Avoidance: From threat encounter to action execution

Arnaudova, I.B.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Chapter 3

Moving threat: Attention and distance change interact in threat responding

A version of this chapter is in preparation as:
Abstract

Defensive reactions need to be quick and appropriate in order to ensure survival. For this to happen, it is crucial that threat is processed even without awareness and that action is triggered immediately. Also, the form of such action should be appropriate to the imminence of the threat. Thus, upon threat detection, the focus of attention should be guided by factors that signal threat imminence (e.g., distance between the threat and the organism), in order to determine the appropriate type of response. In this study, we examined whether subliminally processed threat stimuli provoke automatic avoidance tendencies and whether threat cues’ distance change and threat potential determine the allocation of attention. Participants underwent fear conditioning. Afterwards, they performed a symbolic approach-avoidance task with subliminally presented conditioned threat and safety stimuli and an attentional bias task using approaching versus distancing signals of threat and safety. We found that pre-attentive processing of conditioned threat and safety cues affects action tendencies in a way that is opposite to what has been observed for supraliminal cues and that attention is captured most strongly by situations of increasing threat imminence. The results of this study support the importance of threat imminence in human fear behavior, and extend the findings of previous research on pre-attentive influences on defensive responding.
3.1 Introduction

Reacting quickly and appropriately to threat is of utmost importance for survival. Detecting threats before they become available to consciousness (pre-attentive processing) can offer an evolutionary advantage by preparing an organism for defensive responding even before threat enters awareness (e.g., Öhman, 2013; Öhman & Soares, 1993). Research has shown that pre-attentive threat detection results in a variety of automatic fear responses (e.g., Beaver, Mogg, & Bradley, 2005), however, it is not clear whether it also primes defensive action (i.e., an avoidant action tendency). Once a threat signal enters awareness, if not before, a process of response selection can then start to determine the appropriate form of avoidance (Fanselow & Lester, 1988). Threat imminence appraisal plays an important role in this selection process and involves the evaluation of the spatial, as well as the psychological, distance between the threat and the organism (Fanselow & Lester, 1988; Lang & Bradley, 2013; Lang et al., 1997). Thus, both activation of avoidance tendencies upon pre-attentive processing of threat and preferential attention to changes in perceived threat imminence should be evolutionary advantageous. Here, we examine these two processes.

Pre-attentive processing of threat activates the defensive motivational network (Öhman & Soares, 1993). This activation can be inferred from the observation of defensive reactions in response to a neutral stimulus (e.g., a neutral face; a mask), when it follows a subliminally presented threat stimulus (e.g., an angry face, presented for 14 to 33 ms and previously associated with shock; Mogg & Bradley, 1999; Olsson & Phelps, 2004). Such masked presentation of threat stimuli results in increased skin conductance responses (e.g., Esteves et al., 1994; Flykt, Esteves, & Öhman, 2007; Morris, Öhman, & Dolan, 1998; Öhman & Soares, 1993; Olsson & Phelps, 2004), amygdala activity (Morris et al., 1998; Whalen et al., 1998), attention (Beaver et al., 2005; Mogg & Bradley, 1999, 2002) and facial mimicry (Dimberg, Thunberg, & Elmehed, 2000), without the participant being aware of the threat stimulus. However, no direct evidence exists that pre-attentive processing can also provoke a tendency for actual defense behavior.

Overt avoidance behavior can be thought of as resulting from the interaction between automatic reflex-like avoidance tendencies and effortful behavioral control processes (Krypotos, Effting, et al., 2015). Avoidance tendencies refer to the priming of avoidance responses upon the presentation of a threat stimulus. For instance, individuals are faster to increase the distance between a symbolic manikin and a threat signal and decrease the distance between the same manikin and a safety signal than the other way around in a speeded reaction time task (Krypotos et al., 2014). Avoidance tendencies operate automatically (Krieglmeyer et al., 2013) and can be observed even when participants react to threat-irrelevant aspects of the stimuli (Krypotos et al., 2014). Thus, it seems feasible that these tendencies would also be activated by threat signals that are presented pre-attentively. Indeed, Graham (1992) suggested that elemental properties of a stimulus, which can be processed pre-attentively, provoke various reflexes (e.g. orienting reflex, SCR); avoidance tendencies might arguably be among them (Öhman, 2013).

Animal research suggests that predatory imminence critically determines how activation of the defensive system is translated into a specific behavioral response.
Spatial distance between the threat and the organism is one of the main factors determining threat imminence (Fanselow & Lester, 1988). Research has shown that once a threat signal is consciously detected, it captures attention (Koster, Crombez, Verschuere, & De Houwer, 2004; Koster, Verschuere, Crombez, & Van Damme, 2005; Van Damme, Crombez, Hermans, Koster, & Eccleston, 2006). Thus, an important open question is whether the degree of attention allocation to a threat signal is modulated by changes in its spatial distance.

When the distance between an object and the organism decreases, some sort of interaction between the two becomes likely. It has been previously found that individuals show stronger SCR when perceiving a movement towards themselves than when perceiving an away-movement (Bernstein et al., 1971), are faster in categorizing a toward-movement than an away-movement (R. B. Adams et al., 2006; van Peer et al., 2009, Experiment 4), and have stronger fear-potentiated startle reactions in the presence of proximal as compared to distal social stimuli (Åhs et al., 2015, Experiment 1). Together, these findings indicate the importance of spatial distance (change). Consequently, it might be advantageous to attend closely to the distance change of any object, regardless of its threat potential.

According to the threat imminence model, however, distance change and threat potential should interact (Fanselow & Lester, 1988), and attention should be devoted specifically to increases of threat imminence. Increases might occur both when the distance between a threat signal and the organism decreases and when the distance between a safety signal and the organism increases. In two experiments, it was indeed found that individuals recognize the direction of the gaze of emotional faces faster when the face portrays anger and the gaze is direct (higher threat imminence) than averted (lower threat imminence) but also when the face portrays fear and the gaze is averted rather than direct (R. B. Adams & Franklin, 2009). Such increased ability to recognize stimuli of higher threat imminence offers preliminary support for the threat imminence account. To our knowledge, the effect of threat imminence on attention, however, has not yet been directly examined. From a threat imminence perspective, paying attention to increases in threat imminence should be of evolutionary advantage, because it would allow for faster selection of the appropriate defensive response.

Interestingly, in a number of studies, exactly the opposite of what would be predicted by the threat imminence account has been observed. Individuals were faster to categorize the valence of negative stimuli (e.g., words; angry faces) when moving away and the valence of positive stimuli (e.g., words; happy faces) when moving towards them (Neumann & Strack, 2000, Experiments 2-3; van Peer et al., 2009, Experiments 1-3). If such valence congruency (responding to movements congruent with the stimulus valence) is a critical factor in guiding attention, the prediction for the effect of threat movement on attention allocation would be exactly the opposite of that from a threat imminence perspective.

In the present experiment, we evaluated whether threat cues can trigger approach/avoidance tendencies even when presented subliminally, and whether changes in spatial distance of threat versus safety signals guide the automatic allocation of attention. In a fear-conditioning paradigm, we repeatedly paired a picture of one neutral face (conditioned stimulus, CS+) with an aversive outcome (shock; unconditioned stimulus, US) to establish fear for the CS+; another neutral face
was never paired with the shock (CS-) and served as a safety cue. We used a fear conditioning procedure in order to have full counterbalancing control over the threat (CS+) and safety (CS-) signals, so that perceptual differences between the stimuli could not confound our results. We then tested whether the masked presentation of the CS+ would result in conditioned avoidance tendencies in a symbolic approach-avoidance reaction time task (AAT). Subsequently, we examined the joint effects of threat potential and distance change on the allocation of attention in a dot probe task (DPT). If mere threat potential is important, participants should show an attentional bias to the CS+ only, as in Koster, Crombez, Verschuere, and De Houwer (2004), for example. On the other hand, if only distance change elicits preferential processing, attention should be allocated preferentially to approaching rather than withdrawing stimuli. If valence congruency is what primarily guides attention, attentional bias should be observed towards CS+ stimuli moving away and CS- stimuli moving toward the participant. Last but not least, according to the threat imminence account, one should expect preferential attention allocation to approaching CS+ and withdrawing CS- pictures.

3.2 Materials and methods

3.2.1 Participants

Participants were recruited online and pre-screened for the following exclusion criteria over the phone: 1) (history of) psychiatric disorders; 2) epilepsy; 3) heart condition; 4) current pregnancy; and 5) use of medications that can influence attention, memory, or reaction time. Of the 45 recruited participants, one did not complete the study, one was excluded due to technical problems and three were excluded for having used illegal substances in the last 24 hours before experiment participation. The remaining sample ($n = 40$; 10 male) had a mean age of 29.08 ($SD = 14.79$, range = 18 - 68).

3.2.2 Materials

Images of two neutral male faces from the Karolinska Directed Emotional Faces (KDEF; Lundqvist, Flykt, & Öhman, 1998) set were used as conditioned stimuli (AM04NES and AM29NES). These faces were chosen because they had previously been used as neutral stimuli (Golkar & Öhman, 2012). The assignment of the images (83 mm × 110 mm) to CS+ and CS- was counterbalanced across participants.

For the AAT, the images were reduced in size (35% of CS size) and superimposed on frames with a white background of either horizontal (98 mm × 53 mm) or vertical (53 mm × 98 mm) orientation for use as stimulus pictures. The mask image was created by scrambling two other neutral male faces from the KDEF set (AM02NES and AM06NES) and was prepared similarly to stimulus pictures for use in the AAT.

The US was a 2-ms electric stimulus, delivered by a DS7A Constant Current Stimulator (Digitimer Ltd., Hertfordshire, UK) to the dorsal side of the wrist of the participant’s non-dominant hand (Effting & Kindt, 2007), through two

1Technically, some of the used substances are not illegal in the Netherlands (i.e., marihuana).
Chapter 3

Ag electrodes covered with conductive gel (Signagel, Parker, Fairfield, NJ). The strength of the US was established for each participant individually through a work-up procedure (Orr et al., 2000) to an uncomfortable, but non-painful level.

3.2.3 Questionnaires

US expectancies were measured on an 11-point Likert scale (-5, certainly not expecting an electric stimulus; 0, uncertain; 5, certainly expecting an electric stimulus). Upon each CS presentation, participants had 5.5 s to move a cursor on the scale, presented at the bottom of the computer screen. The cursor was located at zero at the beginning of each trial. Participants could confirm their response with a mouse click (otherwise, the last position of the cursor was recorded).

Pleasantness of stimuli (CSs, US, and mask) was recorded on a similar 11-point Likert scale ranging from -5 (unpleasant) to 5 (pleasant). Participants also evaluated US intensity (light, moderate, intense, enormous, unbearable) and startlingness (not, light, moderate, strong, very strong).

General negative affective states were assessed using the Depression Anxiety Stress Scales (DASS; Lovibond & Lovibond, 1995; Dutch translation by de Beurs, Van Dyck, Marquenie, Lange, & Blonk, 2001). Anxiety sensitivity, or fear of experiencing arousal, was measured with the Anxiety Sensitivity Index (ASI; Reiss, Peterson, Gursky, & McNally, 1986; Dutch translation by Vujanovic, Arrindell, Bernstein, Norton, & Zvolensky, 2007). Those questionnaires were included for exploratory purposes; their results are not reported here.

3.2.4 Procedure

After receiving information about the experiment and giving informed consent, participants sat in front of the experimental computer and the electric stimulation electrodes were attached to determine US intensity. The acquisition procedure started immediately thereafter.

Verbal and on-screen instructions informed participants that one face would be always followed by the US, while the other one would never be, and that they had to report their US expectancies upon each stimulus presentation. Participants received 8 CS+ and 8 CS- trials, each trial lasting 8 s. At the 7.5th second of each CS+ presentation, the US occurred. Acquisition order was randomized with the restriction that no more than two consecutive trials of the same type could occur. The inter-trial intervals (ITI), during which an inactive US expectancy scale was presented on the screen, had an average duration of 20 s. This phase ended with a three-minute pause.

Electric stimulation electrodes were removed before the beginning of the AAT. Instructions informed participants that in this task they had to move a small stick-figure manikin towards or away from pictures with a vertical or horizontal orientation, respectively (one block of trials with each type of instructions; order of instructions counterbalanced across participants). Speed and accuracy were emphasized.

The AAT consisted of two blocks of four practice trials and 16 target trials, which were semi-randomized, so that no more than two consecutive trials of the same type could occur, similarly to Krypotos et al. (2014). Each AAT trial was set up as follows. First, the manikin appeared centered to the bottom or top half
of the screen. 1500 ms later, a CS stimulus picture was presented centered to the opposite side of the screen for 33 ms (two multiples of the 16.5-ms computer screen refresh rate; Olsson & Phelps, 2004) to be immediately replaced by a mask with the same orientation as the CS stimulus picture. Participants could then press a button (B marked as ↓ or Y marked as ↑) and initiate the manikin’s movement. The RT for the button press was recoded. Depending on the response, the manikin moved toward or away from the stimulus picture for 2000 ms. When the manikin reached its final position, it remained there for 500 ms. In the case of an incorrect trial, a red cross appeared for 500 ms at the starting position of the manikin. An ITI of 2000 ms followed, during which the screen remained blank. The next trial started immediately afterwards.

Before the next task was introduced, participants were informed that during the AAT, they had been briefly presented with images of one of two faces on every trial, which they might have missed. Participants were then instructed that they would again see the two faces trial-by-trial, masked in the same way, and that their task now was to try to recognize which face they were presented with. Trials of this forced-choice recognition task were set up similarly to the AAT, but instead of the manikin, the two CS images were presented next to each other, separated by 6 cm. Participants could press a button (A marked as Left and L marked as Right) to indicate the location of the face they believed they were presented with on the other half of the screen. No feedback was given during this task and participants received the same 40 practice and target trials in the same order as in the AAT. This recognition task was modeled after Golkar and Öhman (2012).

A modified dot-probe task (DPT) followed to measure attentional bias. It contained one practice block of 12 trials and two blocks of 2 buffer trials and 64 target trials. Every trial started with a fixation point presented in the middle of the screen for 500 ms. Then, two pictures simultaneously appeared on the screen for 500 ms. Upon their disappearance, a visual probe (↑) was presented centered to the location of one of the two pictures. Participants reported the location of this probe with a button press. RT was recorded. During practice and buffer trials empty white pictures were presented, while during target trials CS images were presented.

In order to create a perception of movement during target trials, we consecutively presented the CS images in different sizes: from small to large to create the impression of approach (toward movement) and from large to small to create the impression of withdrawal (away movement). Medium CS images had the same size as those used in the acquisition phase, while small and large CS images were 33% smaller and 33% larger, respectively. There were four possible movement combinations: both CSs moving simultaneously toward or away from the participant and one CS (either CS+ or CS-) moving toward while the other CS (either CS- or CS+) was moving away from the participant. Trials were semi-randomized so that the same CS or the probe could not occur on the same location (left or right) consecutively more than three times and that the same movement combination could not be presented consecutively more than two times.

The experiment concluded with an assessment of participants’ contingency awareness and the collection of CS pleasantness and US ratings. Participants also filled in the computerized DASS and ASI. Further, participants reported whether they found the mask to be more similar to one of the faces or had no idea to which
face the mask was more similar. Finally, demographic information was collected.

3.2.5 Data analysis

Acquisition data were analyzed by calculating the mean US expectancy for each CS across all trials and entering Stimulus as a within-subject variable in a repeated-measures Analysis of Variance (ANOVA). CS pleasantness ratings were analyzed in a similar manner.

Only target AAT and DPT trials were analyzed. Further, we removed all trials with incorrect responses and trials with long RTs (3000 ms for the AAT and 1000 ms for the DPT). We then calculated Median RTs (RTmd) per stimulus (CS+ or CS-) and AAT response (approach or avoid) or DPT movement (toward or away) combination. A repeated-measures ANOVA was conducted with Stimulus and AAT Response or DPT Movement as within-subject variables. The results of all ANOVAs were Greenhouse-Geisser corrected whenever the assumption of sphericity was violated.

3.3 Results

3.3.1 US evaluation

The US was evaluated as unpleasant ($M = -2.46, SD = 2.29$), intense ($M = 2.98, SD = 0.53$), and startling ($M = 3.17, SD = 1.06$).

3.3.2 Acquisition

Overall, fear acquisition was successful, as indicated by higher US expectancy ratings for the CS+ ($M = 3.82, SD = 0.81$) than the CS- ($M = -3.86, SD = 0.85$), $F(1, 39) = 975.13, p < .001, \eta^2 = .96$. The analysis of the pleasantness ratings also showed that the CS+ was rated as more unpleasant ($M = -1.96, SD = 2.49$) than the CS- ($M = 1.44, SD = 2.45$), $F(1, 39) = 33.08, p < .001, \eta^2 = .46$.

3.3.3 AAT

In order to establish pre-attentive processing during the AAT, it is important to ascertain that during the forced-choice recognition test, participants did not exhibit above-chance recognition on the target trials (Murphy & Zajonc, 1993). On average, participants selected the correct image on 16.48 out of the 32 trials, which did not differ from chance, $t(39) = .82, p = 0.42$. Recognition was not above chance for either the 16 CS+ trials ($M = 8.63, t(39) = 1.16, p = 0.25$) or the 16 CS- trials ($M = 7.85, t(39) = -0.26, p = 0.80$). In order to eliminate the possibility that the valence of the mask affected responding on the AAT, the mask should be rated as neutral. Indeed, self-reported pleasantness ratings of the mask suggested that it was rated as neutral ($M = .10, SD = 2.07$). Thus, any differences observed in responding to the CSs in the AAT can be assumed to result from pre-attentive processing of the CSs.
Neither the main effect of Stimulus, nor the effect of Response reached significance (both \(p > .40 \)) in the analysis of the AAT, but a significant Stimulus \(\times \) Response interaction was obtained, \(F(1, 39) = 6.18, p = .02, \rho \eta^2 = .14 \) (Figure 3.1A). Surprisingly, the pattern was opposite to what was expected, with individuals having shorter RTs for approaching on CS+ trials and avoiding on CS- trials than for approaching on CS- trials and avoiding on CS+ trials. One participant in the sample had a much higher number of incorrect and long responses (\(n = 10 \)) than the overall sample (2.5 SD higher than the sample mean). When this participant was removed from the analyses, the results remained the same. Thus, the data show that approach tendencies rather than avoidance tendencies were observed on the CS+ trials, relative to the CS- trials.

Figure 3.1: Mean median reaction times (RTmd) for approach and avoidance responses during the AAT (A) and for responses following approaching (toward) and withdrawing (away) CSs during the DPT (B)

<table>
<thead>
<tr>
<th></th>
<th>AAT</th>
<th>DPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS+</td>
<td>500</td>
<td>300</td>
</tr>
<tr>
<td>CS-</td>
<td>560</td>
<td>340</td>
</tr>
<tr>
<td>Avoid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS+</td>
<td>700</td>
<td>400</td>
</tr>
<tr>
<td>CS-</td>
<td>750</td>
<td>450</td>
</tr>
</tbody>
</table>

Note: + \(p < .07 \), * \(p < .05 \)

3.3.4 DPT

There was no main effect of Stimulus, \(F(1, 39) = .18, p = .67, \rho \eta^2 = .005 \), which indicates that participants did not have an overall attentional bias for the threat stimulus. Further, no main effect of Movement was observed, \(F(1, 39) = 1.58, p = .22, \rho \eta^2 = .04 \), which contradicts the idea that individuals would generally pay more attention to approaching than to withdrawing stimuli. However, the interaction between Stimulus and Movement did approach significance, \(F(1, 39) = 3.91, p = .06, \rho \eta^2 = .09 \) (Figure 3.1B; the interaction becomes significant when mean RTs are used for the analyses, Stimulus \(\times \) Movement interaction, \(F(1, 39) = 6.91, p = .01, \rho \eta^2 = .15 \)). Upon inspection of the data, it is clear that individuals were faster at detecting probes replacing an approaching CS+ or a withdrawing...
CS- than probes replacing a withdrawing CS+ or an approaching CS-. The results are thus consistent with the threat imminence account.

Similarly to the AAT, one participant in the sample had a much higher number of incorrect and long responses (n = 10) than the overall sample (2.5 SD higher than the sample mean). The results of the DPT remained the same when the data of this participant were excluded from the analyses.

3.4 Discussion

In the present study, we set out to test two interrelated questions regarding the interaction between threat processing and the allocation of attention, i.e., whether pre-attentive processing of conditioned threat and safety signals can trigger avoidance tendencies and whether threat potential and distance change interact to guide the allocation of attention. First, we found that threat and safety signals were processed pre-attentively, but their effect upon conditioned avoidance tendencies was the opposite of what was hypothesized. Second, the data showed that increases in threat imminence (approaching of threat signals and withdrawing of safety signals) critically determine the allocation of attention.

This experiment is the first to show that attention is captured by increases of threat imminence and contributes to an emerging literature on the importance of threat imminence for shaping human defensive responses (Åhs et al., 2015; Mobbs et al., 2009, 2007). Our findings do not challenge previous findings that threat stimuli are preferentially attended to (Koster, Crombez, Verschuere, & De Houwer, 2004; Koster, Crombez, Verschuere, Van Damme, & Wiersema, 2006; Koster, Verschuere, et al., 2005), because in previous research, threat and safety signals were presented without any distance change. When both stimuli remain static, it would be evolutionary sound to attend to threats; while when the threats are moving, attending to threat imminence increases might be more beneficial. Further, we failed to observe a general preferential allocation of attention to objects moving toward the participant, which is at odds with findings from other tasks (Åhs et al., 2015; R. B. Adams et al., 2006; Bernstein et al., 1971; van Peer et al., 2009, Experiment 4). Notably, these tasks have measured psychophysiological (e.g., SCR, FPS) or categorization (e.g., of movement) responses rather than attention. Future research can attempt to add simultaneous measurement of psychophysiology and attention to understand how they interact. Last, but not least, van Peer et al. (2009) have shown that the specific instructions of the task (whether participants categorize valence or movement) might influence the findings. In our task, participants were not instructed to pay attention to either feature, which may have allowed the examination of spontaneous attentional bias.

Surprisingly, regarding pre-attentively triggered action tendencies, we observed precisely the opposite to what we expected and what has been observed for supraliminal threat cues (Krypotos et al., 2014). We found that individuals were faster to approach a mask replacing a subliminally presented threat signal and to avoid a mask replacing a subliminally presented safety signal than vice versa. Regardless of the direction of our findings, the fact that action tendencies were influenced by the subliminally presented stimuli suggests that they must have been processed and somehow primed motivated action. Thus, here we provide evidence that pre-attentively processed cues also elicit action tendencies.
In order to understand the direction of the effects in the approach-avoidance task, a closer look into the paradigm used here is warranted. During the AAT, participants had to respond to the orientation of the frame of the mask stimulus that replaced the conditioned stimuli. The appearance of the mask on each trial implied the removal of the target CS+ or CS- stimulus. Thus, on CS+ trials the mask effectively prevented the further presence of a threat stimulus, while on CS- trials the mask caused the offset of a safety stimulus. As such, pre-attentive processing of the target CS+ or CS- may have modulated the threat value of the mask on a given trial, in a way opposite to the threat value of the target preceding the mask, even if the mask itself was rated neutral at the end of the experiment. As a result, pre-attentive processing of the masked CS+ and CS- stimuli may have triggered action tendencies to the masking stimulus opposite to those elicited by supraliminal CS+ and CS- stimuli.

In the present experiment, we found support for a threat imminence perspective on defensive response mobilization in humans, by showing that individuals have an attentional bias towards increases of threat imminence. We also tested whether activation of action tendencies is independent of attention. We showed that subliminally presented threat and safety signals trigger approach/avoidance tendencies, the direction of which was possibly mediated by the effect of the subliminal targets on the threat value of the mask that replaced them in the approach-avoidance task. Collectively, these findings suggest that our cognitive system helps us not only focus on, but also deal with potential threat cues independent of conscious awareness.