Search for resonant diboson production in the $\ell\ell qq^-$ final state in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

DOI 10.1140/epjc/s10052-015-3261-8

Publication date
2015

Document Version
Final published version

Published in
European Physical Journal C

License
CC BY

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for resonant diboson production in the $\ell\ell q\bar{q}$ final state in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

ATLAS Collaboration
CERN, 1211 Geneva 23, Switzerland

Received: 23 September 2014 / Accepted: 7 January 2015 / Published online: 10 February 2015
© CERN for the benefit of the ATLAS collaboration 2015. This article is published with open access at Springerlink.com

Abstract This paper reports on a search for narrow resonances in diboson production in the $\ell\ell q\bar{q}$ final state using pp collision data corresponding to an integrated luminosity of 20 fb$^{-1}$ collected at $\sqrt{s}=8$ TeV with the ATLAS detector at the Large Hadron Collider. No significant excess of data events over the Standard Model expectation is observed. Upper limits at the 95% confidence level are set on the production of two decay leptons can suppress the multijet background present in the fully hadronic mode. The requirement of the presence of two decay leptons can suppress the multijet background present in the fully hadronic mode. Additionally, the absence of neutrinos in the final state allows to reconstruct the invariant mass of the diboson system.

1 Introduction

This paper presents a search for narrow diboson resonances in the semileptonic decay channel ZW or $ZZ \rightarrow \ell\ell q\bar{q}$ (where ℓ stands for electron or muon) in pp collision data corresponding to an integrated luminosity of 20 fb$^{-1}$ recorded with the ATLAS detector at a centre-of-mass energy $\sqrt{s}=8$ TeV at the Large Hadron Collider (LHC). This type of resonances appear in models such as Technicolor [1–3], Warped Extra Dimensions [4–6], and Grand Unified Theories [7–10]. The semileptonic decay channel has a relatively large branching ratio compared to the fully leptonic mode, while the requirement of the presence of two decay leptons can suppress the multijet background present in the fully hadronic mode. Additionally, the absence of neutrinos in the final state allows to reconstruct the invariant mass of the diboson system.

This analysis is optimized using two models with narrow resonances as benchmarks: spin-2 Kaluza–Klein (KK) gravitons $(G^* \rightarrow ZZ)$, and spin-1 W' gauge bosons $(W' \rightarrow ZW)$ of the Sequential Standard Model (SSM) with modified coupling to ZW, also referred to as the Extended Gauge Model (EGM) [11]. For both models, the W and Z bosons from resonance decays are longitudinally polarized over a pole mass range relevant to this analysis.

The KK graviton interpretation is based on an extended Randall–Sundrum (RS) model with a warped extra dimension in which the Standard Model (SM) fields can propagate [12]. This extended “bulk” RS model avoids constraints on the original RS model [4], referred to as RS1 hereafter, from limits on flavour-changing neutral currents and from electroweak precision tests. The bulk RS model is characterized by a dimensionless coupling constant $k/M_{pl} \sim 1$ where k is the curvature of the warped extra dimension and $M_{pl} = M_{Pl}/\sqrt{4\pi}$ is the reduced Planck mass. The width relative to the mass of the bulk RS graviton with $k/M_{pl} = 1$ varies between 3 and 6% within the pole mass range of 300–2000 GeV.
using pp collision data recorded at $\sqrt{s} = 7$ TeV, except for the $WZ \rightarrow \ell\nu\ell'$ search in Ref. [18], which used data recorded at $\sqrt{s} = 8$ TeV. Here ℓ' stands for an electron or muon. These studies excluded EGM W' bosons with masses up to 1.52 TeV for WZ final states, RS1 gravitons with masses up to 645 GeV for ZZ final states and up to 1.23 TeV for WW final states. The CMS Collaboration searched for ZZ and WW resonances in the semileptonic decay channel, setting exclusion limits on the production cross section of bulk RS gravitons [20]. In the fully hadronic channel, the CMS Collaboration excluded RS1 gravitons with $k/M_{Pl} = 0.1$ for masses up to 1.2 TeV, and W' bosons for masses up to 1.7 TeV [21]. Both of these searches implement jet substructure techniques to identify the event topology where the hadronic system from the decay of one or two gauge bosons is produced at high transverse momentum p_T, resulting in a single reconstructed jet. In the analysis presented here, a similar technique has been used to identify hadronically decaying W or Z boson produced at high p_T. This technique uses the characteristics of two cores (“subjets”) inside a single reconstructed jet and allows for a significant improvement in acceptance and selection efficiency for high mass states with boosted W and Z bosons over the previous analysis [16].

2 Analysis

In this study, three optimized sets of selection criteria classify $ZW/ZZ \rightarrow \ell\nu\ell\bar{\nu}$ events into distinct kinematic regions, namely the “low-p_T resolved region” (LR), “high-p_T resolved region” (HR) and “merged region” (MR), based on the p_T of the dilepton and the hadronic system. In the LR and HR the hadronic boson decay is reconstructed as two distinct jets, whereas in the MR it is reconstructed as a single jet. In all three cases, the dilepton (hadronic system) mass is required to be consistent with the mass of the Z boson (W or Z boson). In the MR, additional jet substructure information, optimized for the identification of the hadronic decay of a longitudinally polarized high-p_T boson, is used to improve the sensitivity. Finally, the $\ell\ell\nu\ell\bar{\nu}$ mass spectrum, reconstructed as the mass of the dilepton and the two-jet system in the LR and HR ($m_{\ell\ell\nu\ell\bar{\nu}}$) or the dilepton and the single-jet system in the MR ($m_{\ell\ell}$), is examined for excesses with respect to the expectation from SM processes (background).

2.1 Detector and data sample

The ATLAS detector [22] consists of an inner detector (ID) providing charged particle tracking for the pseudorapidity

Footnote 1 continued

The γ-axis points upward. Cylindrical coordinates (R, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln(\tan(\theta/2))$.

<table>
<thead>
<tr>
<th>Pole mass (GeV)</th>
<th>$\sigma_{G^*} \cdot BR (fb)$</th>
<th>$\sigma_{W'} \cdot BR (fb)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>540</td>
<td>4100</td>
</tr>
<tr>
<td>800</td>
<td>23</td>
<td>540</td>
</tr>
<tr>
<td>1400</td>
<td>0.44</td>
<td>33</td>
</tr>
</tbody>
</table>

Table 1: Theoretical production cross section times branching ratio $\sigma_{G^*}(pp \rightarrow G^*) \cdot BR(G^* \rightarrow ZZ)$ with $k/M_{Pl} = 1.0$ and $\sigma_{W'}(pp \rightarrow W') \cdot BR(W' \rightarrow ZZ)$ with $c = 1$ for different pole masses of the resonances.
The main background sources are Z bosons produced in association with jets (Z + jets), followed by top-quark pair and non-resonant vector-boson pair production. The contribution from multijet events is negligible after the selection cuts described in Sect. 2.3. All background estimates are based on simulation. Additionally, the main background source, Z + jets, is estimated using constraints from data as described in Sect. 2.4. The Z + jets background is modelled by the SHERPA generator [29] with CT10 PDFs [30]. The top pair, s-channel single-top and Wt processes are modelled by the MC@NLO [31–34] generator with CT10 PDFs, interfaced to HERWIG [35,36] for hadronisation and JIMMY [37] for modelling of the underlying event. The top pair production cross section is calculated at NNLO in QCD including resummation of next-to-next-to-leading logarithmic soft gluon terms with Top++2.0 [38–43]. The t-channel single-top events are generated by AcerMC [44] with CTEQ6L1 PDFs and PYTHIA 6 [45] for hadronisation. The diboson events are produced with the HERWIG generator and CTEQ6L1 PDFs. The diboson production cross sections are normalized to predictions at next-to-leading-order accuracy as calculated with [46]. Generated events are processed with the ATLAS detector simulation program [47] based on the GEANT4 package [48]. Effects from additional inelastic pp interactions (pile-up) occurring in the same bunch crossing are taken into account by overlaying minimum-bias events simulated by PYTHIA 8.

2.3 Object and event selection

Electron candidates are selected from energy clusters in the electromagnetic calorimeter according to the medium criteria of Ref. [49], which impose requirements on the shower profile and demand an associated ID track. Offline reconstructed electrons are required to have $p_T > 25$ GeV and $|\eta| < 2.47$. The transition region between the barrel and endcaps (1.37 < $|\eta|$ < 1.52) exhibits degraded energy resolution and is therefore excluded.

Muon candidates are reconstructed by combining ID and MS tracks which have consistent position, charge and momentum measurements [50]. The muon candidates are required to have $p_T > 25$ GeV and $|\eta| < 2.4$.

A primary vertex reconstructed from at least three well-reconstructed charged particle tracks, each with $p_T > 400$ MeV, is required in order to remove non-collision background. If an event contains more than one primary vertex candidate, the vertex with the highest Σp_T^2 of the associated tracks is selected. To ensure that both electrons or muons originate from the primary vertex, it is required that the product of the longitudinal impact parameter (z_0) and the sine of the polar angle of the candidate (θ) satisfies $|z_0 \sin(\theta)| < 0.5$ mm, and that the ratio of the transverse impact parameter (d_0) to its uncertainty (σ_d) for electrons (muons) fulfils $|d_0|/\sigma_d < 6$ (3.5). In addition, the lepton candidates are required to be isolated from other tracks and calorimetric activity. The scalar sum of the transverse momenta of tracks within a cone of size $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ around the lepton track is required to be less than 15% of the candidate p_T. Similarly, the sum of transverse energy deposits in the calorimeter within a cone of size $\Delta R = 0.2$, excluding the transverse energy due to the lepton, and corrected for the expected pile-up contribution, is required to be less than 30% of the candidate p_T (calorimetric isolation).

To improve the acceptance for events with boosted Z bosons, with $p_T > 800$ GeV, the isolation method is modified for dilepton objects: a dilepton track isolation variable is calculated for each lepton of a like-flavour pair by subtracting the p_T of the paired lepton from the p_T sum described above if it falls inside the isolation cone of the lepton under consideration. The modified scalar sum p_T variable for the dilepton isolation is required to be less than 15% of the lepton p_T, as in the standard track isolation. The calorimetric isolation requirements are dropped if $\Delta R(\ell\ell) < 0.25$.

Jets are reconstructed from clusters of calorimeter cells using the anti-k_t algorithm [51,52] with a distance parameter $R = 0.4$. Jets are required to be in the range $|\eta| < 2.1$ and to have $p_T > 30$ GeV after correcting for energy losses in passive material, the non-compensating response of the calorimeter and extra energy due to event pile-up [53]. Furthermore, for jets with $p_T < 50$ GeV, the scalar sum p_T of associated tracks from the primary vertex is required to be at least 50% of the scalar sum p_T of all associated tracks to suppress jets from pile-up interactions. The selected anti-k_t jets are referred to as small-R jets and denoted by “j” hereafter.

For resonances with a mass above about 900 GeV, the $q\bar{q}$ pair is often merged into a single jet and the fraction of merged $q\bar{q}$ pairs increases with the resonance mass. Such jets are reconstructed with the Cambridge–Aachen jet clustering algorithm [54] with a distance parameter $R = 1.2$. To exploit the characteristics of the decay of the massive boson into a $q\bar{q}$ pair, these jets are further required to pass a splitting and filtering algorithm similar to the algorithm described in Ref. [55] but optimized for the identification of very high-p_T boson decays [56]. These jets are required to be within $|\eta| < 1.2$ and to have $p_T > 100$ GeV, and are referred to as large-R jets or “J” hereafter.

Events which contain exactly two electrons or muons satisfying the above criteria are selected if at least one is associated with a lepton trigger candidate. To select lepton pairs originating from a Z boson decay, the dilepton invariant mass ($m_{\ell\ell}$) is required to be in the range 66 GeV < $m_{\ell\ell}$ < 116 GeV. The $m_{\ell\ell}$ cut range is chosen to be wide to enhance the signal sensitivity, given that the dominant background is from the $Z +$ jets processes and a narrower cut would not provide additional discrimination power. Muon-pair events are further required to have muons of opposite charge. The
Table 2 Event yields in signal regions for data, expected backgrounds, and G^* and W^* signals. The statistical and systematic uncertainties are given separately (in this order), except for the total background where the combined statistical and systematic uncertainty before (unconstrained) and after (constrained) the fit to the data in the signal regions is shown. The signal mass points correspond to 500 (LR), 800 (HR), 1400 (MR) GeV.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LR</th>
<th>HR</th>
<th>MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z +$ jets</td>
<td>9460 ± 40 ± 660</td>
<td>591 ± 4 ± 15</td>
<td>20.9 ± 0.3 ± 2.3</td>
</tr>
<tr>
<td>$WW/WZ/ZZ$</td>
<td>234 ± 4 ± 22</td>
<td>20.6 ± 0.3 ± 1.4</td>
<td>1.38 ± 0.02 ± 0.13</td>
</tr>
<tr>
<td>$t\bar{t}$ + Single t</td>
<td>175.3 ± 9.2 ± 9.9</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Total (unconstrained)</td>
<td>9870 ± 690</td>
<td>612 ± 17</td>
<td>22.3 ± 2.5</td>
</tr>
<tr>
<td>Total (constrained)</td>
<td>9730 ± 98</td>
<td>608.8 ± 3.8</td>
<td>21.80 ± 0.46</td>
</tr>
<tr>
<td>Data</td>
<td>9728</td>
<td>619</td>
<td>25</td>
</tr>
<tr>
<td>G^* signal</td>
<td>1097 ± 17 ± 63</td>
<td>14.27 ± 0.19 ± 0.76</td>
<td>0.0995 ± 0.0013 ± 0.0059</td>
</tr>
<tr>
<td>W^* signal</td>
<td>1950 ± 40 ± 140</td>
<td>145.0 ± 2.3 ± 8.1</td>
<td>3.64 ± 0.06 ± 0.31</td>
</tr>
</tbody>
</table>

opposite charge requirement is not required for electron-pair events because of a higher charge misidentification rate for high-p_T electrons.

The three selection regions are differentiated by the p_T ranges for the leptonic Z decay candidate ($p_T^{\ell\ell}$) and hadronic jet system, namely $p_T^{\ell\ell} > 400$ GeV and $p_T^j > 400$ GeV for the large-R jet in the MR, and $p_T^{\ell\ell} > 100$ (250) GeV and $p_T^j > 100$ (250) GeV for the two small-R jets at low (high) p_T in the LR (HR). The mass of the hadronic jet system is required to be in the range 70 GeV < m_{jj} < 110 GeV for both the hadronic W and Z decay candidates in all three regions. In the MR, the large-R jet is split into subjets using an algorithm described in Ref. [55]. However, in contrast to the configuration used in Ref. [55], the mass relation between the large-R jet and subjets, the mass drop, is not imposed. A subjet momentum balance variable is defined as $\sqrt{\Delta R} = \min(p_T^{j1}, p_T^{j2}) \Delta R_{12}/m_{12}$, where p_T^{j1} and p_T^{j2} are the transverse momenta of the two leading subjets, ΔR_{12} is their separation and m_{12} is their mass. To suppress jets from gluon radiation and splitting, the subjet momentum balance is required to be $\sqrt{\Delta R} > 0.45$. Events are classified by sequentially applying the criteria for the MR, HR, and LR, thus assigning each event exclusively to one region. Overall, the signal acceptance times efficiency after all selection requirements increases from 5 to 10 % at $m_{G^*} = 300$ GeV to a plateau of 30–35 % above $m_{G^*} = 500$ GeV for a signal sample of $G^* \to ZZ \to \ell\ell q\bar{q}$. The improvement in acceptance compared to the previous analysis [16] ranges up to a factor of five for masses above 1.5 TeV.

2.4 Background and event yield

The simulation of the main background source ($Z +$ jets) is corrected using data. The normalization and $m_{\ell\ell jj}/j$ shape corrections of the simulated $Z +$ jets background sample is determined from data in a control region defined by all selection cuts but with an inverted cut on m_{jj}, namely $m_{jj} < 70$ GeV or $m_{jjjj} > 110$ GeV, in the resolved and merged regions, respectively. The normalization corrections, obtained as the ratio of event yields in the data and $Z +$ jets simulated samples for the electron and muon channel, after removing contributions from subdominant backgrounds from the data spectrum, range between 2 and 10 %. The $m_{\ell\ell jj}/j$ shape correction is well reproduced with a linear fit to the ratio of data to $Z +$ jets background, derived for each signal region after combining the electron and muon channels. This results in bin-by-bin corrections of up to 7 % in the LR, 3 % in the HR, and 22 % in the MR. The other backgrounds, from diboson and top production, are taken from simulation without applying corrections from data control regions.

The event yield in the three signal regions is summarized in Table 2. The total event yield with combined statistical and systematic uncertainties is given before and after the simultaneous fit to the three signal regions (cf. Sect. 3).

2.5 Systematic uncertainties

The main systematic uncertainty on the $m_{\ell\ell jj}/j$ spectrum comes from the uncertainty in the $Z +$ jets background modeling. The normalization uncertainty of the $Z +$ jets background is estimated from the relative difference between the normalization corrections derived from the nominal control region ($m_{jj} < 70$ GeV or > 110 GeV) and either the lower or higher mass region, taking the larger of the two as an estimate of the systematic uncertainty. If the resulting uncertainty is smaller than the statistical uncertainty of the normalization correction from the nominal control region, the latter is used as the systematic uncertainty. The uncertainty of the shape correction is estimated from the uncertainty on the slope parameter of the linear fit and is treated as uncorrelated with respect to the normalization uncertainty. The combined normalization and shape uncertainties vary as a function of $m_{\ell\ell jj}/j$ and range from 6 to 9 % in the LR, 2 to 8 % in the HR,
and 11 to 47 % in the MR. For all simulated samples, detector performance-related systematic uncertainties including the small-R jet energy scale and resolution, large-R jet energy, mass and momentum-balance scales and resolutions, the lepton reconstruction and identification efficiencies, and lepton momentum scales and resolutions are also considered. The large-R jet energy and mass scale uncertainties are evaluated by comparing the ratio of calorimeter-based to track-based measurements in dijet data and simulated events, and are validated using a data sample of high-p_T W bosons produced in association with jets. A Kolmogorov–Smirnov (KS) test [57] is then performed between the nominal and systematically varied distributions for a given systematic uncertainty source to determine if it has a sizeable effect on the shape of background and signal estimations. Only significant systematic effects are retained in the analysis by requiring a KS probability of less then 10 %. For the normalization, if the event yield changes by more than half the statistical uncertainty of the nominal yield, the systematic uncertainty is included.

Uncertainties on signal acceptance due to PDF sets, renormalization and factorization scale choices, initial- and final-state gluon radiation (ISR/FSR) modelling, and LHC beam energy uncertainty are also considered. The PDF uncertainties are estimated by taking the acceptance difference between CTEQL1 and MSTW2008LO PDFs and adding it in quadrature to the difference between MSTW2008LO error sets. The uncertainties due to the scale and ISR/FSR modelling are estimated by varying relevant parameters in Pythia 8 by a factor of 2.0 and 0.5. The beam energy systematic uncertainty is assessed with simulation by varying the beam energy within the measured uncertainty of 0.66 % [58], leading to at most a 1 % effect on acceptance. The dominant uncertainty comes from ISR/FSR modelling and is approximately 5 %.

3 Results

The invariant mass of the diboson system is reconstructed from the $\ell\ell jj$ or $\ell\ell J$ system. The reconstructed $m_{\ell\ell jj/J}$ distributions for data and simulated background events in the three signal regions are shown in Fig. 1 for the combined electron and muon channels. Good agreement is observed between the data and the background predictions, with p value\(^2\) ranging from 0.98 to 0.10, and the results are presented as 95 % confidence level upper limits on the production cross section times branching ratio for the G^* and W' models. The upper limits are determined using the CL$_S$ modified frequentist formalism [59] with a profile likelihood test statistic [60].

\(^2\) The p value is the probability that the background can produce a fluctuation greater than or equal to the excess observed in data.

Fig. 1 Reconstructed $\ell\ell jj$ or $\ell\ell J$ mass distributions in the data and for background after all the selection cuts are applied in the three kinematic regions referred to as the LR (top), HR (middle) and MR (bottom) in the text. The shaded regions show the full background uncertainty obtained by adding statistical and systematic uncertainties in quadrature, including the constraints on the background from the data control regions and before the fit to the data in the signal regions (cf. unconstrained case in Table 2). Also shown are the G^* signal yields expected for masses of 500, 800 and 1400 GeV with the production cross sections scaled by a factor 10.
The test statistic is evaluated with a maximum likelihood fit of signal models and background predictions to the reconstructed $m_{\ell\ell}$ spectra shown in Fig. 1. Systematic uncertainties and their correlations are taken into account as nuisance parameters with Gaussian constraints. The likelihood fit, which takes into account correlations between the systematic uncertainties, is performed for signal pole masses ranging between 300 and 850 GeV for the LR, 550 and 1800 GeV for the HR and 800 and 2000 GeV for the MR. Overlapping regions are fit simultaneously.

Figure 2 shows 95% CL upper limits on the production cross section times branching ratio and mass exclusion limits for W bosons in the theoretical framework of an Extended Gauge Model and for gravitons in warped extra dimensions in the context of the bulk Randall–Sundrum model. The results represent a significant improvement over previously reported limits by ATLAS [16] due to increased pp collision energy and data set size as well as the development of new techniques to analyse heavily boosted decays of bosons.

Acknowledgments
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MMST CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; MBMF, DFG, HGF, MPG and AvH Foundation, Germany; GSSI, GNMS, Greece; ISF, MINERVA, GIF, ICORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRS, Korea; LHEP, NWO, Netherlands; BRF and RCN, Norway; MINECO, Spain; STFC, the Royal Society and Leverhulme Trust, UK; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), SRC and Wannenberg Foundation, Sweden; SER, SNF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, UK; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), SRC and Wannenberg Foundation, Sweden; SER, SNF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, UK; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), SRC and Wannenberg Foundation, Sweden; SER, SNF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, UK; DOE and NSF, USA.

Open Access
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Funded by SCOAP³ / License Version CC BY 4.0.

References
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
Department of Physics, International Center for Elementary Particle Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto, ON, Canada
(a) TRIUMF, Vancouver, BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford, MA, USA
Centro de Investigaciones, Universidad Antonio Narino, Bogotá, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b) ICTP, Trieste, Italy; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana, IL, USA
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMT), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver, BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
Department of Physics, University of Warwick, Coventry, UK
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison, WI, USA
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven, CT, USA
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
a Also at Department of Physics, King’s College London, London, UK
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Novosibirsk State University, Novosibirsk, Russia
d Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
e Also at TRIUMF, Vancouver, BC, Canada
f Also at Department of Physics, California State University, Fresno, CA, USA
g Also at Tomsk State University, Tomsk, Russia
h Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
i Also at Università di Napoli Parthenope, Naples, Italy
j Also at Institute of Particle Physics (IPP), Victoria, Canada
k Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
l Also at Chinese University of Hong Kong, Hong Kong, China
m Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
n Also at Louisiana Tech University, Ruston, LA, USA
o Also at Institucio Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain
p Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA
q Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
r Also at CERN, Geneva, Switzerland
s Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
Also at Manhattan College, New York, NY, USA
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India
Also at Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at International School for Advanced Studies (SISSA), Trieste, Italy
Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at Department of Physics, Oxford University, Oxford, UK
Also at Department of Physics, Nanjing University, Jiangsu, China
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
Also at Department of Physics, University of Malaya, Kuala Lumpur, Malaysia
* Deceased