Securing the European ‘Homeland’: Profit, risk, authority
Hoijtink, M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
5. Performativity and the Project: Enacting Urban Transport Security in Europe

Introduction
Following a series of incidents with bombs hidden in air cargo in November 2010, EU Counterterrorism Coordinator Gilles de Kerckhove circulated two discussion papers in which he informed the Council of the European Union about the ongoing challenge of the security of transportation. “Much has been achieved in transport security in recent years,” he pointed out, and, yet, “the threat keeps getting more and more diverse” (Council of the European Union, 2010b, 2). While the occasion for publishing the reports was the threat against civil aviation, De Kerckhove took the opportunity to call the Council’s attention to land transport security, and to the security of mass transportation in particular. In the report, he points out that “more has to be done on the less protected area of land transport,” now that “there is the obvious risk that as aviation becomes increasingly more secure, terrorists might switch to targeting land transport, e.g. to strike rail access to airports or multimodal hubs” (ibid).

To enhance the protection of land transportation, De Kerckhove recommends that the communication and cooperation between the different stakeholders – home affairs and transport, public authorities and private

providers – is improved. Among other things, this requires the development of a standing committee in the domain of public transportation comparable to the International Maritime Organization or the International Civil Aviation Organization, which would discuss common minimum standards, exchange best practices, and organize Europe-wide scenarios and exercises. At the same time, De Kerckhove considers land transport to demand an approach to security that is in many ways different from aviation or maritime security. The protection of mass transportation “cannot mean installing a level of security common in aviation security,” De Kerckhove writes, since such a more rigid approach would put at risk the necessary open character of mass transportation (Council of the European Union 2010b, 4). Rather, taking action in the realm of transport security should contribute to an urban transportation network that is secure, as well as accessible, reliable, and always connected. In the wake of the thwarted attack on the Thalys train on 21 August 2015, similar points were raised by member states, urban transport operators, and the European Commission Directorate-General for Transport. Transport Commissioner Violeta Bulc argued: “The security and safety of passengers is our first priority. But of course we must not overreact. It is essential that, as far as possible, public transport remains open and easily accessible” (Commission of the European Communities, 2015). Following an extraordinary meeting of the EU expert group for land transport security (LANDSEC) on 11 September 2015, the office of the Counterterrorism Coordinator once again emphasized that “a proportionate security response [was] required that would not harm rail transport operations or undermine the nature of public transport, including rail, in that it should remain open, accessible, and expedient” (Council of the European Union, 2015, 10).

This chapter analyzes the way in which the problematization of urban transport security has been addressed in Europe. As follows from the above discussion, mass, or urban transportation poses a particular challenge to security government. In short, this is a problem that centers around the question of how to combine objectives of security with circulation: how can we protect public transport against threats that are seemingly more diverse and dynamic, while making sure that transport systems remain open systems? How can we combine security and openness, if it is from that same openness that urban transportation derives its vulnerability? As a growing literature in critical security studies and political geography points out, these
questions have given rise to a changing paradigm of security that tends to channel and monitor flows, rather than blockade borders (e.g. Bigo, 2002; Cowen, 2010). This is a form of security that takes place on a terrain of “embracing movement, governing in and through mobility itself,” such as when biometric border controls facilitate trusted travel patterns, while filtering bad intentions and the illegitimate (Amoore, 2013, 117). Indeed, the recent efforts to introduce so-called smart border programs at airports must be seen in the light of these questions. In mass transportation, smart border technologies are being debated, but mainly for the specific area of high-speed rail, and particularly so after the Thalys incident. Even in this domain, however, operators consider these modes of equipment as too costly and intrusive.31

In urban transportation, the problem of how to combine security and circulation has given rise to a focus on public-private partnerships. For instance, the 2010 EU Internal Security Strategy in Action, which listed “the broad and complex area of land transport security” among the key actions to be taken, called for a specific public-private forum for exchanging principles and requirements with key stakeholders in this field (Commission of the European Communities, 2010, 9). A parallel development has been the ongoing emphasis on transport security as part of the Seventh Framework Program (FP7) for security research, funded by the European Commission Directorate-General for Enterprise and Industry. Transport security was first identified as a possible area for research intervention by the Group of Personalities in the Field of Security Research (2003-2004), a high-level advisory group established by the Commission, discussed in Chapter 3. The Group’s successor, the European Security Advisory Board (ESRAB, 2005-2006) recommended that the security of mass transportation should become one of Europe’s demonstration projects. In short, these flagship projects should be established in areas of significant European interest to test and integrate possible security-specific “break-through technologies,” and to foster public-private security cooperation more generally (Commission of the European Communities, 2006a, 10).

This chapter draws on an in-depth analysis of the Secured Urban transportation – European Demonstration (SECUR-ED) project, launched in April 2011 by a large consortium of security equipment providers, transport operators, and European research institutes. Directed by the Thales Group, the project is the largest demonstration program funded by the
European Commission for an amount of 25m as part of the broader Framework Program for security research. SECUR-ED serves two broad aims, the first being the large-scale demonstration of new modes of security equipment in approximate real life settings in order to enhance the security of urban transportation (local and regional rail, trams, and buses). These range from risk assessment and crowd management systems to security training packages, and from CCTV solutions and video analytics to detection systems for explosives. A second aim of SECUR-ED is the validation of new forms of technology and enlargement of the European homeland security market. In this context, the project functions as a way of bringing together industry and potential customers – transport operators and public authorities – and have them exchange operational procedures and requirements.

I examine the SECUR-ED project as a performative space, in which risks and capabilities are identified, enacted and contested, and relations across public and private networks take shape. Following the literature on the performativity of security, I consider the problem space of mass transportation to be produced through an ongoing process of repetition and recitation (Bialasiewicz et al., 2007; Butler, 1993; Campbell 1992; De Goede, Simon and Hoijtink, 2014). In the words of Judith Butler (1993, 2), performativity emphasizes “the reiterative and citational practice by which discourse produces the effects that it names.” As such, mass transport security does not preexist its performance. Rather, it is the effect of, and made possible by, a series of practices and representations, including the SECUR-ED project. This brings me to John Law’s analysis of the project as a particular performance of repetition and recitation. According to Law (2002, 87), “the project” is the performance of a “cultural bias in favor of continuity,” which combines different strategies of connecting across time and space. Following Law’s discussion of the project, I examine the SECUR-ED project as a specific practice in the ongoing problematization of mass transport security, in the context of which public-private cooperation takes shape, although in an ad-hoc and often contested manner.

In fact, what I like about Law’s discussion of the project is how it is attentive to the hard work of performing constant narratives. As such, it resonates with Butler’s emphasis on performativity, not as a singular moment of constitution that brings subjects into existence, but as a process of repetition. This also makes performativity a profoundly political lens: the constant repetition that is required means that there is always already
multiple possibilities for re-articulation and misperforming. My aim is to engage with these moments of re-articulation by focusing on the situated practices of mass transport security. I draw on fieldwork conducted during demonstration meetings in Milan and Bucharest, and on observations from the SECUR-ED midterm workshop and final conference in Geneva and Brussels. In Milan, I participated in a scenario that staged a bomb attack on a metro train. In Bucharest, I engaged in the consortium discussions evaluating the results of the Bucharest scenarios and training sessions, which focused on depot intrusion and theft, physical assault, and behavioral and public disorder. Overall, I spent a great number of lunches, dinners, and coffee breaks talking to representatives from the manufacturing industry, the Commission, and European research institutes. Fieldwork research also included a bus tour with the SECUR-ED consortium to visit the touristic highlights of Bucharest.

By focusing on SECUR-ED training modules and the Milan and Bucharest demonstrations, the chapter seeks to address the following questions: How has urban transport been articulated as a security problem and a site for intervention, and what is produced in the name of mass transport security? How do private actors become enrolled as valued actors in this domain? How does public-private cooperation in the domain of mass transport security take shape? And which capabilities and forms of expertise are produced in the space of the project? The argument proceeds in four steps. I begin by analyzing the SECUR-ED project against the background of a broader European focus on critical infrastructure protection and the security of systems. Drawing on the work of Stephen Collier and Andrew Lakoff, I will then examine the ways in which mass transportation is constituted as a “critical” or “vital” system. Next, I will focus on the SECUR-ED training programs and demonstrations and examine what is produced in the name of mass transport security. Building on John Law’s work on “the project,” the chapter proceeds with an analysis of the way in which the SECUR-ED project contributes to a common security culture in the realm of mass transportation. I will conclude by critically reviewing the broader EU project for security research under the Seventh Framework Program.

Governing urban transportation: the SECUR-ED project

The SECUR-ED project is a €40m research project, financed by the European Commission for an amount of 25m, which brings together 41 partners
from the manufacturing industry, transport operators, trade associations, public authorities, and research organizations. The project was launched in April 2011 and continued until the final conference in Brussels in September 2014. The main objective of SECUR-ED was to provide transport operators of large- and medium-sized European cities with the means to enhance urban transport security. The project aimed to do so through the development of specific demonstrations in a number of different operational environments. These comprised the larger cities of Berlin, Madrid, Milan, and Paris, as well as a number of so-called satellite cities, including Bergen, Bilbao, Brussels, Bucharest, Izmir, and Lisbon. The main objectives of the demonstrations varied. In Paris, for example, the consortium focused on the threat from chemical, biological, radiological, nuclear explosives (CBRNE), staging a scenario in which a toxic substance was released at a metro platform, and one in which there was an attack on the metro ventilation system. The Milan demonstrations were concerned with vehicle and perimeter protection at a remote depot and metro station. Other capacities that were demonstrated in Milan included CBRNE detection and crowd management systems to improve crisis management. By comparison, the Berlin demonstrations were almost exclusively about the development of training programs and about raising awareness about transport security.52

Together, over 70 different capacities were demonstrated in real operational conditions. Indeed, what was particular about the project was that, as one consortium member put it, the demonstrations were carried out “in the real world of public transport,” and not “in some laboratory.”53 The project was not about the development of new modes of technology, or about finding new ways of handling security; rather, it was about the integration of existing functionalities, technical and operational measures, processes, and training into “a very operational set of problems.”54 It was thus argued by the consortium that SECUR-ED’s contribution derived from the ways in which it enabled security manufacturers to better adjust their equipment to the specific needs and concerns of transport operators. The demonstrations also allowed the industry to test their technology in challenging but real-time environments, for example, in the context of changing weather and lighting conditions, or varying patterns of crowd movement.

As such, a second aim of the SECUR-ED project was to enlarge the urban transport security market for the European industry – a function that was already promoted by the European Security Advisory Board (ESRAB).
In its final report, ESRAB underlined the importance of gaining end-user acceptance in European security research, pointing out how incorporating “first buyers” in the demonstration program could be “a useful catalyst to spur innovative procurement” (Commission of the European Communities, 2006a, 74). In the specific domain of mass transportation, the board of advisers recommended the development and integration of equipment that would enable the detection, tracking, and tracing of individuals, crowds, and objects within and across transportation networks, or the implementation of “post-event” analysis technology for the rapid access of multimedia and digital data in order to “reenact a sequence of events” (ibid, 53).

In Chapter 3, I have argued that security research has been one of the key instruments for the European Commission to foster market making in this field, and this is true for the demonstration projects in particular. In SECUR-ED, the demonstrations were supposed to operate as a specific platform in which transport operators could express their requirements, and manufacturers could demonstrate the use and functioning of their equipment. The demonstrations, in this sense, were supposed to overcome the problem of procurement to which professionals in this field are frequently referring. As the Security Industrial Policy, adopted by the Commission in 2012, points out, “when performing [research and development] on new technologies, it is often difficult for the EU based security industry to predict whether there will in the end be a market uptake, or even some sort of reassurance that there will be a market at all” (Commission of the European Communities, 2012a, 5). While this is a problem that can be found across other industrial sectors as well, “it is particularly pertinent for the security industry, which is mostly faced with an institutional market” – that is, a market in which the main driver for market development is not demand and supply, but security legislation (ibid). In turn, these market features transform an economic problem into a security problem: “potentially promising [research and development] concepts are not being explored, which in turn means that certain technologies that could improve the security of the citizen are not available to the demand side” (ibid).

It was not a coincidence that the advisory board recommended the development of a demonstration project in the domain of mass transportation. The SECUR-ED project needs to be understood against the background of a broader European focus on the security of land transportation after the attacks on Madrid and London. The problem of mass transport security first
Performativity and the Project

appeared in the EU’s response to the Madrid and London attacks: the EU Counterterrorism Strategy, adopted in November 2005. In this report, transport security was identified as part of the Protect pillar, which combined policy work on the protection of borders, transport, and other cross-border infrastructures (Council of the European Union, 2005). The Counter-Terrorism Strategy focused on the protection of airports and seaports, since these were issue areas in which common EU legislation already existed. The strategy, however, emphasized that “there is also scope for working together to increase road and rail security” (ibid, 11). The Protect pillar was elaborated with the development of the European Program for Critical Infrastructure Protection (EPCIP) in 2006. As part of this framework and the accompanying Council Directive on the identification and designation of European critical infrastructures, the transport sector emerged as a prime example of a critical and cross-border infrastructural network (Commission of the European Communities, 2006b). In short, the program for critical infrastructure protection was established to secure those infrastructures whose disruption or destruction would have significant cross-border effects. As part of this framework, member states were called upon to assess whether their national critical assets would have transboundary effects, beginning with an assessment of the energy and transportation sectors.

The Commission Communication on Transport Security, adopted in 2012, confirmed mass transport’s status as a system that is critical to everyday life. At the same time, the document acknowledged that “perfect” security cannot be achieved (Commission of the European Communities, 2012b, 5). This is most relevant for the transport sector, which, due to its “open” operations, is considered increasingly vulnerable to security incidents (ibid). Therefore, the report recommends that transport security policy should take account of preparedness and response measures. One way of addressing these would be to draft contingency plans, based on likely incident scenarios. Furthermore, should an incident occur this also requires that frontline staff responds correctly and quickly. The document thus proposes that “all staff working in the public domain have basic training to deal with the initial aftermath of a major incident” (ibid).

The twin problematization of mass transportation as critical and open, then, requires a particular form of intervention, which Stephen Collier and Andrew Lakoff have usefully described as “vital systems security.” Drawing on their work and a more detailed discussion of the SECUR-ED
project, the next section discusses how it is the understanding of urban transportation as providing vital services for the continuation of modern life that informs SECUR-ED.

Vital systems
In a publication in *Eurotransport* magazine, the project coordinators of SECUR-ED pointed out that public transportation systems “are particularly vulnerable to … threats, not only because they transport an enormous amount of passengers, but more importantly because in order to provide efficient transport services to such a large amount of customers, public transport systems must be open, uncontrolled systems” (Steinkohl and Perreal, 2012, 74). In mass transportation, “being in possession of a ticket is enough to access the network and travel anonymously without prior reservation or security screening during the time of booking, or at stations and stops” (ibid). These characteristics in public transport in Europe “must be maintained,” the project coordinators claimed, even if “given the complexity of critical infrastructure in public transport systems, this requirement poses a real challenge to public transport operators” (ibid).

The work by Collier and Lakoff is helpful to understand the emergence of a mode of security that focuses on the protection of systems that are critical to participation in collective life. In short, what Collier and Lakoff call “vital systems security” – which they trace back to US nuclear preparedness and civil defense programs during the Cold War – has as its object of concern the continued functioning of systems in the face of possible disruption. It must be emphasized that, for Collier and Lakoff, vital systems security does not simply succeed territorial or population security. In fact, it shares with Foucault’s concept of population security a concern with the health and welfare of populations. However, “with the intensification of modernization and industrialization processes,” they write, “planners and policy-makers recognized that collective life had become dependent upon interlinked systems such as transportation, electricity, and water” (Collier and Lakoff, 2015, 21; see also Collier and Lakoff, 2008). In this manner, “the very instruments of biopolitical government, which aimed to foster the health and wellbeing of the population, came to be seen as potential sources of vulnerability” (ibid).

It is this understanding of mass transportation as providing critical services for the continuation of modern life that informed the SECUR-ED
Performativity and the Project

project. More specifically, the criticality of transportation was considered to lie in the system's radical openness, or, to paraphrase the project coordinators once more, in the way in which this is a necessary "open" or "uncontrolled" system. The problem around which SECUR-ED revolved was that of how we can combine openness, interconnectedness, and uncontrollability with the objective of security. Further still, this is a problem that sets apart mass transportation from aviation or maritime travel and trade. What makes mass transportation particularly vulnerable, as articulated by Gilles de Kerckhove, cited in the introduction of this chapter, is the way in which it has become the weakest link in the broader transportation system. According to De Kerckhove, the increasing integration of different modes of transport – a closer connection between civil aviation and high speed rail, for instance – offers great advantages for passengers and business, but also creates new challenges for a comprehensive approach on security. In this context, "a problem with an aircraft could lead to a suspect package being re-directed by road or rail" (Council of the European Union, 2010b, 2).

Returning to Collier and Lakoff's point that vital systems security has emerged in the context of a growing awareness of the ways in which collective life has simultaneously become dependent on, and vulnerable to, the infrastructures providing everyday services, we can link their work more closely to a discussion about risk, or what Ulrich Beck (1992, 8) has called "reflexive risks." In line with Beck, Collier and Lakoff maintain that processes of modernization have become “a theme and problem for itself,” or that they are, at least, understood as such (ibid). Contra Beck, however, they point out that the emergence of reflexive risks has not meant that risk management practices have become obsolete. Although these risks seem to exceed causal and calculative risk management practices, or what Collier (2008, 225) elsewhere calls “archival-statistical knowledge,” this challenge has led to different practices of risk. A growing body of literature points out how these practices involve a more imaginative orientation towards the future and “anticipatory work” that includes storytelling, the performance of exercises, and the creative and speculative combination of data (see e.g. Anderson, 2010; De Goede, 2012).

What Collier and Lakoff add to these discussions is that, in the context of vital systems security, risk practices shift from a focus on preventing the future event to one that aims to stop the effects of such an event. The emphasis is on mitigating the effects of a possible disruption in order to
assure the constant functioning of economic processes, government operations, and civil life. As such, vital systems security indicates a shift in the way in which we conceptualize risk: no longer strictly a problem of managing known or calculable risks, what comes to matter is our capacity for action on the basis of what may be impossible to prevent. For Collier and Lakoff, vital systems security is defined by the development of response and preparedness measures, such as vulnerability reduction and emergency management (see also Chapter 4). Specific measures may include stockpiling critical materials, or, in the case of SECUR-ED, the development of so-called decision support tools or early warning systems for the detection of nuclear material at railway stations (see below). Here, the growing emphasis on measures of preparedness and response stems from the insight that we are not prepared.

At the same time, the actual manifestation of the security event becomes of less significance here. “The beauty of a futuristic vision,” Kaushik Sunder Rajan (2006, 121) writes in his analysis of the way in which expectations surrounding biotechnology create further investment in new types of technology, “is that it does not have to be true.” Drawing on the work of Sunder Rajan, Linsey McGoey (2012, 8) argues that expectations are particularly fruitful when they fail to materialize, “for more hope and hype are needed to remedy thwarted expectations.” According to McGoey, a focus on the way that claims of risk often feed on their own inaccuracy highlights the value of what she calls a “politics of conditionality” for those in political authority. A good example, she argues, is the rhetoric surrounding the preemptive strikes on Iraq, whereby the actual presence of weapons of mass destruction became of less importance than suspicion about any possible impact in the near future (following Massumi, 2007; see also Amoore, 2013).

At the SECUR-ED demonstration meeting in Milan, a similar understanding and mobilization of risk was engaged. During his speech, a Commission official pointed out that in the domain of mass transportation “there is no EU regulation, and we are in a phase of cutting budgets, because there has not been an event. We need a catastrophe.” In a strict sense, what he meant was not that events had not happened before – all attendees were, of course, aware of the Madrid and London attacks and often referred to them as a way of emphasizing the importance of their work. Rather, his comments appealed to the idea that comparable events could still happen and that if they did, their impact would be great given that we
are not prepared. This was true for urban transportation in particular because of the high number of passengers travelling by bus, metro and tram. “We cover airports,” the Commission official pointed out “because we think with our hearts and we don’t think about volumes. If we would think about volumes we would protect metro systems.”

Furthermore, in this context, a diverse collection of events become grouped together to pose similar kinds of governmental problems (Collier and Lakoff, 2015, 56). Whilst participating in the SECUR-ED meetings, I experienced how the project combined everyday operational concerns and high profile risks. In Eurotransport magazine, the project coordinators noted that potential security threats may arise from “low-probability but high impact criminal acts like terrorism, as well as from everyday operational security problems such as disorder, vandalism, graffiti or assaults on passengers and staff” (Steinkohl and Perreal, 2012, 74). During project meetings, I identified a number of other issues that were of concern to the consortium, including metal theft, trespassing, pickpocketing, drugs- and alcohol related offences, gang violence, anti-social and aggressive behavior, and even stone throwing at transport vehicles. What was interesting was that during these meetings, everyday nuisance and more serious forms of crime, such as terrorism, were often discussed and performed as belonging to the same threat scenario.

Consider the following demonstration by the SECUR-ED project in which I participated: a person holding a container with graffiti paint enters a train depot on the outskirts of Milan. When entering the depot, thermal recognition technology and video cameras identify and trace him, and CBRNE (chemical, biological, radiological, nuclear explosives) detection technology, functioning as ‘paint sniffers,’ sends an alarm to the control center. Caught by security guards, the graffiti artist is handed over to the police. The next day, a screening device positioned alongside the rail track, detects that the graffiti artist has left behind an unknown device, after which the train is stopped, searched, and eventually cleared by the fire brigade’s CBRNE unit (see figure 6).

At first, this particular demonstration fascinated me because I considered it to expose how, in the context of the so-called war on terror, the exceptional and every day, ordinary actions, such as graffiti, have become linked in a continuum of risk (Aradau and Van Munster, 2007, 98; see also Heath-Kelly, Jarvis, and Baker-Beall, 2014). I was also interested in the sce-
nario because of the way in which it combined military equipment – track and trace technology and CBRNE screening devices – with everyday operational problems. In fact, the issue of graffiti came to represent a broader range of operational challenges – that is, it became a productive example of a concern whose presence was not only costly in itself, but also harmful to business operations more generally. As one member of the consortium explained to me during a tour around the train depot in Milan as part of which the transport authorities showed us a number of heavy painted vehicles (of which my fellow participants in the demonstration started to take pictures immediately, see figure 7), the presence of graffiti could considerably diminish passengers’ perception of security, and thus their intention to use public transportation.

At the same time, the presence of graffiti was also a ‘real’ security issue: like the affective, “broken windows” theories that emerged in urban planning in the 1970s and 1980s, the consortium pointed out that graffiti or others signs of lack of control could possibly encourage other offences. Fighting graffiti, in this sense, should be understood as an attempt at “designing out insecurity” or “designing in protection” – harnessing design to new technologies to produce security and protection (Lacy, 2008; Weber and Lacy, 2011). However, as Weber and Lacy (2010, 242) argue, the design of security solutions or the principle of “security-by-design,” raises important new questions, not least about the way in which these technologies empower or disempower certain groups, or about the implications they have for the way in which we might live. In the context of SECUR-ED, it is important to note that while no one in the demonstration seemed to take seriously the idea of the graffiti artist/terrorist, it was not questioned either. Neither was the use of military equipment for civil purposes called into question, at least not during this particular scenario (but see below).

A closer look at the project showed that there were also very specific reasons for this particular scenario. Above all, the scenario was exemplary of the different views and interests within the project consortium. Initially, the project was awarded to deal with low probability but high impact crimes, and this was also the direction that the manufacturers were pursuing. The transport operators in the consortium were, however, more concerned with everyday risks and annoyances such as graffiti. Arguably, appealing to the concern of graffiti became an effective way of enrolling them into the broader SECUR-ED project. That is, the graffiti artist/terrorist
Figure 6
“Detection and clearance of an unknown device by the fire brigade’s CBRNE unit during the SECUR-ED demonstration in Milan” (November 2013). Photo by Hoijtink, November 2013.
scenario enabled the consortium “to forge workable (though fragile) alignments among themselves” (Li, 2007, 269). The demonstrations and training sessions, as I further argue below, operated as specific means of enlisting transport operators and frontline staff in preparedness for, and awareness of, possible threat scenarios.

Let me shortly return to the argument about “infrastructural Europeanism” that was developed in the previous chapter. Following literature on infrastructural Europeanism, I have argued how there is something specifically European about the way in which the government of vital systems such as urban transport systems takes shape through the circulation and appropriation of knowledge and technological artefacts. Much of the work produced in the name of critical infrastructure protection in Europe is related to defining and exchanging common vulnerabilities, risk assessments, and good
practices across a dispersed number of stakeholders. The following analysis of the SECUR-ED training sessions and demonstrations will build on this argument, but also take it a step further by arguing that these practices perform a common security culture in the realm of mass transportation.

Systems solutions: training and demonstrations

For Collier and Lakoff (2015, 33), the enactment of scenario-based exercises typically contributes to an understanding of “the contours of a future catastrophe that has no precedent in past experience,” and helps in identifying “vulnerabilities and gaps in preparedness.” The SECUR-ED training sessions and demonstrations took up a rather different function. Building on observations during project meetings in Milan and Bucharest, I argue that these operated as a means of enlisting transport operators and frontline staff in preparedness for, and awareness of, possible threat scenarios. The demonstrations, furthermore, were designed not as testing or training moments, but as real demonstrations of what the technology was capable of. As such, they functioned as sites in which the imperative of technological innovation and market growth was enacted, even if this function became contested, as addressed below. This section begins with a discussion of the SECUR-ED training modules, followed by a more detailed analysis of the demonstrations. Overall, I am concerned with the ways in which, in the context of the project, public-private alignments are forged and cross-sector cooperation takes place.

Training

In a publication by the project consortium it was stated that:

> When thinking of security enhancing solutions, most people think of technologies such as CCTV cameras or metal detectors. However, SECUR-ED takes a wider approach, also considering the contribution that a culture of security can make to a public transport operator, and other pillars of a sound security regime (Steinkohl and Perreal, 2012, 74, emphasis added).

According to the project coordinators, the “pillars of a sound security regime” include a range of actors supposedly available for carrying out security activities, among them security staff, and forces that may be called into
assistance, such as police and firemen, “but also front line staff that could be involved in security-related incidents like cleaning staff, for instance” (ibid). All these actors “can be trained and educated to be able to increase the security of public transport systems and to be able to detect and handle security risks” (ibid). Indeed, the development of training programs was a key feature of the SECUR-ED project, and although training of cleaning personnel was not part of the scope of the project after all, other categories of frontline staff – for example, conductors, drivers – were. SECUR-ED also made an effort to draw in passengers and to raise public awareness through posters and advertisement.

An important motivation behind enrolling transport staff in security-related activities is that they could function as the ‘eyes and ears’ in the field of urban transportation. The assumption, here, is that frontline personnel such as drivers and conductors are most likely to be the first to be able to spot signs of terror or crime. For the same reasons, passengers should be informed about the importance of observing their surroundings. The enlistment of staff and passengers by the SECUR-ED project was not a passive instrumentalisation, but a mode of subjectification and authorization, which depends on certain knowledge frames offered by the training programs. For example, for the demonstrations in Bergen, a card game was developed, which encouraged participants to reflect on how they would act in the context of certain events: what to do, for instance, in case a “strong odor appears,” or when transport customers indicate “skin irritation caused by chemicals”? While it was acknowledged that “passengers cannot be sent to school,” the project also explored the use of posters and advertisements to call upon passengers to report signs of suspicion.58

As Stephanie Simon argues in her analysis of the securitization of photography, such “signs” may, however, be little more than everyday, ordinary actions – such as photography – rendered suspicious and worthy of security intervention in a post-9/11 context. Simon writes, “placing the act of photographing in a relationship of resonance with terrorism – whether it occurs near ‘sensitive infrastructures’ or not – remaps the boundaries of the ‘reasonable’ and suspicious or ‘odd’” (Simon, 2012, 165-166). In the context of SECUR-ED, what is interesting is how keenly the training modules and demonstrations appropriated the frame of suspicion: in the Milan demonstrations we have seen how it was not a bomb but a “suspicious device” that was left on the train. The actors in the demonstrations were defined as
“suspicious persons” or “targets” in the scenario descriptions. And the SE-
CUR-ED training programs called upon the students to think about what
to do when a “suspicious bag” is left unattended. In all these examples, the
suspicious object, person, or act signals the ever possible, catastrophic be-
coming of the terrorist attack. The training programs, as such, encouraged
awareness, vigilance, and anxiety as a means of anticipating the unfolding
future (Amoore, 2009).

The enlistment of frontline staff by the project was not a smooth or
straightforward process. In fact, the training manual dwells at length on the
different ways in which the training programs should be organized and par-
ticipants could be motivated. Training methods should include classroom
training and computer-based training, which, the manual mentions, are
most suitable for a methodological delivery of a large amount of material.
These training modes should be combined with on-site training, role-play,
and on-the-job training, which are considered more interesting, and there-
fore more effective. In Bergen, as we have seen, the project experimented
with a memory-type card game developed by the consortium. During the
Bilbao demonstrations, a role-play exercise was organized as part of which
security staff was supposed to solve conflicts and deal with tense situations.
A SECUR-ED promotional video shows a group of men in a classroom,
pushing each other around, and laughing. Still, the manual maintains that
these training methods have the advantage that they are more realistic, ap-
proximating, or taking place in “real working environments.” The extent
to which the training exercises reflect everyday working life, it is suggested,
promises better learning experience and output.

The training manual highlights that a key task for frontline staff is
to provide “passengers with a sense of security,” something which, “is no
less important than providing good customer service.” What is articulated
here is that security belongs to the core business of transport personnel.
“It’s just part of the service,” as one consortium member put it (see also
Cowen, 2010, 607). In order to motivate employees for security-related
activities, the manual suggests that trainers should begin by “showing them
appreciation,” but also underline “the importance of their role in potential-
ly saving human lives, preventing harm and damage to [public transport
operators’] assets and infrastructure.” Another way of enlisting frontline
staff for security is by stressing that “a transport system that functions well
is not only a source of pride, but also a stable work environment in terms of
job security.”\(^{63}\) Hence, in this context, we find that security comes to refer to the employee’s own security: frontline staff should take pride in taking up responsibility for the security of transport assets and passengers, but if they resist doing so, this may be detrimental to their capacity to secure their own job.

Demonstrations

Let us now turn to a more detailed discussion of the Milan demonstration. On a cold November morning I joined a small group of SECUR-ED consortium members to participate in the demonstration described above. We met at a metro station 30 minutes away from the city center of Milan, where a vehicle was made ready for us to depart for a train depot operated by the Milanese transport authority (ATM). Most of the people present, among them Commission officials, manufacturers, and transport operators, seemed to know each other well, and when bright orange security vests were handed out this further contributed to the cheerful atmosphere. Upon our arrival at the depot, a first scenario was staged in which a graffiti painter was detected by empty vehicle screening technology, installed onboard. The technology sent an alarm to the control room after which the intruder – played by an ATM employee – was caught red-handed by the security guards.

After our coffee and a tour around the depot, the train took off again, and we were told to pretend as if it was the next morning. The train drove past a new nuclear detection system, placed under a bridge, next to the rail track. As we passed the device at low speed, the project leaders informed us that this was a system manufactured by CEA, a French government-funded research organization, which was capable of detecting gamma rays. Again, an alarm was set off and transmitted to the local and central command and control centers. Cheered by the participants, the alerted fire brigade started moving toward us. Dressed in all-white security suits, the firemen soon located the suspect package left behind by the intruder the night before (figure 6). So, it turned out that the intruder’s intention to spray graffiti, as the project leader explained the scenario to us, was nothing more than a way to divert the operator’s attention away from a dirty bomb. The “bomb” – a box wrapped in aluminum foil – was detonated, and my fellow participants started applauding.

We were then brought back to the depot, where the last scenario was performed. As part of this demonstration, the graffiti artist – played
by the same ATM employee – tried to enter the depot from outside. When approaching the depot, a newly installed circuit of thermal recognition and track-and-trace cameras detected him. The system allowed the control room operator to identify and follow the intruder across the area, and to brief the arriving security guards about his position. What followed was that the intruder was successfully detained.

Indeed, it struck me that the demonstrations could only be a success. This was not self-evident: chatting with the security manufacturers on our way back to the city center, one of them told me he was relieved that the empty vehicle detection equipment for which he was responsible had performed well, as he had spent long hours making the technology work prior to the event. In particular, he explained that it had been a real challenge to adjust the technology to the existing architecture of the ATM train used for the demonstration. However, we were not supposed to see the hard work that was put into making the demonstrations a success. Neither were we made aware of the inherent shortcomings or failures of the technology. These were only occasionally exposed, for example when, during our time in the control room, the camera system outside of the depot began to trace a small bird. While everyone in the room started laughing, the project leaders then admitted that the technology was still facing a number of other problems. These had to do with lighting and weather conditions and with the specific layout of the depot and outside area. Another moment in which the limitations of the equipment became visible was when we drove past the detection device installed by CEA and I made a comment about our speed. I was then informed that the technology could only perform if the train passed at a maximum speed of 25 km/h, even if this was creating operational problems. Discussing this with another consortium member back at the ATM premises, he confirmed my belief that much of the technology was in fact not state-of-the-art.

As the project proceeded, I came to consider SECUR-ED as an EU-sponsored platform for security manufactures to demonstrate their equipment to potential customers. Hence, I was disturbed when, during the afternoon evaluation of the Milan demonstrations, and following a question from the audience about the likelihood that the equipment would be bought, the spokesperson for the Milanese transport authority admitted that his company did not intend to purchase the technology implemented for the demonstrations. Not only was their willingness to do so constrained by the
company’s budget, he also considered the protection against high-profile risks such as CBRNE not to be part of their core responsibilities. The occasion reflected a more general concern among transport operators with the project’s emphasis on market development and (defense) technology.

On several occasions, operators complained that the manufacturers in the consortium did not recognize the diverse character of mass transportation, and wrongly assumed that their equipment, initially developed for defense purposes, could be easily transferred into the transport domain. Indeed, much of the equipment that was demonstrated could be regarded as technology located at the intersection of the defense and civil domains, originally developed for military purposes, but now also corresponding to supposedly new and high-level threats against civil targets, such as airports, mass events, and urban transportation. Examples of such “dual-use” or “spin-off” technologies in the SECUR-ED project included, as discussed, CBRNE screening equipment developed for metro platforms and trains, and sensor and information processing systems such as tracking and tracing and biometrics (Ecorys Research and Consulting, 2012).

More generally, I found that there was a strong focus in the SECUR-ED project on the integration or interoperability of dual-use technology. A majority of the equipment exhibited at the final project meeting in Brussels dealt with orchestration or integrated systems, which were supposed to bring together CCTV and other security systems under a unified, user interface, providing operators with centralized supervision and decision support. A concept that has begun to gain track in EU security more generally, interoperability can itself be traced back to the military domain, and to discussions about NATO enlargement and to the organization’s capabilities during the 1990s in particular. In the transport domain, interoperability has been pushed by the larger companies with close ties to the defense and armaments domain. Companies such as SECUR-ED project leader Thales, and consortium partners NICE and Safran Morpho, are not concerned with developing the perfect single technology; rather their work is based on the integration of separate systems into a “complete toolkit” (Ecorys Research and Consulting, 2009, 18). These companies have placed interoperability on the agenda because they are in the best position to do large-scale integration work. Above all, these companies point out that their capacity to carry out this type of integration work derives from their expertise and experience in the military domain.
Performativity and the Project

Returning to the question-and-answer session in Milan, the comments by the Milanese transport authority’s spokesperson challenged my assumptions about the SECUR-ED project. Why am I studying this project as a tool for market development, if the technology is not bought? Likewise, can I still make an argument about the militarization of mass transportation, if the technology is rejected by operators? Attending a critical address by a Commission representative for the Directorate-General for Transport at the SECUR-ED final event, who pointed out that his colleagues at Enterprise and Industry and Home had “a very different culture” of enacting security in mass transportation, I came to the conclusion that the main function of the project was precisely this: to enact a common security culture, outlook, or network in the realm of mass transportation in Europe (see also Kuus, 2014, 91).

Culture, Derek Gregory (2004, 11) explains, “is never a mere mirror of the world” through which we can shed light on contemporary politics. Rather, “culture involves the production, circulation, and legitimation of meanings through representations, practices, and performances that enter fully into the constitution of the world” (ibid). In the 1970s, a group of prominent scholars in science and technology studies (STS) – among them Bruno Latour, Karin Knorr Cetina and Sharon Traweek – already acknowledged culture to be related to practices of sense-making and the construction of meaning (e.g. Traweek, 1988; Knorr Cetina, 1999; Jasanoff, 2005). Simultaneously, these authors adopted an ethnographic approach to the laboratory in order to observe and participate in the work of experimentation, the construction of data, and the refinement of claims. They pointed out that, as part of these practices, culture, or rather a multiplicity of cultures, play an enormous role (Hackett et al., 2008, 15). According to Traweek (1988, 438), culture, then, refers to “the ways, the strategies [communities] recognize and use and invent for making sense.” Adding to her definition, John Law (2002, 71) writes that culture is about arranging strategies and sense-making, but also about the creation of similarities and differences, “including the similarities and differences that constitute community.”

Below, I propose that SECUR-ED project functions as a space in which cultural meanings and communities are performed. Following science and technology studies and John Law’s work in particular, my use of “culture” is different from a more common understanding of security or strategic culture in International Relations, which is based on histories of
war experience, perceived national interests, and decision making by high-placed officials and politicians (e.g. Rees and Aldrich, 2005). While the literature on security cultures in IR often considers culture to limit or prevent states from acting in a certain way, that is to say, in line with seemingly obvious national interests related to state security and survival (see also Williams, 2007; De Graaf, 2014), I focus on how culture is a more productive force. This is an understanding of culture that takes into account how shared meanings and perceptions in security are produced, communities are being forged, and consensus operates through global/local networks. Moreover, different from the strategic culture literature, I consider the cultural work of SECUR-ED to take place across public-private networks, local governments, and market-driven projects, rather than in the realm of high politics.

Culture and continuity

In his book *Aircraft Stories*, John Law has a chapter in which he is concerned with the performativity of storytelling, in particular the tendency to perform singular and constant stories. In this chapter, Law discusses the making of two specific objects in the 1950s – the P.17 A. aircraft by the company English Electric and the 571 aircraft developed by a competing firm, called Vickers Armstrong – and the different strategies that were adopted in order to present these as viable projects. Regarding the P.17 A. aircraft, he suggests how, in its brochure, English Electric offers a plausible story about the development of the new aircraft drawing on the company’s earlier design experience and a description of the aircraft’s successful successor, the Canberra. This is an example of “an origin story,” a narrative that reconstructs “how one (cultural) thing leads to another, influencing it and shaping it, as one passes through time” (Law, 2002, 70). Law considers this to be a coordinating strategy, “a method for the cultural ordering of what might otherwise be disconnected objects” that takes the form of a chronological or genealogical story (ibid., 71).

While English Electric insisted on commonality through time, Vickers Armstrong followed a different strategy, one that was based on drawing connections across space. Consider the following quotation from a historian of the British Aircraft Corporation, Charles Gardner:
Performativity and the Project

The 571 was a revolutionary proposal in that it offered the required blind terrain-following, nav-attack and weapons system as a fully integrated package – the complete opposite of the ‘add-on’ afterwards school of thought. The argument was that the systems were at the heart of the airplane and a high performance-flying platform should be built around them (quoted in Law, 2002, 73; emphasis added).

In this context, the focus is no longer on the aircraft per se, for this is the product or expression of the system – that is, of the relations between a diverse range of elements such as size, number of engines, flight accidents, investment, training, weather etc. “So what used to be an aircraft,” Law writes (ibid, 78), “is turned into a set of places, roles and features while the ‘aircraft itself,’ the form one sees when one looks at it, is shaped by these relations.” The significance of this development lies in the way in which it enables Vickers Armstrong to connect everything important to everything else.

According to Law, the construction of narratives of similarity and difference is a cultural expression. Following Traweeks’ work, Law claims that culture is about “making and distributing similarities and differences, about allocating them and re-allocating them” (ibid, 76). What is more, all of us have a bias that is in favor of narratives of continuity and singularity, and against multiplicity. This bias takes different forms, or in the case of the example of English Electric and Vickers Armstrong, it takes different cultures – defined by genealogy and systems narratives. Again, what unites these and other forms of cultural practice is a tendency to trace lines of similarity, “[e]ven if the events present themselves as discontinuous. Broken up. Or multiple” (ibid).

As part of my own field research, I found many examples of both origin stories and systems narratives. In the context of SECUR-ED, the presence of systems continuity is perhaps most telling. For example, the project consortium considered its own research object – mass transportation – to function as an “integrated mobile system.” The relevance of this was a constant focus on the way in which security procedures and equipment were supposed to enhance, or at least not limit, business operations and passenger circulation. The equipment that was put forward also appealed to systems logics: these were interoperable and integrated security management
systems, or “complete toolkits,” developed by large-scale “systems integrators” (Ecorys Research and Consulting, 2009).

As discussed, the SECUR-ED project functioned as an effective way of combining these different narratives and cultures. About “the project,” Law writes:

A project is a ‘plan, scheme; planned undertaking, especially by student(s) for presentation of results at a specified time’ (*Concise Oxford Dictionary*). The term derives from the Latin *pro* (in front of, for, on behalf of, instead of, on account of) and *jacere* (to throw) (ibid). Perhaps, then, ‘the project’ is the performance of a cultural bias in favor of continuity. Perhaps “the project” is a performance of the [the] cultural orderings of continuity: genealogy [and] systems … (Law, 2002, 87).

SECUR-ED not only enacted the problem of mass transport security, the project also *obscured* a diversity of cultures. Indeed, the culture performed by the SECUR-ED project is not a stable or coherent one, and throughout the chapter I have shown how different cultures coexisted in the context of the project (see also Hoffman, n.d.). For example, we have seen how the project brought together different institutional cultures, including those pertaining to the European Commission Directorate-Generals for Enterprise and Industry, Home Affairs, and Transport. Moments of contestation also existed between transport operators and security manufacturers, whereby most discussions were about the extent to which ‘military’ concepts, strategies, and technologies could be transferred to the ‘civil’ domain for mass transportation. More generally, I found many references to differences between ‘public’ cultures of bureaucracy, and ‘private’ cultures of innovation.

We could add that the singular performance of the project evades important questions about success and failure. While engaging with the SECUR-ED consortium, some of the participants began to share their concerns about the course the project had taken. They subscribed to my view that the equipment that the project was demonstrating was not really state-of-the-art technology, or that, in many other ways, the project was not delivering. 66 The official story is that SECUR-ED has been a great success, however, the benchmarks against which success is measured are not clear. It seems that SECUR-ED’s success merely hinged upon its ability to unite
stakeholders in mass transportation. For example, during the project’s final event, the project coordinator stated that “to bring these people together and to let them exchange, to improve the ways in which they communicate and cooperate daily, that’s an absolutely crucial accomplishment of the project.” Yet, we could ask: what is the value-added of a €40m innovation project, largely funded with EU-money, if the security equipment that is demonstrated is not of interest to the end-users? What is it that makes SECUR-ED a success other than its capacity to foster a community of like-minded security professionals? Likewise, what does it mean for our understanding of market development if questions about what security research and innovation is for are not being posed?

To raise these questions means linking the project closer to a narrative of failure. David Mosse (2011, 55) argues that whilst stories of success highlight “policy, expert ideas, the systems, and the professional,” stories of failure “point to the contingent, the arbitrary, the accidental, the unintended, and the exceptional.” Stories of success are “theory-rich,” while those about failure “are inherently event-rich” (ibid). According to Mosse, to speak of failure does not mean a plan unrealized; rather, “failure is the eruption of precisely those things that professionalism suppresses – events, contingency, relations – and that ethnography assembles” (ibid). To be attentive to those elements as part of ethnographic fieldwork becomes a way to fully engage with the activity of politics and to disrupt the communities and cultures that are built around success.

At the same time, as scholars, we ourselves are not able to escape a cultural bias that is in favor of narratives of continuity, singularity, and success. Indeed, an important part of academic work is precisely this: to perform constant stories and to trace connections across time and space. So, we are ourselves inclined to trace origins, or to think in terms of networks or systems of experts, knowledge, trade, terrorists, infrastructure etc. More critical accounts of assemblages or networks are not always exempt from this tendency. To place emphasis on difference and discontinuity, or, in the words of Law (2002, 88), to “imagine multiplicity, fractionality, and partiality as alternative cultural strategies,” has above all been a methodological effort in this chapter. Participant observation at the SECUR-ED project meetings has allowed me to identify gaps and breaks with singular and constant narratives, and it was these observations that presented a break with a seemingly coherent and ever functioning performance of security.
Concluding reflections: on the broader project of EU security research

Drawing on a close study of the SECUR-ED demonstration project, this chapter has examined the ways in which the problem of mass transport security has been addressed in Europe. Combining literature on the performativity of security with John Law’s work on the project, the chapter has analyzed how, in the context of the SECUR-ED project, connections and continuities were performed across European differences and across public-private space in order to deal with the problem of critical transport systems. Hence, I pinpointed the enactment of a common security culture in mass transportation, defined by a narrative of shared threat perceptions and solutions to insecurity, and corresponding practices. To emphasize, this was not a stable culture, and throughout the chapter I have pointed to the hard work of enacting this culture. Among other things, the gaps and fissures of these performances included the uneasy drawing together of transport operations and security objectives, terrorism and graffiti, and military and civil logics of security. They were all (partly) obscured by the enactment of the SECUR-ED project.

I conclude that the broader EU program for security research, introduced in Chapter 3, can itself be fruitfully analyzed drawing on Law’s understanding of the project. What was valid for the SECUR-ED project is also true for the research program more generally: that is, “the project” of European security research as a whole is performed in such a way that it becomes difficult to contest. In particular, the program’s twin rationale of enhancing the security of Europe’s citizens, while enlarging the European market for homeland security, is so dominant that it renders questions about its use, desirability, and effectiveness obsolete. What kind of security are we investing in and against which costs? How effective is the Seventh Framework Program for security, or have traditional calculative frames of cost-benefit policy measures become redundant in the context of worst-case scenarios and uncertain, but possibly lucrative market development? And, most importantly, what kind of security do we want, and for whom?
149
Performativity and the Project

Endnotes
51. For example, at the LANDSEC meeting on 11 September 2015, Chief Security Officer at Deutsche Bahn, Gerd Neubeck, argued that the airline security model cannot be transposed to rail given that the rail passenger volumes are just too high. According to Neubeck, Deutsche Bahn handles more people in a week than Amsterdam Airport Schiphol in a whole year. See: http://uic.org/com/uic-e-news/464/article/extraordinary-meeting-of-the?page=iframe_enews (last accessed 8 October 2015).
53. ‘Summarizing SECUR-ED’ promotional video.
54. ‘Summarizing SECUR-ED’ promotional video.
57. ‘Protecting passengers and staff’ promotional video.
58. ‘Development of training programs,’ SECUR-ED promotional material.
59. ‘Development of training programs,’ SECUR-ED promotional material.
60. ‘Development of training programs,’ SECUR-ED promotional material.
61. ‘Protecting passengers and staff’ promotional video.
62. ‘Development of training programs,’ SECUR-ED promotional material.
63. ‘Development of training programs,’ SECUR-ED promotional material.
64. In many respects, the problem of how to operate jointly and in an effective manner had long been on NATO’s agenda. Nonetheless, it had become more persistent in relation to a presumably global security context in the immediate aftermath of the Cold War on the one hand, and uneven defense spending across the organization on the other. With respect to the latter, this was particularly the case in relation to the new operational concepts of intelligence, surveillance and reconnaissance that the US was developing in the context of the Revolution in Military Affairs. As part of these discussions, interoperability took a slightly different form. In particular, it became linked to the ability to share information and awareness with individuals operating at the edge of a networked organization.
66. I build on conversations with SECUR-ED participants in Geneva, Bucharest, and Brussels.
67. ‘Summarizing SECUR-ED’ promotional video.