Search for event rate modulation in XENON100 electronic recoil data

Aprile, E.; et al., [Unknown]; Aalbers, J.; Alfons, M.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C.

DOI
10.1103/PhysRevLett.115.091302

Publication date
2015

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date: 11 Aug 2023
Search for Event Rate Modulation in XENON100 Electronic Recoil Data

relative motion between Earth and the dark matter halo of the Milky Way [3]. The modulation of the low energy (low-E), $(2–6)$ keV event rate in the DAMA/LIBRA experiment [4] is currently the only long-standing claim for a positive dark matter detection. Under typical astrophysical and particle physics assumptions, this claim is, however, challenged by the nonobservation of WIMP-induced NRs of several other experiments using different target materials and detector technologies (e.g., Refs. [5–7]), most with considerably lower radioactive backgrounds.

An alternative explanation is that the DAMA/LIBRA annual modulation is due to electronic recoils (ERs) from WIMPs which have axial-vector couplings to electrons [8,9]. The stable performance of XENON100 over a period of more than one year offers the opportunity to test this hypothesis with a different detector operated for the first time in the same underground site, the Laboratori Nazionali del Gran Sasso (LNGS), Italy.

For this analysis we use the 224.6 live days of XENON100 dark matter data accumulated from February 28, 2011, to March 31, 2012, previously used to search for spin-independent [5] and spin-dependent [10] WIMP-induced NRs, as well as for axion-induced ERs [11] and a comparison with DAMA/LIBRA using the average ER rate [9].

The ER energy and uncertainty therein is inferred from the prompt scintillation light signal (S_1), as in Ref. [11], using the NEST model (v0.98) [12] fit to independent light yield calibration measurements [13,14]. The overall uncertainty on the ER energy scale is dominated by the spread of the low energy measurements in Refs. [13,14] and is estimated to be 14% at 2 keV and 9% at 6 keV.

We use the same S_1 range of $(3–30)$ photoelectrons (PE) as in Refs. [5,15], but divided into two ranges. The low-E range $(3–14)$ PE corresponds to $(2.0–5.8)$ keV and thus covers the energy interval where the DAMA/LIBRA experiment observes a modulation signal. The higher energy range, $(14–30)$ PE, corresponds to $(5.8–10.4)$ keV and is used as a sideband control sample.

Low-E single-scatter events in the 34 kg fiducial mass, as expected from dark matter interactions, are selected using the same cuts as in Ref. [5]. While these cuts were defined to select valid NR events, they also have high efficiency for ERs [11], and they result in 153 events distributed in time as shown in Fig. 1(f). The cut acceptances in the energy ranges considered here have been derived following the procedure in Ref. [15] using ER calibration data (60Co and 232Th) taken on a weekly basis. The time variation of the acceptance, shown in Fig. 1(e), is incorporated into the analysis by linearly interpolating between the data points. We have verified that our conclusions remain unaffected when adopting different methods of cut acceptance interpolation in time.

The design of XENON100 incorporates many sensors of various types to monitor the long-term stability of the...
detector. A total of 15 parameters were investigated, of which a subset with the highest potential impact on detector signals is shown in Figs. 1(a)–1(d). The absolute pressure of the gas above the LXe has a mean value of 2.23 bar, with a maximum variation of 0.02 bar over the entire period [Fig. 1(a)]. The temperature sensors located at various positions within the detector exhibit a mean value of 20.7°C, with a maximum variation of 0.17°C for each sensor. The ambient temperature in the XENON100 room has a mean value of 20.7°C, with a maximum variation of 3.7°C [Fig. 1(b)]. The LXe level, monitored by two capacitive sensors, shows a maximum variation of 0.22 mm during the entire period [Fig. 1(c)].

To identify potential correlations between detector parameters and the ER rate, we calculate the linear (Pearson) and nonlinear (Spearman-Rank) correlation coefficients for the two energy ranges studied, and for both single-scatter and multiple-scatter events. The latter are defined as events with a single scatter in the fiducial region plus an additional S1 coincident signal in the LXe veto. The 99 kg LXe veto has an energy threshold of ~100 keV; thus, multiple-scatter events are dominated by high-energy scatterers from γ rays [1,16]. Of all the parameters studied, two were found to give a noncorrelation p value smaller than 0.001. The first parameter is the LXe level, which shows a negative linear and nonlinear correlation with the low-E single-scatter rate. The second parameter is the Xe gas temperature, which shows a negative linear correlation with the low-E multiple-scatter rate. As expected, the LXe level and gas temperature were also found to be correlated with each other and with the room temperature. A change in the LXe level, gas pressure, and temperature can potentially affect the observed size and width of the secondary scintillation signal, S_2, which is a measure of the ionization electrons liberated in the interaction. The overall observed variation of the S_2 signal is less than 5% [17], while the majority of events have $S_2 > 1000$ PE, much larger than the trigger threshold of 150 PE. Consequently, a detailed inspection of the S_2-dependent cuts shows that their performance is unaffected. Hence, the correlation with the event rate is possibly a coincidence and, regardless, does not impact our statistical analysis for the periodicity described below.

The impact of decaying radioactive isotopes on the low-E ER rate is also considered in this analysis. These sources can be subdivided into external sources of γ radiation from peripheral materials and β radiation from the decay of radioactive Rn and 85Kr distributed in the LXe volume.

Of the relevant external γ sources in the detector and shield materials, only 60Co ($t_{1/2} = 5.27$ y) decays on a time scale sufficiently short to potentially cause an observable change in the event rate during the time period of this study. However, the decrease in activity is found to reduce the single-scatter low-E ER rate by less than 1% of its average value, based on a Monte Carlo (MC) simulation using the measured activity level from Ref. [16]. Hence, we assume the external γ background to be constant for this analysis.

The short-lived isotopes 222Rn and 220Rn are constantly produced as part of the primordial 238U/232Th decay chains and are present in the air of the room and the shield cavity, as well as inside the LXe due to emanation from inner surfaces. Radon decays outside the detector, measured by commercial Rn monitors in the room, contribute negligibly to the event rate in the fiducial mass since the emitted radiation is absorbed by the shield and the outer detector materials. The concentration of Rn and the subsequent decay products dispersed in the LXe is continuously monitored via examination of both α decays and β-γ delayed coincidence events [18]. This analysis shows that 222Rn from the 238U chain is uniformly distributed in the volume while 220Rn from the 232Th chain is negligible. The time variation of the 222Rn level is shown in Fig. 1(d) and exhibits a specific activity of (63 ± 1) μBq/ kg. This level corresponds to a low-E ER contribution of (1.11 ± 0.02) events/(keV·tonne·day) as determined by a MC simulation [16]. The $8.5%$ fluctuation of the 222Rn level corresponds to a less than 2% variation of the average rate and is thus negligible compared to the observed rate fluctuation of $51%$ shown in Fig. 1(f). In addition, no time correlation is found by calculating the linear and nonlinear correlation coefficients between the low-E ER rate and the Rn level. Therefore, the evolution of the 222Rn level in time is not included in the statistical analysis below.

The other internal contamination, 85Kr, is also present in the air. The concentration of natKr in the LXe during the period studied here was determined on November 17, 2011, to be (14 ± 2) parts per trillion using the rare gas mass spectrometer (RGMS) method [5,19]. However, it became evident after the end of the run that a small air leak in the Xe gas purification system had allowed Rn and Kr atoms to diffuse into the LXe. The leakage rate into the sensitive volume was estimated from a study of the time correlation between the external and internal concentrations of 222Rn [18], including three RGMS measurements of natKr spread over the course of several months during the following run. Assuming a constant natKr concentration in the air, the linear increase in time of natKr in the LXe was found to be proportional to the integrated number of additional 222Rn decays due to the air leak. The linear increase of the single-scatter ER rate from 85Kr has a slope $K = (2.54 \pm 0.53) \times 10^{-3}$ events/(keV·tonne·day)/day, assuming a 85Kr/natKr ratio of 2×10^{-11} [19]. This time-dependent background results in an expected total increase of (0.10 ± 0.02) events per day at low-E over the course of one year, which is taken into account in the following statistical analysis.

To determine the statistical significance of a periodic time dependence in the event rate, we implement an
unbinned profile likelihood (PL) method [20], which incorporates knowledge of the time variation of detector parameters and radioactive backgrounds as described above. The event rate for a given energy range is described by

\[f(t) = e(t) \left[C + Kt + A \cos \left(\frac{2\pi (t - \phi)}{P} \right) \right], \]

(1)

where \(e \) is the corresponding average cut acceptance, interpolated from the measurements described above, \(C \) is the constant component of the event rate, \(Kt \) is the linearly increasing contribution from \(^{85}\)Kr, and \(A \) is the modulation amplitude with period \(P \) and phase \(\phi \). Equation (1) is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \).

The significance of a particular period, for example \(\phi \), is given by Eq. (1) with \(A = 0 \). The null hypothesis, no periodicity, is given by Eq. (1) with \(A = 0 \). The nuisance parameters according to their constraints in Eq. (1) are determined by weekly calibration measurements, the reso-

1. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

2. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

3. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

4. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

5. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

6. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

7. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

8. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

9. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

10. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

11. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

12. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

13. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

14. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

15. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

16. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

17. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

18. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

19. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

20. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

21. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

22. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

23. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

24. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

25. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

26. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

27. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

28. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

29. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

30. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

31. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

32. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

33. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

34. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

35. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

36. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

37. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

38. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

39. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for

40. **Equation (1)** is then normalized to take into account the modulation amplitude with period \(P \) and phase \(\phi \). When searching for
The simulations in Fig. 2 show that the rise in significance at long periods in the low-\(E\) single- and multiple-scatter data could be explained by a modulating component with a period \(\gtrsim 300\) days. However, the best-fit phase disagrees with the expected phase from a standard dark matter halo (152 days) at a level of 2.5\(\sigma\) based on the 1D PL scan shown in the top panel of Fig. 4. Furthermore, the rise in significance at long periods is evident in both single- and multiple-scatter data, also disfavoring a WIMP interpretation.

Allowing the parameter \(K\) to float freely to unphysical negative values, given the measured \(85^{\text{Kr}}\) level, decreases the significance of large periods and strengthens the exclusion limit discussed below.

The XENON100 data can constrain the dark matter interpretation of the annual modulation observed by DAMA/LIBRA, as shown in Fig. 4, for certain models producing ERs. Such constraints were previously imposed using the average ER event rate in XENON100 [9]. Here, we use the full time-dependent rate information to make a direct comparison with the expected DAMA/LIBRA annual modulation signal in our detector. The expected S1 spectrum in XENON100 is derived from the DAMA/LIBRA residual modulation spectrum (Fig. 8 in Ref. [4]) following the approach described in Ref. [9], assuming the signals are from WIMP-electron scattering through axial-vector coupling [8,9]. The expected annual modulation amplitude in the low-\(E\) range in XENON100 is then calculated as
\[
\frac{1}{2} \frac{1.1}{0.7} \frac{138}{10^{-3}} \text{ events/(keV·tonne·day)},
\]
with statistical uncertainty from the reported DAMA/LIBRA spectrum and systematic uncertainty from the energy conversion in XENON100.

FIG. 2 (color online). The expected mean (solid lines) and central 68.3% region (shaded bands) of \(-2\log(L_0/L_1)\) as a function of period for simulated data with a fixed average rate \(C = 6.0\) events/(keV·tonne·day), a linear increase in rate \(K = (2.54 \pm 0.53) \times 10^{-3}\) events/(keV·tonne·day)/day, an amplitude \(A = 2.7\) events/(keV·tonne·day), and three periods \(P\) (days). Uncertainties on all parameters are taken into account. The horizontal local significance lines are derived from the null hypothesis tests described in the text and are shown here for comparison to Fig. 3.

FIG. 3 (color online). \(-2\log(L_0/L_1)\) as a function of modulation period for single scatters (SS) in the low-\(E\) region (top panel), multiple scatters (MS) in the low-\(E\) region (middle panel) and single scatters (SS) in the higher energy region (bottom panel). The phase is unconstrained.

FIG. 4 (color online). The XENON100 best-fit and 95% and 99.73% confidence level contours as a function of amplitude and phase relative to January 1, 2011, for period \(P = 1\) year. The expected DAMA/LIBRA signal with statistical uncertainties only and the phase expected from a standard dark matter (DM) halo are overlaid for comparison. Top and side panels show \(-2\log(L_1/L_{\text{max}})\) as a function of phase and amplitude, respectively, along with two-sided significance levels.
compare this expected signal with our data, the phase ϕ in Eq. (1) is set to (144 ± 7) days [4], constrained by an additional Gaussian term, L_ϕ, in Eq. (2). The resulting PL analysis of our data disfavors the expected DAMA/LIBRA annual modulation at 4.8σ.

In summary, XENON100 has demonstrated for the first time that LXe dual-phase time projection chambers can be operated with sufficient long-term stability to enable searches for periodic signals for periods up to and greater than one year. The detector parameters investigated were found to be very stable, and most show no correlation with the measured low-E (2.0–5.8 keV) single-scatter ER event rate. Although the LXe level and Xe gas temperature show a correlation with this rate, no evidence was found of a direct impact on the cut performance. A time varying cut acceptance and background from 85Kr are included in the search for event rate modulation. In the 224.6 live days of XENON100 data taken over the course of more than one year, a rising significance at long periods is observed for low-E single- and multiple-scatter events, with the most likely period being $\gtrsim 450$ days. An explicit search for annual modulation in the ER rate gives a 2.8σ local significance with a maximum rate on April 22 ± 15 days. This phase disfavors an annual modulation interpretation due to the standard dark matter halo at 2.5σ. Furthermore, our results disfavor the interpretation of the DAMA/LIBRA annual modulation signal as being due to WIMP-electron scattering through axial-vector coupling at 4.8σ.

We gratefully acknowledge support from the NSF, DOE, SNF, FCT, Region des Pays de la Loire, STCSM, NSFC, DFG, MPG, Stichting FOM, the Weizmann Institute of Science, I-CORE, EMG, TN Invisibles (Marie Curie Actions, PITN-GA-2011-289442), and INFN. We are grateful to LNGS for hosting and supporting the XENON project.

$^*\text{Present address: IFIC, CSIC-Universidad de Valencia, 46980, Valencia, Spain.}$

$^1\text{Present address: Department of Physics, Stockholm University, 114 18 Stockholm, Sweden.}$

$^2\text{feigao.ge@sjtu.edu.cn}$

$^3\text{lukeg@phys.columbia.edu}$

$^4\text{Also at Coimbra Engineering Institute, Coimbra, Portugal.}$

$^\dagger\text{Present address: Department of Physics, University of California, San Diego, CA 92093, USA.}$

$^\parallel\text{Also at Coimbra Engineering Institute, Coimbra, Portugal.}$

$^\S\text{Also at Coimbra Engineering Institute, Coimbra, Portugal.}$

$^\|$Present address: Department of Physics, Stockholm University, 114 18 Stockholm, Sweden.

$^\S\text{Also at Coimbra Engineering Institute, Coimbra, Portugal.}$

$^\|$Present address: Department of Physics, University of California, San Diego, CA 92093, USA.

$^\parallel\text{Also at Coimbra Engineering Institute, Coimbra, Portugal.}$

$^\S\text{Also at Coimbra Engineering Institute, Coimbra, Portugal.}$

$^\|$Present address: Department of Physics, Stockholm University, 114 18 Stockholm, Sweden.

$^\parallel\text{Also at Coimbra Engineering Institute, Coimbra, Portugal.}$

$^\S\text{Also at Coimbra Engineering Institute, Coimbra, Portugal.}$

$^\|$Present address: Department of Physics, University of California, San Diego, CA 92093, USA.

$^\parallel\text{Also at Coimbra Engineering Institute, Coimbra, Portugal.}$

$^\S\text{Also at Coimbra Engineering Institute, Coimbra, Portugal.}$

$^\|$Present address: Department of Physics, University of California, San Diego, CA 92093, USA.