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Abstract A measurement of W boson production in lead-
lead collisions at

√
sNN = 2.76 TeV is presented. It is based

on the analysis of data collected with the ATLAS detector at
the LHC in 2011 corresponding to an integrated luminosity
of 0.14 nb−1 and 0.15 nb−1 in the muon and electron decay
channels, respectively. The differential production yields and
lepton charge asymmetry are each measured as a function
of the average number of participating nucleons 〈Npart〉 and
absolute pseudorapidity of the charged lepton. The results
are compared to predictions based on next-to-leading-order
QCD calculations. These measurements are, in principle,
sensitive to possible nuclear modifications to the parton dis-
tribution functions and also provide information on scaling
of W boson production in multi-nucleon systems.

1 Introduction

Studies of particle production in the high-density medium
created in ultra-relativistic heavy-ion collisions have been
previously conducted at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory [1–4] and have
been extended to larger centre-of-mass energies at the Large
Hadron Collider (LHC) at CERN [5,6]. These collisions pro-
vide access to a phase of nuclear matter at high temperature
and low baryon density called quark–gluon plasma (QGP),
in which the relevant degrees of freedom are quarks and glu-
ons [7–11]. In a QGP, high-energy partons transfer energy to
the medium through multiple interactions and gluon radia-
tion, resulting in a modification of the parton shower of jets
(jet-quenching). This effect is consistent with the measure-
ments of high transverse momentum (pT) charged hadron
yields [12–16], inclusive jets [17] and dijets with asymmet-
ric transverse energies (ET) [18–20].

Electroweak bosons (V = γ, W, Z ) provide additional
ways to study partonic energy loss in heavy-ion collisions.

� e-mail: atlas.publications@cern.ch

They do not interact strongly with the medium, thus offer-
ing a means to calibrate the energy of jets in V -jet events.
At sub-TeV centre-of-mass energies, the only viable can-
didates for playing this role are photons [21]. However at
higher energies, heavy gauge bosons (W ± and Z ) are also
produced in relatively high abundance, introducing an addi-
tional avenue for benchmarking in-medium modifications to
coloured probes. This potential has already been realised in
lead–lead (Pb+Pb) collisions in previous ATLAS [22] and
CMS [23–25] publications, where it was observed that elec-
troweak boson production rates scale linearly with the num-
ber of binary nucleon–nucleon collisions.

Moreover, in principle, electroweak bosons are an excel-
lent tool for studying modifications to parton distribu-
tion functions (PDFs) in a multi-nucleon environment. To
leading-order, W +(W −) bosons are primarily produced by
interactions between a u(d) valence quark and a d(u) sea
quark. The rapidity of the W boson is primarily determined
by the momentum fractions, x , of the incoming partons.
Therefore, information about the PDF can be extracted by
measuring the charge asymmetry as a function of the pseu-
dorapidity1 of charged leptons produced from W decays.

The charge asymmetry is defined in terms of the dif-
ferential production yields for W → �ν� (� = μ, e),
dNW→�ν�

/dη�:

A�(η�) = dNW +→�+ν�
/dη� − dNW −→�−ν̄�

/dη�

dNW +→�+ν�
/dη� + dNW −→�−ν̄�

/dη�

(1)

where η� is the pseudorapidity of the charged lepton and the
W boson production yields are determined in the kinematic

1 The ATLAS detector uses a right-handed coordinate system with the
nominal Pb+Pb interaction point at its centre. The z-axis is along the
beam pipe. The x-axis points from the interaction point toward the
centre of the ring and the y-axis points upward. Cylindrical coordinates
(r , φ) are used in the transverse plane with φ being the azimuthal angle
around the z-axis. The pseudorapidity is defined in terms of the polar
angle θ as η = − ln(tan θ/2).
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phase space used to select W → �ν� events. This observ-
able has been used to study PDFs in binary nucleon systems
such as pp collisions at the LHC [26–28] and p p̄ collisions
at the Tevatron [29,30]. However, its utility in nuclear sys-
tems has only recently been explored with a limited set of
experimental data [25].

Although the method for measuring the charge asymmetry
in Pb+Pb is essentially identical to that in pp, the distributions
themselves are not expected to be identical. In pp collisions,
the overall production rate of W + bosons is larger than that
of W − bosons as a result of the larger fraction of u valence
quarks relative to d valence quarks in the colliding system.
On the other hand, in Pb+Pb collisions, the nuclei contain 126
neutrons and 82 protons. Thus, pp interactions make up only
≈15 % of the total number of nucleon–nucleon interactions,
whereas neutron–neutron (nn) and proton–neutron (pn) com-
binations contribute ≈37 % and ≈48 %, respectively. Conse-
quently, a marked difference is expected in the lepton charge
asymmetry between Pb+Pb and pp collisions.

Prior to this analysis, the only published charge asym-
metry measurement in heavy-ion collisions was reported by
the CMS collaboration [25] with an integrated luminosity of
7.3 μb−1 using the W → μνμ channel in Pb+Pb collisions at√

sNN = 2.76 TeV. The measurement presented here uses a
dataset from 2011, which corresponds to an integrated lumi-
nosity of 0.14 and 0.15 nb−1 for the muon and electron chan-
nels, respectively. In addition, the W → eνe decay mode is
employed for the first time in a heavy-ion environment.

The paper is organised as follows: a brief overview of the
ATLAS detector and trigger is given in Sect. 2. A description
of the simulated event samples used in the analysis is pro-
vided in Sect. 3. The criteria for selecting Pb+Pb events are
presented in Sect. 4. This is followed by a description of muon
and electron reconstruction and signal candidate selection in
Sect. 5. The background estimations are presented in Sect. 6.
A discussion of the procedure for correcting the signal yields
is presented in Sect. 7. The systematic uncertainties and the
combination of the two channels are described in Sect. 8,
and the W boson production yields, measured as a func-
tion of the mean number of inelastically interacting nucleons
〈Npart〉 and |η�|, are discussed in Sect. 9. A differential mea-
surement of the lepton charge asymmetry as a function of |η�|
is also presented. These results are compared to predictions
at next-to-leading order (NLO) [31–33] in QCD, both with
and without nuclear corrections. The former is represented
by the EPS09 PDF [34]. Section 10 provides a brief summary
of the results.

2 The ATLAS detector

ATLAS [35], one of four large LHC experiments, is well
equipped to carry out an extensive heavy-ion program. The

inner detector (ID) comprises a precision tracking system
that covers a pseudorapidity range |η| < 2.5. The ID con-
sists of silicon pixels, silicon microstrips, and a transition
radiation tracker (TRT)2 consisting of cylindrical drift tubes
and operates within a 2 T axial magnetic field supplied by a
superconducting solenoid.

Due to the high occupancy in heavy-ion events, tracks
of charged particles are reconstructed using only the silicon
pixels and microstrips. No information from the TRT is used
in this analysis, and henceforth ID tracks will refer to those
tracks that are reconstructed without this detector component.

Outside the solenoid, highly segmented
electromagnetic (EM) and hadronic sampling calorimeters
cover the region |η| < 4.9. The EM calorimetry is based on
liquid-argon (LAr) technology and is divided into one barrel
(|η| < 1.475, EMB) and two end-cap (1.375 < |η| < 3.2,
EMEC) components. The transition region between the bar-
rel and end-cap calorimeters is located within the pseudora-
pidity range 1.37 < |η| < 1.52. The hadronic calorime-
ter is based on two different detector technologies: steel
absorber interleaved with plastic scintillator covering the bar-
rel (|η| < 1.0) and extended barrels (0.8 < |η| < 1.7)
and LAr hadronic end-cap calorimeters (HEC) located in
the region 1.5 < |η| < 3.2. A forward calorimeter (FCal)
that uses LAr as the active material is located in the region
3.1 < |η| < 4.9. On the inner face of the end-cap calorime-
ter cryostats, a minimum-bias trigger scintillator (MBTS) is
installed on each side of the ATLAS detector, covering the
pseudorapidity region 2.1 < |η| < 3.8.

The outermost sub-system of the detector is a muon spec-
trometer (MS) that is divided into a barrel region (|η| < 1.05)
and two end-cap regions (1.05 < |η| < 2.7). Precision
measurements of the track coordinates and momenta are
provided by monitored drift tubes (MDTs), cathode strip
chambers (CSCs), and three sets of air-core superconduct-
ing toroids with coils arranged in an eight-fold symmetry
that provide on average 0.5 T in the azimuthal plane.

The zero-degree calorimeters (ZDCs) [36] are located
symmetrically at z = ±140 m and cover |η| > 8.3. In Pb+Pb
collisions the ZDCs primarily measure spectator neutrons
from the colliding nuclei.

The ATLAS detector also includes a three-level trig-
ger system [37]: level one (L1) and the software-based
High Level Trigger (HLT), which is subdivided into the
Level 2 (L2) trigger and Event Filter (EF). Muon and electron
triggers are used to acquire the data analysed in this paper.

The trigger selection for muons is performed in three
steps. Information is provided to the L1 trigger system by
the fast-response resistive plate chambers (RPCs) in the bar-
rel (|η| < 1.05) and thin gap chambers (TGCs) in the end-
caps (1.05 < |η| < 2.4). Both the RPCs and TGCs are part

2 The TRT provides tracking information up to |η| < 2.

123



Eur. Phys. J. C (2015) 75 :23 Page 3 of 30 23

of the MS. Information from L1 is then passed to the HLT,
which reconstructs muon tracks in the vicinity of the detector
region reported by the L1 trigger. The L2 trigger performs a
fast reconstruction of muons using a simple algorithm, which
is then further refined at the EF by utilising the full detector
information as in the offline muon reconstruction software.

The trigger selection for electrons is performed using a
L1 decision based on electromagnetic energy depositions in
trigger towers of 	φ × 	η = 0.1 × 0.1 formed by EM
calorimeter cells within the range |η| < 2.5. The electron
trigger algorithm identifies a region of interest as a trigger
tower cluster for which the transverse energy (ET) sum from
at least one of the four possible pairs of nearest neighbour
towers exceeds a specified ET threshold.

3 Monte Carlo samples

Simulated event samples are produced using the Monte
Carlo (MC) method and are used to estimate both the signal
and background components. The response of the ATLAS
detector is simulated using Geant4 [38,39]. The samples
used throughout this paper are summarised in Table 1. Each
signal process and most of the background processes are
embedded into minimum-bias (MB) heavy-ion events from
data recorded in the same run periods as the data used to anal-
yse W boson production. Events from the Z → μ+μ− chan-
nel are embedded into Hijing [40] – a widely used heavy-ion
simulation that reproduces many features of the underlying
event [17].

The production of W bosons and its decay products are
modelled with the Powheg [41] event generator, which is
interfaced to Pythia8 [42] in order to model parton show-
ering and fragmentation processes. These samples use the
CT10 [43] PDF set and are used to estimate the signal selec-

Table 1 Signal and background simulated event samples used in this
analysis. W → �ν� events include all nucleon combinations, whereas
background processes use only pp simulations. The variable p̂T is the
average pT of the two outgoing partons involved in the hard-scattering
process evaluated before modifications from initial- and final-state radi-
ation. Details for each sample are given in the text

Physics process Generator PDF set

W → μνμ Powheg+Pythia8 CT10

W → eνe Powheg+Pythia8 CT10

Dijet Pythia6 MRST LO*

(17 < p̂T < 140 GeV)

Z → μ+μ− Pythia6 MRST LO*

Z → e+e− Powheg+Pythia8 CT10

W → τντ → μνμντ ντ Pythia6 MRST LO*

W → τντ → eνeντ ντ Powheg+Pythia8 CT10

tion efficiency and to provide predictions from theory. In
order to account for the isospin of the nucleons, separate
samples of pp, pn, and nn events are generated and combined
in proportion to their corresponding collision frequency in
Pb+Pb collisions. Only pp simulations are used to model
background processes (discussed in detail in Sect. 6) since
these channels are not sensitive to isospin effects.

Background samples are generated for muons with
Pythia6 using the MRST LO* PDF set [44] and for elec-
trons with Powheg using the CT10 PDF set. At the level
of the precision of the background estimation, no significant
difference is expected between the Pythia6 and Powheg
generators. The background contribution to the muon chan-
nel from heavy-flavour is modelled using simulated dijet
samples with average final-state parton energies p̂T in the
range 17–140 GeV. Tau decays from W → τντ events are
treated using either Tauola [45] or Pythia8 for final states
involving muons or electrons, respectively. Final-state radi-
ation from QED processes is simulated by Photos [46].

4 Event selection

4.1 Centrality definition

Pb+Pb collision events are selected by imposing basic
requirements on the beam conditions and the performance
of each sub-detector. In order to select MB hadronic Pb+Pb
collisions, a hit on each side of the MBTS system with a
time coincidence within 3 ns is required for each collision.
In addition, each event is required to have a reconstructed
vertex with at least three associated high-quality tracks [47]
compatible with the beam-spot position. These requirements
select MB hadronic Pb+Pb collisions in the data with an effi-
ciency of (98±2) % with respect to the total non-Coulombic
inelastic cross-section [5]. After accounting for the selection
efficiency and prescale factors imposed by the trigger system
during data taking [48], approximately 1.03 × 109 Pb+Pb
events are sampled (denoted by Nevents hereafter).

Each event is categorised into a specific centrality class
defined by selections on FCal �ET, the total transverse
energy deposited in the FCal and calibrated to the EM energy
scale [47]. Centrality classes in heavy-ion events represent
the percentiles of the total inelastic non-Coulombic Pb+Pb
cross-section. This reflects the overlap volume between the
colliding nuclei and allows for selection of various collision
geometries in the initial state.

The FCal �ET is closely related to the mean num-
ber of inelastically interacting nucleons 〈Npart〉 and mean
number of binary collisions 〈Ncoll〉 through the Glauber
formalism [49]. 〈Npart〉 and 〈Ncoll〉 are monotonic functions
of the collision impact parameter and are correlated with
the FCal �ET of each Pb+Pb collision [5]. 〈Ncoll〉 can also
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Table 2 Average number of participating nucleons 〈Npart〉 and binary
collisions 〈Ncoll〉 for the centrality classes used in this analysis alongside
their relative uncertainties

Centrality [%] 〈Npart〉 δ〈Npart〉 [%] 〈Ncoll〉 δ〈Ncoll〉 [%]

0–5 382 0.5 1683 7.7

5–10 330 0.9 1318 7.5

10–20 261 1.4 923 7.4

20–40 158 2.6 441 7.3

40–80 46 6.0 78 9.4

0–80 140 4.7 452 8.5

be expressed as the product of the average nuclear thick-
ness function 〈TAA〉 and the total inelastic pp cross-section
(64 ± 5 mb at

√
s = 2.76 TeV [50]). In this paper, events

are separated into five centrality classes: 0–5 %, 5–10 %, 10–
20 %, 20–40 %, and 40–80 % with the most central interval
(0–5 %) corresponding to the 5 % of events with the largest
FCal �ET. The 〈Ncoll〉 estimation in the 80–100 % class suf-
fers from high experimental uncertainties, and therefore, this
centrality class is not considered in the analysis. Table 2
presents 〈Npart〉 and 〈Ncoll〉 for each centrality class along
with their relative systematic uncertainties (see Sect. 8).
Since a single participant can interact inelastically with sev-
eral nucleons in a collision, the uncertainty in 〈Npart〉 is less
than that of the corresponding 〈Ncoll〉 in each centrality class.

4.2 Trigger selection

W → μνμ candidates are selected using single muon triggers
with a requirement on the minimum transverse momentum
of 10 GeV in the HLT. Two types of single muon triggers are
used: one that requires a muon in coincidence with a total
event transverse energy – measured in the calorimeter at L1
– above 10 GeV and another which requires a muon in coin-
cidence with a neutral particle at |η| > 8.3 in the ZDCs. This
combination of triggers maximises the efficiency for events
across all centrality classes. The muon trigger efficiencies
are evaluated using high-quality single muons reconstructed
from MB events and range from 89.3 % to 99.6 %, depending
on |ημ| and the centrality of the event from which the muon
originated.

Candidate events for W → eνe are selected using only
the hardware-based L1 trigger, i.e. without use of the HLT.
The L1 calorimeter trigger selects photon and electron candi-
dates in events where the transverse energy in an EM cluster
of trigger towers exceeds 14 GeV. The efficiency is evalu-
ated using a tag-and-probe method that utilises Z → e+e−
events selected using the criteria from Ref. [22]. This gives
an efficiency of 99.6 % for electrons with ET > 25 GeV and
|η| < 2.47 – excluding the transition region – with a negli-
gible centrality dependence.

4.3 Transverse momentum imbalance, pmiss
T

Previous W boson analyses in ATLAS [26] have used the
event momentum imbalance in the plane transverse to the
beam axis (Emiss

T ) as a proxy for the true neutrino pT. Tra-
ditionally, these analyses reconstruct the Emiss

T using contri-
butions from energy deposits in the calorimeters and muons
reconstructed in the MS [51]. In minimum bias events, no
genuine missing energy is expected, and the resolution of
the two Emiss

T components (σ miss
x , σ miss

y ) is measured directly
from reconstructed quantities in the data by assuming the true
Emiss

x and Emiss
y are zero. The resolution is estimated from

the width of the Emiss
x and Emiss

y distributions. In heavy-ion
collisions, soft particle production is much higher than in
pp collisions, thereby resulting in an increased number of
particles that do not reach the calorimeter or seed a topoclus-
ter. Consequently, the resolution in the Emiss

T observed in
the data using calorimeter cells is at the level of 45 GeV in
the most central heavy-ion events. Therefore, this analysis
employs a track-based calculation proposed in Ref. [25] that
provides a four-fold improvement in resolution relative to the
calorimeter-based method. The event momentum imbalance
using this approach is defined as the negative vector sum of
all high-quality ID tracks [47] with pT > 3 GeV:

pmiss = −
Ntracks�

i=1

ptrack
i , (2)

where ptrack
i is the momentum vector of the i th ID track,

and Ntracks represents the total number of ID tracks in the
event. The magnitude of the transverse component pmiss

T and
azimuthal angle φmiss are calculated from the transverse com-
ponents (pmiss

x and pmiss
y ) of the resultant vector. The lower

track pT threshold is chosen based on that which gives the
best resolution in the pmiss

T while still including a sufficient
number of tracks in the vector summation.

The transverse mass of the charged lepton and neutrino
system is defined as

mT =
�

2p�
T pmiss

T (1 − cos 	φ�,pmiss
T

), (3)

where 	φ�,pmiss
T

is the difference between the direction of the

charged lepton and pmiss
T vector in the azimuthal plane.

5 Signal candidate reconstruction and selection

5.1 Muon reconstruction

Muon reconstruction in ATLAS consists of separate track-
ing in the ID and MS. In this analysis, tracks reconstructed
in each sub-system are combined using the χ2-minimisation
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procedure described in Ref. [52]. These combined muons are
required to satisfy selection criteria that closely follow those
used in the Z boson analysis in Pb+Pb data [22]. To sum-
marise, these criteria include a set of ID hit requirements in
the pixel and SCT layers of the ID, a selection on the trans-
verse and longitudinal impact parameters (|d0| and |z0|), and
a minimum requirement on the quality of the muon track fit.
Additional selection criteria specific to W bosons are dis-
cussed below.

Decays-in-flight from pions and kaons contribute a small
background fraction in this analysis. They are reduced by
requiring the difference between the ID and MS muon pT

measurements (corrected for the mean energy loss due to
interactions with the material between the ID and MS) to be
less than 50 % of the pT measured in the ID. Decays-in-flight
are further reduced by locating changes in the direction of
the muon track trajectory. This is performed using a least-
squares track fit that includes scattering angle parameters
accounting for multiple scattering between the muon and
detector material. Scattering centers are allocated along the
muon track trajectory from the ID to MS, and decays are
identified by scattering angle measurements much greater
than the expectation value due to multiple scattering [53].

In order to reduce the multi-jet contribution, a track-based
isolation of the muon is imposed. The tracks are taken from
a cone radius 	R = �

(	η)2 + (	φ)2 = 0.2 around the
direction of the muon. The muon is considered isolated if the
sum of the transverse momenta of ID tracks (

�
pID

T ) with
pT > 3 GeV – excluding the muon pT itself – is less than
10 % of the muon pT. In this paper, the quantity

�
pID

T /pT is
referred to as the muon isolation ratio. Based on MC studies,
the isolation requirement is estimated to reject 50–70 % of
muons in QCD multi-jet events, depending on the centrality
class, while retaining at least 95 % of signal candidates.

5.2 Electron reconstruction

In order to reconstruct electrons in the environment of heavy-
ion collisions, the energy deposits from soft particle produc-
tion due to the underlying event (UE) must be subtracted,
as they distort calorimeter-based observables. The two-step
subtraction procedure, described in detail in Ref. [17], is
applied. It involves calculating a per-event average UE energy
density that excludes contributions from jets and EM clus-
ters and accounts for effects from elliptic flow modulation
on the UE. The residual deposited energies stem primarily
from three sources: photons/electrons, jets and UE fluctua-
tions (including higher-order flow harmonics). After the UE
background subtraction, a standard ATLAS electron recon-
struction and identification algorithm [54,55] for heavy-ions
is used – the only difference between this algorithm and
the one used in pp collisions is that the TRT is not used.
The algorithm is designed to provide various levels of back-

ground rejection and high identification efficiencies over the
full acceptance of the ID system.

The electron identification selections are based on criteria
that use calorimeter and tracking information and are opti-
mised in bins of η and ET. Patterns of energy deposits in the
first layer of the EM calorimeter, track quality variables, and
a cluster-track matching criterion are used to select electrons.
Selection criteria based on shower shape information from
the second layer of the EM calorimeter and energy leakage
into the hadronic calorimeters are used as well. Background
from charged hadrons and secondary electrons from conver-
sions are reduced by imposing a requirement on the ratio of
cluster energy to track momentum. Electrons from conver-
sions are further reduced by requiring at least one hit in the
first layer of the pixel detector.

A calorimeter-based isolation variable is also imposed.
Calorimeter clusters are taken within 	R = 0.25 around
the candidate electron cluster. An electron is considered iso-
lated if the total transverse energy of calorimeter clusters –
excluding the candidate electron cluster – is less than 20 %
of the electron ET. In this paper, the quantity

�
Ecalo

T /ET

is referred to as the electron isolation ratio. The isolation
requirement was studied in each centrality class and retains,
on average, 92 % of signal candidates while rejecting 42 %
of electrons from QCD multi-jet events.

5.3 W boson candidate selection

W boson production yields are measured in a fiducial region
defined by:

W → μνμ: pμ
T > 25 GeV, 0.1 < |ημ| < 2.4,

pν
T > 25 GeV, mT > 40 GeV;

W → eνe: pe
T > 25 GeV, |ηe| < 2.47,

excluding 1.37 < |ηe| < 1.52,
pν

T > 25 GeV, mT > 40 GeV.

In the MS, a gap in chamber coverage is located at
|ημ| < 0.1 that allows for services to the solenoid magnet,
calorimeters, and ID, and therefore, this region is excluded.
The most forward bin boundary is determined by the accep-
tance of the muon trigger chambers. In the electron analysis,
the calorimeter transition region at 1.37 < |ηe| < 1.52 is
excluded. The lower limit on the mT is imposed to further
suppress background events that satisfy the lepton pT and
pmiss

T requirements.
In the muon channel, the background contribution from

Z → μ+μ− decays is suppressed by rejecting muons from
opposite-charge pairs that have an invariant mass greater than
66 GeV. These events are selected by requiring that one muon
in the pair has pT > 25 GeV and passes the quality require-
ments in Sect. 5.1 and the other muon in the pair satisfies
a lower pT threshold of 20 GeV. In principle, this method
allows for the possibility of accepting events with more than
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one W boson. However, only one event in the data was found
where two muons satisfy all signal selection requirements.
This selection vetoes 86 % of muons produced from Z bosons
while retaining over 99 % of W boson candidates. The 14 %
of background muons that satisfy the selection criteria is
attributable to instances where the second muon from the
Z boson decay is produced outside the ID acceptance or has
pT < 20 GeV.

In the electron channel, the Z → e+e− background con-
tribution is suppressed by rejecting events with more than
one electron satisfying the identification requirements from
Sect. 5.2. This selection retains over 99 % of signal events
while rejecting 23 % of Z boson candidates. Events surviving
the selection are attributable to instances where the second
electron from the Z boson decay is either produced outside
the ID acceptance (26 %) or does not pass the relatively tight
electron identification requirements (74 %).

After applying all selection criteria, 3348 W + and 3185
W − candidates are detected in the muon channel. In the
electron channel, 2893 W + and 2791 W − candidates are
observed.

6 Background estimation

The main backgrounds to the W → �ν� channel arise from
lepton production in electroweak processes and semileptonic
heavy-flavour decays in multi-jet events. The former include
W → τντ → �ν�ντ ντ events and Z → �+�− events, where
one lepton from the Z boson is emitted outside the ID accep-
tance and produces spurious pmiss

T . Other sources of back-
ground that are considered include Z → ττ events, in which
at least one tau decays into a muon or electron, and t t̄ events,
in which at least one top quark decays semileptonically into
a muon or electron. These two background sources are negli-
gible (<0.5 %) and are not taken into account in this analysis.

6.1 W → μνμ channel

In the muon channel, the total number of background events
from QCD multi-jet processes is estimated using a partially
data-driven method. The dijet muon yields per Pb+Pb event
in the MC simulation are normalised to the pp cross-section
and scaled by the number of binary collisions and Pb+Pb
events in the data. The resulting distribution is represented
by the shaded histogram in Fig. 1. To take into account jet
energy-loss in the medium, the MC distribution is rescaled
to the data in a control region dominated by QCD multi-jet
events in the range 10 < pμ

T < 20 GeV (solid histogram).
This scale factor is on average 0.4 over all |ημ| intervals and
centrality classes. As a cross-check, the shape of the rescaled
QCD multi-jet background distribution was compared to that
of a control sample consisting of anti-isolated muons from the
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Fig. 1 Muon transverse momentum distribution in the data (points)
before applying the signal selection requirements. The pT distribution
of QCD multi-jet processes from the MC simulation is also shown
in the same figure. The shaded histogram is scaled to 〈Ncoll〉 and the
solid histogram is rescaled to match the data in a control region 10 <

pμ
T < 20 GeV. The background fraction from QCD multi-jet processes

is determined from the number of muons in the MC surviving the final
selection criteria

data. They are found to agree well, confirming that the distri-
butions in Fig. 1 are an accurate representation of the multi-
jet background in the data. The number of expected QCD
multi-jet events is determined by extrapolating the rescaled
MC distribution from the control region to the signal pμ

T
region above 25 GeV. The fraction of background events in
the data is then calculated from the ratio of the number of
QCD multi-jet events surviving final selection in the MC and
the number of W candidates in the data. This is performed
as function of ημ and centrality. The background fraction is
also determined separately for μ+ and μ−, and no charge
dependence is observed. The multi-jet background fraction
is estimated to be on average 3.7 % of the total number of W ±
boson candidates, varying from 2.0 % to 5.4 % as a function
of ημ and centrality.

The estimated number of background events from
electroweak processes is determined separately for the
Z → μ+μ− and W → τντ channels. The background from
Z → μ+μ− events is determined in each ημ interval from
MC simulation and scaled to reproduce the actual number of
Z → μ+μ− events observed in the data [22] in each central-
ity class. This contribution is on average 2.4 % relative to the
total number of W boson candidates and ranges from 1.0 %
at central |ημ| to 3.2 % in the forward region. Background
events originating from W → τντ → μνμντ ντ decays are
estimated by calculating the ratio of the number of W →
τντ → μνμντ ντ and W → μνμ events that satisfy the anal-
ysis selection in the simulation. This fraction is on average
1.5 % in each |ημ| interval and centrality class and is applied
to the number of observed signal candidates. Variations
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