit migration and activation of rheumatoid arthritis monocytes via EPCR.32 Here, we show that APC does not directly inhibit migration of RAW264.7 macrophages towards MCP-1 by itself but instead blocks thrombin-induced macrophage migration. Most likely, APC competes for PAR-1 cleavage, thereby limiting thrombin-dependent PAR-1 signaling and subsequent macrophage migration. Such competition between APC and thrombin is well-known and APC- or thrombin-induced PAR-1 cleavage leads to distinct or even opposite downstream signaling events. For example, APC switches thrombin-induced PAR-1 signaling from a disruptive to a protective effect in human umbilical vein endothelial cells.21,33

As opposed to modifying thrombin-induced macrophage migration, APC does not affect thrombin-induced pro-fibrotic responses of fibroblasts, like fibroblast proliferation, migration, differentiation and collagen deposition. This may be surprising at a first glance, but this is most likely explained by the fact that fibroblasts do not express EPCR, which is actually essential for APC-dependent PAR-1 cleavage.34, 35
In line with our data showing that endogenous APC limits bleomycin-induced pulmonary fibrosis, intratracheal administration of exogenous human APC reduced the progression of pulmonary fibrosis as well.\(^{24}\) Interestingly however, exogenous APC seemed more effective in reducing fibrosis at an earlier time point as hydroxyproline levels were already reduced 14 days after bleomycin infusion in case of exogenous APC administration. Although we do not have a definitive explanation for the increased efficacy of exogenous APC, it may well be due to higher initial concentrations of exogenous versus endogenous APC. Irrespective of the precise underlying molecular mechanisms, both studies emphasize the importance of the anticoagulant protein C pathway in disease progression of IPF and the availability of endogenous APC may thus be an important clinical and pharmacological parameter in patients with IPF. Consequently, preservation and/or restoration of endogenous APC generation might be an interesting target for limiting IPF progression.

In conclusion, the present study reveals that endogenous APC inhibits the progression of bleomycin-induced pulmonary fibrosis. We suggest that APC limits pulmonary fibrosis due to the inhibitory effect of APC on thrombin-induced macrophage recruitment rather than any direct antifibrotic effect of APC on fibroblasts.
REFERENCES

33. Bae JS, Rezaie AR. Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand. Thromb Haemost. 2008;100:101-9.