Potential novel targets: Protease-activated receptors in idiopathic pulmonary fibrosis
Lin, Cong

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 7

Summary and general discussion
Nederlandse Samenvatting
Acknowledgements
PhD portfolio
List of publications
SUMMARY

Despite the high standards of modern medical care and the fast emerging anti-fibrotic agents, mortality rates for idiopathic pulmonary fibrosis (IPF) are still increasing over the years. At a conservative estimate, there are approximate 0.2 million patients suffering from IPF living in the Europe1.

In this thesis, Chapter 1 gives an overview of IPF and introduces coagulation factors and their receptors, PARs, as potential contributors to fibrotic processes. Anticoagulant treatment in IPF is also discussed and to the overall conclusion of chapter 1 is that inhibition of PARs may be specific and effective therapeutic interventions for fibrotic disorders. We therefore set out to address this hypothesis and we show that pharmacological targeting of PARs with pepducin P1pal-12 (PAR-1 antagonist in Chapter 2) or P2pal-18S (PAR-2 antagonist in Chapter 3) effectively blocks PAR-1 or PAR-2 induced pro-fibrotic responses in fibroblasts and limits bleomycin-induced pulmonary fibrosis, even when administered 7 days after the induction of fibrosis. Importantly, in the experimental bleomycin model, pulmonary fibrosis is not completely abolished in mice that harbor deficiencies for either PAR-1 or PAR-2. Therefore, in Chapter 4, we studied the simultaneous inhibition of PAR-1 and PAR-2 in pulmonary fibrosis and we show that treatment of PAR-2 deficient mice with the PAR-1 antagonist P1pal-12 did not further reduce bleomycin-induced lung fibrosis as compared to wild type mice treated with P1pal-12 or PAR-2 deficient mice. Interestingly, PAR-1-induced pro-fibrotic effects in vitro are abolished in the presence of the specific PAR-2 inhibitor. We thus postulate that the pro-fibrotic effects induced by PAR-1 require the presence of PAR-2. Chapter 5 shows that PAR-1 on macrophages potentiate their recruitment towards injured lung epithelial cells. Once recruited, macrophages secrete a PAR-1 agonist, most likely FXa that acts upon fibroblasts leading to the production and activation of latent TGF-β which subsequently drives fibroblast migration, differentiation into myofibroblasts and ECM deposition. Finally, in Chapter 6 we addressed the importance of the endogenous anticoagulant system, especially APC, in the development of pulmonary fibrosis. We show that high endogenous APC levels reduce bleomycin-induced pulmonary fibrosis and this reduction in pulmonary fibrosis may be explained by the inhibitory effect of endogenous APC on macrophage recruitment during the fibrotic phase.
GENERAL DISCUSSION

With the research performed in this thesis, we sought to assess the potential clinical relevance of targeting PARs in pulmonary fibrosis and to identify potential effectors and mechanisms which contribute to the pathogenesis of IPF.

Most importantly, we show that pharmacological inhibition of PARs, even starting after the onset of fibrosis, affords protection against bleomycin-induced pulmonary fibrosis. As current treatment options for IPF are limited\(^2\), these findings may be particularly interesting for future medical interventions in IPF patients. Importantly, PAR-1 inhibition may be feasible on a short notice, as the PAR-1 inhibitor Zontivity just obtained FDA approval for antiplatelet therapy of patients with a previous myocardial infarction or leg ischemia\(^3\). Its application along with standard therapy effectively limits thrombotic cardiovascular events, yet Zontivity increases the rate of moderate to severe bleeding in a selection of patients\(^4\). Although PAR-1 inhibition thus seems an attractive strategy to pursue in IPF, potential bleeding complications should be taken into consideration and patients should be properly monitored.

Based on the notion that PAR-1 seems to drive pulmonary fibrosis in a PAR-2 dependent manner, it is tempting to speculate that blocking PAR-2 may be a better treatment strategy for IPF than using Zontivity. In addition, PAR-2 inhibition does not interfere with platelet activation as does PAR-1 inhibition. Therefore, targeting PAR-2 will not cause bleeding complications and may be the preferred treatment option. Unfortunately, there are no PAR-2 inhibitors currently available for clinical intervention.

PAR-1 is activated by coagulation factor Xa and thrombin, whereas PAR-2 is activated by the tissue factor-FVIIa complex and by factor Xa\(^5\). Consequently, anticoagulant treatment would presumably be effective in IPF as it blocks PAR-1 and PAR-2 simultaneously. Importantly however, anticoagulant therapy in the setting of IPF remains a matter of debate mainly due to the lack of effect of warfarin in recent clinical trials\(^6-7\). Compared to anticoagulant therapy, targeting PARs may be a more efficient (and safe) approach for limiting fibrosis, as PARs are not only activated by coagulation factors. Activation of PARs by several other proteases can also induce profibrotic effects, at least in vitro. For example, Granzyme K is found to induce pro-inflammatory cytokine secretion and lung
fibroblast proliferation through PAR-1 whereas trypsin is well known to trigger fibroproliferative effects via PAR-2.

Our data that PAR inhibition limits pulmonary fibrosis may not only benefit IPF patients but may also have clinical impact in other disorders which involve PARs signaling. Indeed, PARs are suggested to contribute to (among others) heart failure, renal, liver and skin fibrosis. Whether the application of PAR inhibitors will benefit patients suffering from these PAR-related human disorders needs however to be further studied.

The functional relevance of coagulation activation in the pathogenesis of IPF has received much attention, both in preclinical as well as in clinical studies. Surprisingly however, the endogenous anticoagulant pathways, such as APC pathway, received relatively little attention in IPF. In the current thesis, we highlight the potential importance of the endogenous anticoagulant protein C pathway by showing that high APC levels inhibit the progression of bleomycin-induced pulmonary fibrosis. In line, recombinant APC administration also limits bleomycin-induced pulmonary fibrosis, and PC activation is suppressed in IPF patients. Moreover, infusion of APC was recently shown to reduce pulmonary coagulopathy and to decrease lung injury caused by acute respiratory distress syndrome, suggesting APC may also attenuate lung injury in patients with pulmonary fibrosis. Increasing APC levels, either by the administration of APC or zymogen PC, may thus be an alternative strategy for the treatment of IPF. Importantly, recombinant human APC (Xigris) is well known for the treatment of sepsis and recombinant APC would thus be easily available for a clinical trial in IPF. However, the benefit-to-risk ratio of Xigris in patients with sepsis remained controversial for many years. Indeed, the most recent clinical trial on Xigris showed no evidence of benefit for treating patients with severe sepsis or septic shock. Consequently, Xigris was withdrawn from the worldwide market and is not available anymore.

In addition to pinpointing the APC pathway as a potential therapeutic strategy in IPF, our data showing that endogenous APC limits pulmonary fibrosis may also explain (at least in part) the lack of efficacy of warfarin in improving IPF related symptoms. Indeed, warfarin inhibits the activity of all vitamin K dependent coagulation factors including APC. Warfarin would thus limit fibrosis by targeting the pro-coagulant factors but could potentiate fibrosis by inhibiting APC. Therefore,
alternative anticoagulants targeting the pro-coagulant factors without affecting endogenous anticoagulant pathways may have clinical potential.

Overall, we provided several lines of evidence to support the importance of PARs in the pathogenesis of IPF and suggest that targeting PARs, its endogenous agonists or the APC pathway may be novel therapeutic approaches for treating this disease.

REFERENCES

1. http://www.pulmonary-fibrosis.net/

NEDERLANDSE SAMENVATTING

Ondanks de hoge standaard van de moderne medische zorg en de snelle opkomst van anti-fibrotische medicijnen, neemt het sterftecijfer voor mensen met idiopathische longfibrose (IPF) nog steeds toe. Met een algemene schatting zijn er ongeveer 0,2 miljoen patiënten in Europa die lijden aan IPF. In dit proefschrift, geeft Hoofdstuk 1 een overzicht over IPF en introduceert het stollingsfactoren en hun receptoren, protease geactiveerde receptoren (PAR’s), als potentiële mediatoren van fibrotische processen. Antistollingsbehandeling in IPF wordt ook besproken en de algemene conclusie van hoofdstuk 1 is dat de remming van de PAR’s een specifieke en effectieve therapeutische interventie zou kunnen zijn voor fibrotische aandoeningen. Wij hebben er in dit proefschrift dan ook voor gekozen om ons te richten op deze hypothese en we laten zien dat de farmacologische remming van PARs met P1pal-12 (PAR-1 antagonist in hoofdstuk 2) of P2pal-18S (PAR-2 antagonist in hoofdstuk 3) effectief PAR-1 of PAR-2 geïnduceerde pro-fibrotische reacties blokkeert in fibroblasten en verder bleomycine geïnduceerde longfibrose beperkt. Dit laatste is zelfs het geval indien de PAR remmers worden toegediend 7 dagen na de inductie van fibrose. Belangrijk echter, in het experimentele bleomycine model wordt longfibrose niet volledig voorkomen in muizen die geen PAR-1 of PAR-2 tot expressie brengen. Daarom hebben we in hoofdstuk 4 de gelijktijdige remming van PAR-1 en PAR-2 in longfibrose bestudeerd en laten we zien dat de behandeling van de PAR-2 deficiënte muizen met de PAR-1 antagonist P1pal-12 de bleomycine geïnduceerde long fibrose niet verder verminderd in vergelijking met wild type muizen die zijn behandeld met P1pal-12 of PAR-2 deficiënte muizen. Interessant genoeg worden de PAR-1 geïnduceerde pro-fibrotische effecten in vitro geremd door de specifieke PAR-2 inhibitor P2pal-18. We concluderen in hoofdstuk 4 daarom dat de pro-fibrotische effecten geïnduceerd door PAR-1 de aanwezigheid van PAR-2 vereisen. Hoofdstuk 5 laat zien dat PAR-1 op macrofagen hun migratie richting gewonde longepitheelcellen verstert. Eenmaal in de long aangekomen, scheiden de macrofagen een PAR-1 agonist, waarschijnlijk factor Xa, uit die fibroblasten activeert wat leidt tot de productie en activering van latent TGF-β, wat vervolgens fibroblasten aanzet tot tot differentiatie in myofibroblasten en tot de afzetting van extracellulaire matrix productie. Tenslotte wordt er in hoofdstuk 6 ingegaan op de betekenis van het endogene anticoagulante systeem, voornamelijk geactiveerd proteine C (APC), in de ontwikkeling van longfibrose. We laten zien dat hoge endogene APC niveaus bleomycine geïnduceerde longfibrose verlagen en deze vermindering in longfibrose kan worden verklaard door het remmende effect van endogene APC op macrofaag migratietijdens de fibrotische fase.
Acknowledgements

At the very end of this adventurous journey, I would like to thank all the people who contributed to this achievement and accompanied me throughout this experience.

My first big thank you goes to my promoters, Tom, Arnold and Keren, for accepting me to this project and guiding me through to the end. Arnold, Thank you for always being there and for giving your helpful support. I really abused your “open door” policy during the starting period. Whenever I would receive a rejection from a journal or continuously get unexpected results from experiments (e.g. MTTs.) the first thing you would say to me is “tja, that’s life.” In the beginning I felt confused about this quote of yours, however as time passed by I got more and more used to it and it would somehow amuse me and cheer me up. I consider myself lucky to find you as my supervisor because you can always straighten things out for me with your great mind in combination with your kind personality. Keren, although you have had to face a lot of difficult issues in terms of health and the distance between Paris and Amsterdam, somehow you still always found a way to put maximum effort in supervising me. So what also inspires me is your resilience and perseverance and I am glad that we also shared our lives with each other through tons of emails, so that I have been able to get to know you as a close friend. As it does with every person, sometimes the motivation and passion fades away at times. However, the love you hold towards your profession is infectious and inspires those around you as it has with me. Importantly, it doesn’t matter how big your group is growing into, it has been an honor for me that I am always your first PhD student. I hope to see more and more of us joining you on this path.

I want to thank all the co-authors who contributed to my work. I could not have gotten so far without your professional help. Jan, thank you very much for always handling the histological scores of my endless slides and being so efficient
and specific towards my questions. JanWillem, thank you for your patience and that you are always ready to offer help. Joost and Marieke, you guys have the magic touch for handling animal, thank you for always taking good care of my mice and for the excellent performance of every experiment of mine. Bruno, thank you for your generous help and encouragement.

I would also like to thank the committee members for putting your time and effort in evaluating my thesis.

Eelco and Vivi, thank you for the nice formatting and the cover design of my thesis, the book could not have been made without your help.

Monique, thank you for your efficient ordering and tracking skills, I can always find solutions from you, especially when I bother you with my repeated question: when will my order arrive? Regina, thank you for all the slides staining that you have done for me. Heleen and Monique, thank you for always having a keen eye for the smallest details and for supporting me and making everything easier.

People from the Stolling group, thank you for the pleasant environment at work. Maaike and Kun thank you for all the coffee breaks and lunch times, it was fun. Hella, besides all the time we spent together, I want to also thank you for listening and sharing all the gossips, stories and experiences. Lab life is better with your company and your help with keeping the lab in order.

Teletubbies: Kaushal and Luigi, you guys totally complete each other. You are hilarious and thank you for making the whole scientific journey full of laughter and joy. I wish the Italian lab will be there one day, so the two of you can chill and fish and grow old together there, and live happily ever after. Akueni: “If you put your chair a bit that way, then people will pass by more easily” I remember that is the first thing you said to me when I placed my chair in F0 office. This was a lame starting line but then everything after that became much better. I appreciate your support when things were tough and I wish the same to you that
the future holds greater things for you no matter which path you choose to pave. Dita: I doubted whether I should pick you as my paranimfen, since I was afraid that I will be overwhelmed with your passion and enthusiasm. It turns out that these are the exact things that I want and need. I appreciate you as a good friend because you always show your kindness and caring towards me. I also thank you for putting in effort and time in helping me to prepare all the stuff. As a noodle buddy, thank you for always backing me up with your healthy vegetarian noodle with extra spicy flavor. :D Finally, for all the teletubbies “You have to learn the rules of the game. And then you have to play better than anyone else.” (Albert Einstein) PTG men, PTG… 😊

思逸，谢谢你排除困难来参加我的毕业典礼。尽管我们认识的时间不长但是你的陪伴让我觉得在荷兰的日子也很轻松愉快，希望你能有一个给力的手机以便随时保持聊天通畅，不过我也从来不接电话没什么资格说你。思涵，月红，雪雯，李想。能在荷兰认识你们这些好朋友真的是一件很幸运的事情。

Yet I save the biggest thank you for my family, while there is no word that can describe my appreciation enough towards them. 我把最后的感谢留给我的家人，短短几句话并不能说清楚你们对我的重要。尤其是我的爸爸妈妈，你们教我做人，伴我成长，以身作则教会我什么是勤劳，正直和责任感，总是不遗余力地支持我的梦想，无条件地满足我的所有需要。我的成就无论大小总让你们觉得自豪和骄傲，但对于我来说，我只是踩着你们的足迹，一路追随着你们的背影。小呆，谢谢你给我的幸福，你满足了我对人生最大的期望。
PHD portfolio

Name PhD student: Cong Lin
PhD period: September 2010 - September 2014
Name PhD supervisor: Prof.dr.T.van der Poll

1. PhD training

General courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Year</th>
<th>Workload (Hours/ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- the AMC World of Science</td>
<td>2010</td>
<td>0.7</td>
</tr>
<tr>
<td>- Basic Laboratory safety</td>
<td>2011</td>
<td>0.4</td>
</tr>
<tr>
<td>- BROK (Basiscursus Regelgeving & Organisatie voor Klinisch onderzoekers)</td>
<td>2014</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Specific courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Year</th>
<th>Workload (Hours/ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Laboratory Animal course (“artikel 9”)</td>
<td>2011</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Seminars, workshops and master classes

<table>
<thead>
<tr>
<th>Course</th>
<th>Year</th>
<th>Workload (Hours/ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Monthly department seminars</td>
<td>2010-2014</td>
<td>4</td>
</tr>
</tbody>
</table>

Oral and Poster Presentations

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Workload (Hours/ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The cell-penetrating P1pal-12 pepducin limits pulmonary fibrosis in the murine bleomycin model (poster). 9th Lung Science Conference (LSC). Estoril, Portugal</td>
<td>2012</td>
<td>0.5</td>
</tr>
<tr>
<td>Targeting PAR-1 with P1pal-12 pepducin limits pulmonary fibrosis in the murine bleomycin model (oral). European Respiratory Society (ERS). Vienna, Austria</td>
<td>2012</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(Inter)national conferences

<table>
<thead>
<tr>
<th>Event</th>
<th>Year</th>
<th>Workload (Hours/ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 9th Lung Science Conference (LSC). Estoril Portugal</td>
<td>2012</td>
<td>0.6</td>
</tr>
<tr>
<td>- European Respiratory Society (ERS). Vienna, Austria</td>
<td>2012</td>
<td>1</td>
</tr>
<tr>
<td>- Congress of the international society on thrombosis and haemostasis (ISTH). Amsterdam, Netherlands.</td>
<td>2013</td>
<td>1</td>
</tr>
</tbody>
</table>

2. Teaching

<table>
<thead>
<tr>
<th>Supervising</th>
<th>Year</th>
<th>Workload (Hours/ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hella. E.C. Muijsers, “role of coagulation factor IXa in the pathogenesis of idiopathic pulmonary fibrosis”, University of Amsterdam.</td>
<td>2012</td>
<td>1</td>
</tr>
</tbody>
</table>

3. Parameters of Esteem

<table>
<thead>
<tr>
<th>Awards and Prizes</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung Science Conferences. Young investigator travel award</td>
<td>2012</td>
</tr>
</tbody>
</table>
List of publications

