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Label-free quantitative 
phosphoproteomics with novel 
pairwise abundance normalization 
reveals synergistic RAS and CIP2A 
signaling
Otto  Kauko1,2,3, Teemu Daniel Laajala4,5, Mikael Jumppanen1, Petteri Hintsanen6, 
Veronika Suni1,7, Pekka Haapaniemi1, Garry Corthals1,8, Tero Aittokallio 6, 
Jukka Westermarck1,2 & Susumu Y. Imanishi1,9

Hyperactivated RAS drives progression of many human malignancies. However, oncogenic activity of 
RAS is dependent on simultaneous inactivation of protein phosphatase 2A (PP2A) activity. Although 
�����Z�����‹�•���•�•�‘�™�•���–�‘���”�‡�‰�—�Ž�ƒ�–�‡���•�‘�•�‡���‘�ˆ���–�Š�‡�����������‡�¡�‡�…�–�‘�”���’�ƒ�–�Š�™�ƒ�›�•�á���‹�–���Š�ƒ�•���•�‘�–���„�‡�‡�•���•�›�•�–�‡�•�ƒ�–�‹�…�ƒ�Ž�Ž�›��
assessed how these proteins functionally interact. Here we have analyzed phosphoproteomes 
regulated by either RAS or PP2A, by phosphopeptide enrichment followed by mass-spectrometry-
�„�ƒ�•�‡�†���Ž�ƒ�„�‡�Ž�æ�ˆ�”�‡�‡���“�—�ƒ�•�–�‹�¤�…�ƒ�–�‹�‘�•�ä�����‘���ƒ�Ž�Ž�‘�™���†�ƒ�–�ƒ���•�‘�”�•�ƒ�Ž�‹�œ�ƒ�–�‹�‘�•���‹�•���•�‹�–�—�ƒ�–�‹�‘�•�•���™�Š�‡�”�‡���†�‡�’�Ž�‡�–�‹�‘�•���‘�ˆ����������
or PP2A inhibitor CIP2A causes a large uni-directional change in the phosphopeptide abundance, 
we developed a novel normalization strategy, named pairwise normalization. This normalization is 
based on adjusting phosphopeptide abundances measured before and after the enrichment. The 
�•�—�’�‡�”�‹�‘�”���’�‡�”�ˆ�‘�”�•�ƒ�•�…�‡���‘�ˆ���–�Š�‡���’�ƒ�‹�”�™�‹�•�‡���•�‘�”�•�ƒ�Ž�‹�œ�ƒ�–�‹�‘�•���™�ƒ�•���˜�‡�”�‹�¤�‡�†���„�›���˜�ƒ�”�‹�‘�—�•���‹�•�†�‡�’�‡�•�†�‡�•�–���•�‡�–�Š�‘�†�•�ä��
���†�†�‹�–�‹�‘�•�ƒ�Ž�Ž�›�á���™�‡���†�‡�•�‘�•�•�–�”�ƒ�–�‡���Š�‘�™���–�Š�‡���•�‡�Ž�‡�…�–�‡�†���•�‘�”�•�ƒ�Ž�‹�œ�ƒ�–�‹�‘�•���•�‡�–�Š�‘�†���‹�•�ª�—�‡�•�…�‡�•���–�Š�‡���†�‘�™�•�•�–�”�‡�ƒ�•��
analyses and interpretation of pathway activities. Consequently, bioinformatics analysis of RAS and 
�������Z�����”�‡�‰�—�Ž�ƒ�–�‡�†���’�Š�‘�•�’�Š�‘�’�”�‘�–�‡�‘�•�‡�•���”�‡�˜�‡�ƒ�Ž�‡�†���ƒ���•�‹�‰�•�‹�¤�…�ƒ�•�–���‘�˜�‡�”�Ž�ƒ�’���‹�•���–�Š�‡�‹�”���ˆ�—�•�…�–�‹�‘�•�ƒ�Ž���’�ƒ�–�Š�™�ƒ�›�•�ä�����Š�‹�•��
�‹�•���•�‘�•�–���Ž�‹�•�‡�Ž�›���„�‹�‘�Ž�‘�‰�‹�…�ƒ�Ž�Ž�›���•�‡�ƒ�•�‹�•�‰�ˆ�—�Ž���ƒ�•���™�‡���‘�„�•�‡�”�˜�‡�†���ƒ���•�›�•�‡�”�‰�‹�•�–�‹�…���•�—�”�˜�‹�˜�ƒ�Ž���‡�¡�‡�…�–���„�‡�–�™�‡�‡�•���������Z�����ƒ�•�†��
RAS expression as well as KRAS activating mutations in TCGA pan-cancer data set, and synergistic 
relationship between CIP2A and KRAS depletion in colony growth assays.

Cancer associated changes commonly alter the activity of kinase signaling pathways, many of which 
are potentially druggable1,2. RAS family GTPases H-RAS, K-RAS, and N-RAS are prominent oncogenes 
that function as key upstream regulators of multiple cancer-associated pathways3. RAS genes frequently 
undergo mutational activation in cancer4 and in some cancers these mutations have a complementary 
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distribution with the other activating mutations of the major downstream serine/threonine kinase path-
ways, PI3K/AKT and MAPK/ERK5. However, phosphorylation levels of proteins, and therefore activi-
ties of signaling pathways, are determined by the balance of phosphatase and kinase activity6. Protein 
phosphatase 2A (PP2A) either alone or together with PP1 dephosphorylates the majority of all serine 
and threonine phosphorylated proteins7,8. PP2A activity is commonly inhibited in cancer cells by over-
expression of endogenous inhibitor proteins9, inactivating mutations and deletions of certain subunits7,10, 
and post-translational modi�cations of the catalytic subunit11. Cancerous inhibitor of PP2A (CIP2A) is 
an endogenous inhibitor of PP2A with oncogenic properties12. It is overexpressed and correlates with 
disease progression in wide variety of human cancers13. Importantly, it has been shown that PP2A antag-
onizes oncogenic activity of hyperactivated RAS in cellular transformation14–17 and in cell cycle control18, 
and furthermore, PP2A inhibition by CIP2A overexpression synergizes with the RAS-mediated trans-
formation12,19. However, even though PP2A is known to regulate several RAS e�ector kinase pathways3 
(Fig.� 1a), it has not been systematically assessed how RAS activity and PP2A inhibition functionally 
cooperate in regulation of protein phosphorylation.

Phosphoproteomics analysis allows for site-speci�c identi�cation and quanti�cation of a large num-
ber of phosphoproteins20–27. A general work�ow consists of proteolytic digestion of proteins and then 
selective enrichment for phosphopeptides prior to their analysis by liquid chromatography-tandem mass 
spectrometry (LC-MS/MS). Optimized sample preparation procedures and recent MS instruments enable 
hundreds or thousands of phosphopeptide identi�cations from the single measurement. Quanti�cation 

Figure 1. A schematic e�ect of a normalization bias caused by manipulation of RAS and PP2A 
phosphoproteomes (a) Protein phosphatase 2A (PP2A) participates in the regulation of a large part of 
phosphoproteome, including major serine/threonine kinases AKT and ERK that are also key downstream 
e�ectors of the RAS oncoproteins. RNAi mediated depletion of RAS, PP2A activation by depletion of 
CIP2A protein, and PP2A inhibition by OA were used as model perturbations, to study the in�uence 
of global phosphorylation changes on the performance of di�erent normalization methods in label-free 
quantitative phosphoproteomics. (b) Centering normalization is o�en used in quantitative proteomics and 
phosphoproteomics data (upper panel). However, a global phosphorylation change shi�s the distribution 
of the phosphorylation ratios (middle panel). In such cases, centering leads to normalization bias, which 
introduces false positive phosphorylations in the opposite direction from the global change and also false 
negatives in the direction of the global change (lower panel).
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of global phosphoproteome has o�en been performed by using stable isotope labeling techniques, such 
as a metabolic labeling method SILAC (stable isotope labeling by amino acids in cell culture; typically 
2–3 samples per analysis) and a chemical labeling method iTRAQ (isobaric tag for relative and absolute 
quantitation; typically 4–8 samples per analysis)21,24,28,29. Once samples are labeled and mixed, the abun-
dance ratios of phosphopeptides are maintained throughout the sample processing and measurement, 
which leads to improved accuracy in quanti�cation. Recently, an alternative label-free quanti�cation 
method, particularly based on peptide abundance (precursor ion abundance), has been introduced in 
the global phosphoproteomics �eld30–33. Although label-free quanti�cation requires careful experimental 
design to maintain reproducibility, it can be used to avoid some of the drawbacks of labeling methods, 
including labeling reagent cost, ine�cient labeling, di�culty in low abundance peptide analysis, and the 
limitation of sample number23. Label-free approaches provide bene�ts especially for large-scale analyses, 
e.g. experiments done with various treatment conditions, or clinical screening applications. For instance, 
de Graaf et al. have reported a label-free temporal phosphoproteomics study on Jurkat T cells that con-
sisted of �100 LC-MS/MS data to be compared34.

One of the concerns related to label-free quanti�cation is how to accurately normalize measured 
phosphopeptide abundance. �us far, global centering normalization methods such as those based on 
the mean/total abundance and median abundance ratio have most commonly been used31,33–38. �ese 
methods can be applied if the majority of the phosphorylations can be assumed unaltered across the 
samples. However, when a large-scale change in the global protein phosphorylation occurs (Fig.�1b), e.g. 
during mitosis39 or in response to EGF stimulation of serum starved HeLa cells20 (both SILAC-based 
studies), the assumptions of the centering normalization do not hold anymore. In fact, it is hard to jus-
tify those assumptions in many phosphoproteomics studies since dynamic regulations of kinases and/
or phosphatases are expected to be seen there. Also from a technical point of view, due to variation 
introduced in the phosphopeptide enrichment step, in addition to the �uctuating nano�ow LC and ion-
ization conditions, the phosphorylation pro�le before the enrichment is di�cult to predict. Analysis of 
those samples would require alternative normalization methods such as spiking in known quantities of 
phosphoproteins/phosphopeptides30,40.

Here, we have studied global phosphorylation changes in HeLa cells when PP2A is activated by deplet-
ing CIP2A or inhibited by okadaic acid (OA) treatment. OA is a potent small molecule PP2A inhibitor 
that is commonly used to interrogate PP2A’s functions although it inhibits also other serine/threonine 
phosphatases, exhibiting approximately 100-fold selectivity to PP2A/PP4/PP6 over PP1/PP341,42. Due 
to the large number of PP2A targets, we expected a global dephosphorylation to occur when PP2A is 
activated and global upregulation when PP2A is inhibited. Additionally, we depleted the RAS proteins, 
due to the suggested functional antagonism between PP2A and RAS in regulation of several pathways43. 
�e expected e�ects on global protein phosphorylation caused by these perturbations are depicted in 
Fig.� 1a. By studying these model samples, we demonstrate the importance of selecting an appropriate 
normalization method in label-free quantitative phosphoproteomics, as well as propose a novel approach 
to achieve accurate quanti�cation. Importantly, this approach enabled the monitoring of true phosphop-
roteome dynamics, which revealed novel insights into the synergy between PP2A inhibition and RAS 
in cancer cells.

Results
���†�‡�•�–�‹�¤�…�ƒ�–�‹�‘�•�� �ƒ�•�†�� �“�—�ƒ�•�–�‹�¤�…�ƒ�–�‹�‘�•�� �‘�ˆ�� �’�”�‘�–�‡�‹�•�•�� �ƒ�•�†�� �’�Š�‘�•�’�Š�‘�”�›�Ž�ƒ�–�‹�‘�•�•�� �„�›�� �����æ������������ �ƒ�•�ƒ�Ž�›�•�‹�•�ä  
As model samples for label-free quantitative phosphoproteomics, we used HeLa cells treated with CIP2A 
siRNA, RAS siRNA, and OA as well as with control siRNA (control 1), in biological triplicates. We used a 
cocktail siRNA targeting H-, K-, and N-RAS for the reason that in HeLa cells the di�erent RAS isoforms 
do not exhibit speci�city towards the downstream AKT and ERK pathways, and e�cient downregulation 
of these pathways has been shown to require targeting more than one RAS isoform44. �e experimental 
work�ow is shown in Fig.� 2a. Cell lysates (1 mg protein each) were spiked in with a phosphoprotein 
bovine � -casein (10 � g), and then digested with trypsin in parallel. �e majority of the digests (99% v/v) 
were enriched for phosphopeptides by TiO2 a�nity chromatography sequentially. �e samples with and 
without the enrichment were subjected to LC-MS/MS analysis (Q Exactive, �ermo Fisher Scienti�c). 
�e lysates of the same control samples were processed again on di�erent days as a technical replicate 
(control 2), and analyzed together with the above samples. Mascot database searching (Matrix Science) 
was performed for identifying peptides and proteins, and phosphorylation site localization was validated 
using phosphoRS45. We also performed SpectraST searching against a simulated phosphopeptide spectral 
library (SimSpectraST searching), which is highly sensitive for the site-speci�c identi�cation of phospho-
peptides covered by the library46. �e combination of these orthogonal methods improved the con�dence 
of the identi�cations. When score cuto�s for a false-localization rate (FLR) of 1% were applied (i.e. high 
con�dence phosphosites), the site disagreement by Mascot and SimSpectraST on shared sequence iden-
ti�cations was improved from 12% to 1.4%, as expected (Supplementary Table 1). Label-free quanti�ca-
tion was performed using Progenesis so�ware (Nonlinear Dynamics). Peptide ion features were aligned, 
detected, and then quanti�ed based on precursor ion abundance. Based on the chromatographic data 
alignment, it is possible to measure all the detectable peptides even when peptides are unidenti�ed in 
some samples. Phosphosites (combinations) were quanti�ed by summing the feature abundance, where 
low con�dence site features were excluded from quanti�cation of high con�dence sites. �e numbers 
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of identi�cations and quanti�cations are summarized in Table�1. From the TiO2-enriched samples, we 
identi�ed a total of 4,519 unique phosphopeptides, at a false-discovery rate (FDR) of 0.18% using the 
target-decoy strategy at a phosphopeptide spectral match level (Supplementary Table 1). Out of those, 
3,073 unique phosphopeptides with 2,621 phosphosite combinations were quanti�ed based on 4,026 ion 
features (Supplementary Tables 2 and 3), which included 2,911 phosphosites on 1,255 proteins (2,051 
high con�dence sites on 1,067 proteins). From the non-enriched digests, we identi�ed 16,344 unique 
peptides at a peptide spectral match level FDR of 0.15%, which resulted in quanti�cation of 14,015 
unique peptides and 2,567 proteins based on 16,922 ion features (Supplementary Tables 4 and 5). Also, 
68 unique phosphopeptides were quanti�ed without the TiO2-enrichment, of which 52 could be used for 
a newly developed normalization method (Fig.�2b) as described below.

���—�ƒ�•�–�‹�–�ƒ�–�‹�˜�‡���•�‡�ƒ�•�—�”�‡�•�‡�•�–���‘�ˆ���’�Š�‘�•�’�Š�‘�’�‡�’�–�‹�†�‡�•���™�‹�–�Š���†�‹�¡�‡�”�‡�•�–���•�‘�”�•�ƒ�Ž�‹�œ�ƒ�–�‹�‘�•���•�‡�–�Š�‘�†�•�ä TiO2 
enrichment is regarded as a major source of variation for label-free quanti�cation, and indeed it con-
stituted a large part of variance in our platform (Supplementary Fig. 1). �erefore, an appropriate nor-
malization of phosphopeptide abundance needs to be applied. By using the dataset obtained from the 

Figure 2. Pairwise normalization developed for label-free quantitative phosphoproteomics.  (a) HeLa 
cells with di�erent treatments were subjected to cell lysis, spiking �-casein standard, and tryptic digestion. 
Peptides with and without TiO2 phosphopeptide enrichment were analyzed by LC-MS/MS. Peptides 
were identi�ed by Mascot database search, followed by phosphorylation site validation by phosphoRS. 
Phosphopeptide identi�cation was supplemented by SimSpectraST spectral library search. Following label-
free quanti�cation, peptide abundance was normalized with di�erent methods, including the pairwise 
normalization for TiO2 data developed in this study. (b) �e principle of the pairwise normalization method. 
Fi�y-two phosphopeptides were quanti�ed in both the non-enriched digests and TiO2-enriched samples (i.e. 
52 digest-TiO2 pairs). Abundance pro�les of two hypothetical phosphopeptides are illustrated as examples. 
An abundance ratio was calculated by pairwise comparison (digest/TiO2) for each phosphopeptide. Eleven 
pairs were excluded as outliers (see the criteria in Supplementary Fig. 3). �e median of normalized 
abundance ratios was then calculated for the remaining 41 pairs and used as a pairwise normalization 
factor for the TiO2 data. �e TiO 2 data were pre-normalized with the global centering method, whereas the 
digest data were normalized with the global centering or quantile centering method (i.e. global pairwise and 
quantile pairwise, respectively).
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TiO2-enriched samples, we investigated how di�erent normalization methods a�ect the outcomes of 
label-free phosphoproteomics studies. First, we tested the commonly used normalization methods, 
including centering normalizations (global median ratio centering and quantile-based normalization, 
henceforth global centering and quantile centering, respectively) and the normalization by spiked inter-
nal standards (�  -casein phosphopeptides). �e fold change distributions of phosphopeptide ion fea-
tures were monitored for the CIP2A, RAS, and OA samples compared to the control 1 samples. In the 
non-normalized data we observed mostly upregulations compared to the control 1 samples (Fig.�3a,b). 
As expected, the normalizations had a large impact on the distributions in terms of shi�ing their mean/
median values (Fig.�3a). �ese shi�s were re�ected in the ratio of up- and down-regulated phosphoryla-
tions (di�erentially regulated phosphosites compared to the control 1 samples; t-test, p �   0.01) (Fig.�3b). 
�e global centering and the quantile centering normalizations of the data yielded similar ratios of the 
regulated phosphorylations across all the treatments (50–63% upregulation). In contrast, the casein 
normalization failed to correct the unlikely result of pronounced upregulation in all samples in the 
non-normalized data (Supplementary Fig. 2a). Variations in spiking � -casein, presumably due to the 
limited accuracy in protein concentration measurement of cell lysates, seem to have contributed to this 
trend (Supplementary Fig. 2b). �ereby we conclude that use of any of the tested normalization meth-
ods do not reveal the expected profound upregulation of protein phosphorylation by OA treatment and 
downregulation by CIP2A and RAS depletions.

Pairwise normalization developed for label-free quantitative phosphoproteomics.  As illus-
trated in Fig.� 1b and also exempli�ed in Fig.� 3, the centering normalization methods may introduce 
a systematic error into label-free quantitative phosphoproteomics in some cases, and even result in 
quanti�cation bias. However, as mentioned above, if the assumptions of the centering normalization do 
not hold, predicting the original phosphoproteome pro�les is challenging when phosphopeptides are 
enriched without labeling. In this study, we rationalized that normalization of TiO2-enriched phospho-
peptides could be corrected by using phosphopeptides observed prior to the enrichment as reference 
peptides. As the non-enriched digests are dominated by nonphosphorylated peptides (99.5% of the quan-
ti�ed peptides, see Table�1), their normalization is not signi�cantly in�uenced by global phosphorylation 
changes. �erefore, it is expected that phosphopeptide abundance in the non-enriched samples can be 
more accurately quanti�ed based on the centering normalization than that in the enriched samples. We 
used phosphopeptides that were quanti�ed both in the non-enriched digests and TiO2-enriched samples, 
and calculated a digest/TiO2 abundance ratio for each phosphopeptide a�er global centering normali-
zation (Fig.� 2b). �e TiO2-enriched data were then normalized using the median of these ratios as a 

HeLaa,b

Alpha-caseina 
(spiked protein)All

High con�dence 
site (1% FLR)

TiO2-enriched samples

  Phosphopeptide spectral matches (0.18% FDR)41605 29029 1677

  Identi�ed phosphopeptides 4519 2740 37

  Quanti�ed phosphopeptide features 4026 2935 73

  Quanti�ed phopshopeptides 3073 2217 27

  Quanti�ed phosphosite combinations 2621 1873

    Phosphosites 2911 2051

    Phosphoproteins 1255 1067

Non-enriched digests

  Peptide spectral matches (0.15% FDR) 176681 750

  Identi�ed peptides 16344 31

  Identi�ed phosphopeptides 89 51 8

  Quanti�ed features 16922 60

  Quanti�ed peptides 14015 31

  Quanti�ed phosphopeptides 68 43 8

  Quanti�ed proteins 2567

    �  1 unique peptides quanti�ed 1724

Table 1.  Identi�cation and quanti�cation of HeLa proteins and phosphorylations. aA peptide with and 
without methionine oxidation was counted as 1. bPhosphosites shared by di�erent proteins were counted 
repeatedly, i.e. those were redundant.
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normalization factor. We observed a total of 52 phosphopeptides for this purpose, of which 41 were used 
for calculating the normalization factor (Fig.�2b). Eleven were excluded as outliers due to not being quan-
ti�ed in every sample or due to having extreme fold changes between samples (Supplementary Fig. 3).

As the proposed strategy is based on pairwise comparison of the same phosphopeptides from 
non-enriched and TiO2-enriched samples, we call this novel method as pairwise normalization method. 
�e pairwise normalization factors were calculated based on two centering normalizations of the 
non-enriched digest data, i.e. global centering and quantile centering normalizations. �ese are termed 
as global pairwise and quantile pairwise normalizations, respectively, and their performance was eval-
uated. In contrast to the other three normalizations (Fig.� 3 and Supplementary Fig. 2), both of the 
pairwise normalization methods resulted in signi�cantly larger di�erence between the OA and CIP2A/
RAS samples (Supplementary Table 6), with majority of phosphorylations upregulated in the OA samples 
(global pairwise: 67%, quantile pairwise: 85%) (Fig.� 3c,d). Furthermore, the expected downregulation 
was clearly observed in the CIP2A and RAS samples in the global-pairwise-normalized data (96% and 
93%, respectively). Based on these results, the global pairwise normalization conformed best to the orig-
inal hypothesis illustrated in Fig.�1a.

To challenge our observation, we further looked into the distributions of phosphopeptide fea-
ture abundance and fold change ratios. Regardless of the normalization, the fold change distribu-
tion in the OA samples was markedly wider than in the CIP2A or RAS samples (Fig.� 3a,c). In the 
global-pairwise-normalized data, this could be attributed to upregulation, o�en several fold, of a large 
number of low abundance features in the OA samples, compared to those in the control 1 samples 
(Supplementary �g. 4a). �e abundance distribution change in the CIP2A samples was subtler but a 
large number of phosphopeptide ions, mainly high abundance ones, were shi�ed towards the median 

Figure 3. Fold change distributions of phosphorylations a�er di�erent normalizations. (a) Fold changes 
for each phosphopeptide ion feature was calculated for the CIP2A, RAS, or OA samples compared to the 
control 1 samples (log-transformed). �e abundance of the features was normalized with global centering 
and quantile centering methods. Median and mean levels are marked with a solid and dashed line on 
the box plots, respectively, and whiskers represent 1.5 �   interquartile range. (b) Ratio of up- and down-
regulated phosphosites (di�erentially regulated phosphosites compared to the control 1 samples; t-test, 
p �   0.01) is shown for both normalization methods and non-normalized data. Abundances of the features 
with identical protein phosphorylations were summed up for calculating phosphosite abundance. �e 
centering normalizations resulted in similar ratios of up- and downregulated phophosites in contrast to 
the expected phosphoproteome changes (i.e. increase in protein phosphorylation a�er OA treatment and 
dephosphorylation a�er CIP2A or RAS depletion, refer to Fig.�1a). (c) Fold changes of phosphopeptide 
features and (d) ratio of up- and down-regulated phosphosites (t-test, p �   0.01) a�er pairwise 
normalizations. Global pairwise normalization of the data resulted in the best agreement with the expected 
global phosphoproteome changes (see Fig.�1a).
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(Supplementary �g. 4a). �ese changes resulted in reduced variability in the abundance distributions 
of phosphopeptide features in the CIP2A, RAS and OA samples than in the control 1 and 2 samples 
(Supplementary �g. 4b). Although similar changes in the abundance distributions could not be observed 
in the quantile-centering-normalized data (Supplementary �g. 4a), the fold change distribution in the 
OA samples still had a marked positive skew and the distinctly increased mean values compared to the 
median (Supplementary �g. 4c), supporting the observation that the upregulation of a signi�cant portion 
of the phosphorylations actually occurred in the OA samples.

���Ž�—�•�–�‡�”�‹�•�‰���ƒ�•�ƒ�Ž�›�•�‹�•���‘�ˆ���–�Š�‡���•�ƒ�•�’�Ž�‡�•���ƒ�ˆ�–�‡�”���†�‹�¡�‡�”�‡�•�–���•�‘�”�•�ƒ�Ž�‹�œ�ƒ�–�‹�‘�•�•�ä Even though the quantitative 
data normalized with the global pairwise method �ts the original hypothesis best, we wanted to further 
compare the normalization methods by performing a sample clustering on the data in order to study 
the ability of the normalization methods to distinguish between sample groups. We used a total of 16 
combinations of clustering strategies on the 5 versions of the normalized data. Representative cluster-
ing for global pairwise normalization is shown in Fig.� 4a and the concept of clustering performance 
evaluation in Fig.� 4b. Details are described in materials and methods section. Supplementary Table 7 
contains the area under the curve (AUC) values for the adjusted Rand indices from the unsupervised 

Figure 4. Hierarchical clustering of the samples a�er di�erent normalizations. (a) �e log-transformed, 
normalized phosphosite data was clustered using a variety of distance metrics and clustering strategies. 
Euclidean distance-based Ward’s minimum variance clustering for the global-pairwise-normalized data 
is shown here as an example. CIP2A and RAS formed a tight cluster that was clearly separated from OA, 
and also distinguished from the control sample cluster. (b) Various cuts on the clustering distance height 
were applied (horizontal lines 1, 2 or 3 in panel a) to produce subclusters of di�erent sizes. Here, clustering 
solutions with 2, 3 or 6 clusters are shown. (c) �e sample clusters at various height cuts were compared 
to the original sample groups using the adjusted Rand index computed for each of the 5 normalization 
methods, and AUC was used to compare between the methods. �e AUC values for di�erent clustering 
parameter combinations are shown in Supplementary Table 7. (d) PCA plots for the quantile-centering-
normalized and quantile-pairwise-normalized data. Variance among the OA samples led to sub-optimal 
grouping in the quantile centering normalization (le� panel).
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clustering, Out of the tested clustering strategies, the combinations of Euclidean distance or Pearson 
correlation with Ward clustering resulted in the best classi�cation accuracies. In these analyses, the 5 
sample groups were clearly distinguishable with most normalizations and clustering options, but the best 
performance was obtained with quantile pairwise normalization, followed closely by global centering, 
global pairwise, and casein normalizations (Fig.�4c). �e control samples 1 and 2 clustered close together 
as expected (Fig.�4a). �e CIP2A and RAS samples clustered as well (Fig.�4a), suggesting similarities in 
their phosphoproteomes.

�e relatively poor performance of the quantile centering normalization was partly attributed to the 
dispersion of the OA samples. Fig.�4d shows the principal component analysis (PCA) plots for the quan-
tile centering and the best performing quantile pairwise normalizations. �e relative variance of the three 
OA samples is much larger in the quantile-centering-normalized data, and additionally the control sam-
ples 1 and 2 were less distinguishable from the CIP2A/RAS samples than in the quantile pairwise PCA. 
�e clustering performance was further tested by excluding the OA samples (Supplementary Table 7),  
which improved the performance of the quantile centering normalization while keeping the order of 
the normalization methods the same. Overall, the sample groups were well separated with appropriate 
clustering parameters but the quantile centering normalization was found inferior to the other normal-
izations in distinguishing the sample groups.

���‡�•�–�‡�”�•�� �„�Ž�‘�–�–�‹�•�‰�� �˜�ƒ�Ž�‹�†�ƒ�–�‹�‘�•�� �‘�ˆ�� �“�—�ƒ�•�–�‹�–�ƒ�–�‹�˜�‡�� �”�‡�•�—�Ž�–�•�� �‘�„�–�ƒ�‹�•�‡�†�� �™�‹�–�Š�� �†�‹�¡�‡�”�‡�•�–�� �•�‘�”�•�ƒ�Ž�‹�œ�ƒ�–�‹�‘�•�•�ä  
Results above indicate that the newly developed pairwise normalization methods might be able to solve 
the perceived problems observed when using the centering normalization methods. To con�rm the 
improved performance of the methods, we validated the quantitative results using western blotting. �e 
following seven phosphorylation sites were monitored: ERK2 T185/Y187, GSK3�  S9, MYC S62, S6 S235/
S236, STAT3 S727, vimentin S56 and AKT S473. Six of these phosphorylation sites were also observed in 
the LC-MS/MS data and used for investigating the correlation between these two quanti�cation methods 
(Fig.�5). Representative western blots are shown in Fig.�5a and quantitations are shown in Supplementary 
Fig. 5 and Supplementary Table 8. E�cient downregulation of CIP2A and RAS were con�rmed, and 
importantly they did not regulate each other (Fig.�5a). ERK and AKT phosphorylations regulated by RAS 
(Fig.�1a) were also con�rmed. ERK2 T185/Y187 was downregulated by RAS depletion and upregulated 
by OA (Fig.�5a,b). AKT S473 phosphorylation was downregulated by depletion of CIP2A and RAS at a 
comparable level and upregulated by OA (Supplementary Fig. 5). �e phosphorylation changes observed 
in the western blot analysis are concordant with previous literature: Although participating in the acti-
vation of Raf-MEK-ERK pathway, PP2A inhibition has been associated with sustained and ampli�ed 
ERK activation47. PP2A directly dephosphorylates AKT48, and CIP2A has been shown to in�uence AKT 
phosphorylation49. Inactivating S9 phosphorylation of GSK3�  has been shown to be dephosphorylated 
by PP2A50. RAS stabilizes MYC via promoting S62 phosphorylation by ERK, and also via inactivating 
GSK3�  through PI3K/AKT pathway51. Also CIP2A promotes MYC stability by inhibiting the dephospho-
rylation of S6212. PP2A inhibits52, and RAS/ERK signaling promotes, the activity of p70 S6 kinase that is 
responsible for phosphorylating S6 S235/S23653. When the direction of phosphosite regulation (i.e. up or 
down) was compared, global pairwise normalization exhibited signi�cantly higher level of concordance 
with western blotting results than the other normalizations (Fig.�5b).

Based on the quantitative results, correlation coe�cients between the western blotting and LC-MS/
MS data were calculated (Fig.�5c and Supplementary Table 9). In support of their good performance in 
data normalization observed by the other approaches, both of the pairwise normalization methods had 
the highest Pearson’s correlation with western blot quanti�cation (Supplementary Table 9). However, the 
OA treatment induced signi�cant changes at some phosphorylation sites, thus skewing the distribution 
of quanti�ed intensities despite the log-transformation of the data. To accommodate for this, we repeated 
the correlation analyses either by excluding the OA samples (Fig.�5c) or by using the nonparametric cor-
relation measures (Fig.�5d). Systematically, global pairwise normalization showed the highest correlations 
with the western blotting data (Fig.�5c,d). �us, we conclude that out of the all normalization methods 
tested in this study, the global pairwise normalization has the superior capacity as an abundance nor-
malization method for analysis of label-free quantitative phosphoproteomics data in conditions in which 
global changes in protein phosphorylation are expected.

Pathway analysis using the appropriate normalization methods.  Based on the above results, 
we selected the global pairwise normalization as the appropriate normalization method for label-free 
quantitative phosphoproteomics. To gain an understanding of the biological processes regulated by 
CIP2A, RAS, and OA phosphoproteomes, the global-pairwise-normalized data was next subjected to 
Ingenuity Pathway Analysis (Qiagen). Interestingly, the results from this analysis supported the novel 
�ndings (Fig.�4a) that the phosphoproteomes regulated by CIP2A and RAS are involved in highly similar 
biological functions, including regulation of cell death, survival, and proliferation (Fig.�6a). In contrast, 
the OA treatment had the opposite e�ect on several of these functional categories. However, when the 
non-enriched digest data with global centering normalization was analyzed by pathway analysis, this 
revealed that at the level of protein expression, CIP2A and RAS have more diverse e�ects (Fig.�6a), partly 
due to RAS depletion regulating the expression of a larger number of proteins than CIP2A depletion 
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or OA treatment (Supplementary Fig. 6). Many proteins regulated uniquely by RAS were associated to 
carbohydrate metabolism and other metabolic pathways (Supplementary Fig. 7).

To identify the key regulators of the common functions of CIP2A and RAS, we performed Ingenuity 
upstream regulator analysis of the CIP2A-RAS shared phosphoproteome regulation and, strikingly, the 
suggested upstream kinases were almost solely members of the RAS downstream pathways MAPK/
ERK, PI3K/AKT, and MAPK/JNK2, as well as tyrosine kinases functioning upstream of RAS (Fig.�6b)54. 
However, these Ingenuity analyses are designed for expression level data, which raises concerns about its 
applicability to phosphorylation data. �erefore, we also monitored the phosphorylation changes spe-
ci�cally at ERK and AKT targeted sites. �e sites predicted by two tools, NetworKIN55 and GPS56, as 
well as the sites curated from literature into PhosphoSitePlus database57, were taken into consideration 
(Supplementary Table 3). �e threshold for prediction scores was determined by comparing the pre-
dictions to the known target proteins curated from literature (Supplementary Fig. 8). �is resulted in 
53/150/18 AKT target sites and 60/251/19 ERK targets sites for NetworKIN, GPS, and PhosphositePlus, 
respectively. In the global-pairwise-normalized data, the average phosphorylation levels at the AKT and 

Figure 5. Western blot validation of phosphorylations (a) Western blotting was performed on the 
cell lysates used for LC-MS/MS analysis. Representative western blots for each antibody are shown. 
(See Supplementary Fig. 5 for di�erent exposure times). (b) Quantitative results of the phosphorylation 
regulations obtained by western blotting were compared with LC-MS/MS results with di�erent 
normalizations. Fold-changes (average of triplicates) compared to the control 1 samples are shown. �e 
directions of phosphosite regulations (i.e. up or down) in the CIP2A, RAS, and OA samples (individual 
replicates) were also compared to the average of control 1 samples. �e agreement with western blot was 
compared between di�erent normalizations using Fisher’s exact test. (c) Average correlation coe�cients for 
phosphosites were calculated between the western blotting and LC-MS/MS results on log-transformed data. 
As the OA samples signi�cantly skewed the data dominating the Pearson’s correlation coe�cients, they were 
excluded from the calculations. Global pairwise normalization led to the highest correlation. (d) Spearman’s 
�  and Kendall’s �  rank correlation coe�cients were also calculated for phosphosites in all samples (i.e. the 
OA samples included). WB: western blotting, GP: global pairwise, QC: quantile centering, QP: quantile 
pairwise, GC: global centering, NN: non-normalized, and Ca: casein.
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ERK sites were downregulated by CIP2A and RAS depletion (AKT: 1.2–1.6 fold, ERK: 1.7–2.0 fold) and 
upregulated by OA (AKT 1.3–4.6 fold, ERK 1.4 fold except for GPS)(Fig.�6c). �is is again consistent 
with the expected results illustrated in Fig.�1a. �e same trend was not observed with the global centering 
normalization (Fig.�6c). Interestingly, the phosphorylation levels at the ERK and AKT target sites in the 
global-pairwise-normalized data correlated between the CIP2A and RAS samples (Supplementary Fig. 9 
and Supplementary Table 10) suggesting that the same AKT and ERK targets are under the regulation 
of CIP2A and RAS. �ese results support the idea that applying di�erent normalizations can leads to 
distinct biological conclusions in the phosphoproteomics studies.

CIP2A and KRAS regulate cancer cell growth and determine patient survival synergistically.  
To assess whether the overlapping pathway regulation by CIP2A and RAS is biologically meaningful, we 
analyzed �e Cancer Genome Atlas (TCGA) pan-cancer data for potential interactions between CIP2A 
expression and RAS isoform expression/mutations on patient survival analysis. �e survival analysis 
was limited to 10-year follow-up time. High expression of CIP2A, NRAS, and to lesser extent KRAS 
was associated with poor prognosis in TCGA pan-cancer data set (Fig.�7a). Furthermore, we observed 
a synergistic survival e�ect between CIP2A and KRAS or NRAS expression. �e combination of high 
CIP2A and high K- or N-RAS expression was associated with the worst survival and the combination of 
low CIP2A and low K- or N-RAS expression with the best survival (Fig.�7a). We did not see clear synergy 

Figure 6. Pathway analysis for protein and phosphorylation regulations. (a) �e protein and phosphosite 
fold changes (compared to control 1) were calculated from global-centering-normalized non-enriched data 
and global-pairwise-normalized TiO2 data, respectively. In Ingenuity Pathway Analysis, core analysis was 
performed for di�erentially regulated proteins and phosphosites (t-test, p �   0.05), followed by comparison 
analysis between the CIP2A, RAS, and OA core analyses. �e top hits from the category “Diseases and Bio 
functions” are shown. (b) �e phosphosite data was �ltered for those regulated by both CIP2A and RAS 
depletions (t-test, p �   0.05), and the core analysis was performed. Upstream regulator analysis restricted to 
kinases is shown. (c) AKT and ERK target sites were predicted by NetworKIN and GPS tools or retrieved 
from the PhosphositePlus database (see Supplementary Fig. 8). �e average fold changes for AKT and ERK 
target sites are presented for the global-centering (le�) and global-pairwise (right) normalized data. �e 
expected regulations of AKT and ERK mediated phosphorylations were clearly observed by global pairwise 
normalization. �e error bars represent standard error of the mean (SEM). �e asterisks represent level of 
statistical signi�cance for up-/down-regulations (one sample t-test, *p �   0.05, **p �   0.01, ***p �   0.001).
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between CIP2A and HRAS expression. Although overexpression of RAS proteins has been shown to 
contribute to cancer58,59, the oncogenic RAS signaling is commonly activated by mutation. �erefore, 
we also analyzed the relationship between CIP2A expression and RAS mutations. Mutational data and 
gene expression data (pan-cancer normalized) are available for a limited number of patients only; nev-
ertheless, KRAS activating mutations exhibited similar synergistic relationship with CIP2A expression 
levels as did high KRAS expression (Fig.�7a). �e poor survival of KRAS mutants is partly explained by 
enrichment of lung adenocarcinoma in these groups. However, the cancer type does not account for the 
survival e�ect of CIP2A. In contrast to the observed survival, the weighted average of expected 5 year 
survival rate was higher for CIP2A high/KRAS mutant than for CIP2A low/KRAS mutant patient group 
(Supplementary Table 11), suggesting that high CIP2A expression is an indicator of poor prognosis in 
KRAS mutant cancers. Taken together, the combination of low CIP2A expression with low expression or 
wild-type KRAS resulted in a survival advantage in the TCGA data.

In order to examine the potential causal relationship we performed a series of colony formation 
experiments on HeLa as well as CW-2, HCA7, and NCI-H747 colorectal cancer cell lines. �ree di�erent 
siRNAs were used for CIP2A with no apparent di�erence in colony formation e�ciency. On average, 
depletion of both CIP2A and KRAS impaired the colony formation more e�ciently than depletion of 
either alone (Fig.�7b). �is synergistic relationship between CIP2A and KRAS depletion was most evi-
dent in HeLa and CW-2 cells (Fig.� 7c). NCI-H747 cells, which harbor an activating KRAS mutation, 
were most a�ected by KRAS depletion and concomitant CIP2A knockdown did not reduce the colony 

Figure 7. CIP2A and KRAS show synergy in TCGA data and in colony formation assay. (a) �e 
Kaplan-Meier plot of TCGA pan-cancer survival pro�les. �e patients were split into groups by pan-cancer 
normalized gene-expression data for KRAS, NRAS and CIP2A (downregulated �   0, upregulated �   0), and 
by KRAS mutational status. Combination of low CIP2A expression with non-mutated or low expression 
of RAS was associated with best survival. Log-rank test was used for comparing the survival distributions 
between the group with the best survival and the other groups. (b) Colony formation assay following CIP2A 
and KRAS depletions as well as CIP2A �   KRAS co-depletion. Assay was performed 3 times using di�erent 
siRNAs for CIP2A in HeLa, CW-2, HCA7, and NCI H747 cell lines. �e average result is shown. See also 
Supplementary Fig. 10 for the triple-RAS depletion. (c) Averages of 3 colony formation experiments for 
each cell line. �e error bars represent SEM. �e asterisks represent level of statistical signi�cance (t-test, 
*p �   0.0162, **p �   0.0012).
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formation much further (Fig.�7c). Interestingly, when all three forms of RAS were depleted, the e�ect 
on colony formation was comparable to the combination of CIP2A and KRAS (Supplementary Fig. 10). 
�e triple RAS depletion also did not seem to synergize with CIP2A depletion (Supplementary Fig. 10). 
�ese �ndings suggest that either the combination of CIP2A/KRAS or HRAS/KRAS/NRAS depletion 
is su�cient to saturate the e�ect on colony formation and support the view that CIP2A and the RAS 
proteins regulate functionally overlapping pathways.

Discussion
Label-free quanti�cation methods provide an attractive option for studying cellular protein phosphoryl-
ation dynamics due to the ability to analyze large sample panels and lack of demanding labeling pro-
cedures. Label-free quanti�cation of phosphoproteome is typically based on centering normalization of 
the phosphopeptide abundance; however, whether the standard normalization methods achieve su�cient 
accuracy has not been examined systematically in the previous literature. In this study we demonstrate 
that a large uni-directional change in the phosphopeptide abundance is problematic for global median 
centering and quantile-based normalizations. As exempli�ed in Figs�3 and 6c, these centering methods 
signi�cantly alter the proportion of regulated phosphorylations and may therefore mislead the biological 
conclusions. Furthermore, quantile centering normalization is less e�cient at distinguishing the sample 
groups despite the generally low variation between triplicates (Fig.�4). We suggest that these normaliza-
tion methods should be used only in the absence of such unidirectional global phosphorylation changes. 
While we acknowledge the possibility that, contrary to our current results, spiking known amount of 
standards should help to counter the shortcomings of centering normalizations, we have found it to be 
too reliant on the accurate measurement of protein concentration in the cell lysates. �is problem of 
accurate protein quanti�cation is emphasized when the samples to be compared are heterogeneous, e.g. 
in clinical studies.

We have developed a novel normalization strategy, named pairwise normalization, for label-free 
quantitative phosphoproteomics. Its superior performance was validated by statistical methods, western 
blotting analysis, and bioinformatics, on the dataset obtained in this study. Pairwise normalization is 
based on monitoring the ratio of phosphopeptide abundances in LC-MS/MS data obtained before and 
a�er phosphopeptide enrichment (Fig.� 2b). �is ratio (pairwise normalization factor) is not a�ected 
by di�erential regulation of phosphorylations, rather it re�ects variations introduced during the TiO2 
enrichment step. Out of the two pairwise normalization methods, the one based on global centering 
normalization of the non-enriched digest data performed better than that based on quantile centering 
normalization (Fig.�5b–d). A potential explanation for the lower performance is that forcing the quantile 
centering normalization on the abundance distribution may introduce signi�cant errors in the quanti�-
cation of the phosphopeptides that are typically low abundance features in the non-enriched digest data.

In addition to di�erences observed between the normalization methods in their capacity to distin-
guish the sample groups, we demonstrate that the choice of normalization method in�uences the down-
stream analysis of the normalized data in terms of pathway activity predictions. In fact, the expected 
regulation of ERK and AKT pathways by perturbations in RAS and PP2A signaling3,47–49,60 were only 
observed in the global-pairwise-normalized data. Furthermore, we could demonstrate that in addition to 
being able to measure relevant pathway activities, the developed pairwise normalization method, when 
combined with pathway analysis algorithms, was able to recapitulate previously demonstrated biological 
synergism between RAS signaling and PP2A inhibition12,14,17,18,61.

Although OA was used as a potent PP2A inhibitor in this study, the OA treatment also inhibits PP4/
PP6, which may have contributed to the observed results. However, many phosphosites upregulated by 
OA treatment, including AKT and ERK targets, were also dephosphorylated by CIP2A, suggesting PP2A 
involvement. �e contribution of PP1/PP3 was probably minimal, e.g. Naetar et al. have treated cells 
with up to 125nM concentrations of OA without noticeable e�ect on the PP1 activity in subsequently 
puri�ed cell lysates18.

Importantly, despite of wealth of functional data implicating importance of CIP2A-mediated PP2A 
inhibition in most of the human cancer types12,13,62–65, the phosphoprotein targets regulated by CIP2A 
have not been previously systematically studied. To our knowledge, this is the �rst systems biology anal-
ysis of CIP2A regulated phosphoproteome, and the integrated results revealed an extensive overlap with 
RAS regulated phosphoproteome. Additionally, it was revealed that CIP2A and KRAS exhibit a synergis-
tic survival e�ect in TCGA data and their depletion resulted in synergistic reduction in colony formation. 
�ese �ndings suggest that PP2A inhibition and RAS cooperate in cancer progression beyond the initial 
transformation steps14. In RAS mediated transformation of immortalized cells the contribution of CIP2A 
has been attributed to MYC stabilization12,19; however, our results imply that the synergistic e�ects of 
CIP2A and RAS may be a consequence of a broader range of the shared signaling events, including ERK 
and AKT pathways.

Previous systems biology studies of RAS mediated transformation have reported prominent changes 
in mRNA expression66 and protein expression67–69 of genes associated to glycolysis and reprogramming 
of metabolic pathways activity. Correspondingly, in this study the Ingenuity pathway analysis of the 
RAS-mediated protein expression changes suggested extensive involvement in the metabolic pathways 
with emphasis on carbohydrate metabolism. Interestingly, analysis of phosphorylation resulted in the 
identi�cation of a very divergent set of downstream e�ectors leading to distinctly di�erent biological 
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conclusions. Previous phosphoproteomics study by Sudhir et al. (2011) focusing on oncogenic KRAS 
transformed human bronchial epithelial cells identi�ed MAPK signaling as a major component in the 
oncogenic KRAS downstream e�ectors40. Elevation of MAPK signaling was also observed in KRAS 
mutant lung adenocarcinoma cell lines. In contrast, NRAS mutant large cell carcinoma cell line exhib-
ited lower level of MAPK signaling and prominent activity of basophilic kinases including AKT40. In 
this study, we observed downregulation of both MAPK and AKT signaling following H-, K-, and N-RAS 
triple knockdown.

In summary, we have developed a novel normalization strategy, pairwise normalization, for label-free 
quantitative phosphoproteomics. Using RAS and CIP2A depletion as well as OA treatment as model 
perturbations we demonstrate that pairwise normalization improves the quantitative accuracy over the 
conventional normalization methods tested, enabling the measurement of subtle kinase activity changes 
despite the global shi�s introduced in phosphopeptide abundance distributions. As a potential applica-
tion, ability to robustly measure kinase activity changes in clinical samples may have prognostic value 
and therapeutic implications e.g. in monitoring kinase inhibitor treatment e�cacy and development of 
resistance2. Moreover, the commonalities in CIP2A and RAS downstream e�ectors, as well as their syn-
ergistic e�ect on cancer cell growth, strongly suggest that studying the factors regulating PP2A activity 
will further the understanding of the responses to therapy targeting shared downstream pathways of 
RAS and PP2A.

Materials and Methods
Cell culture.  HeLa, NCI-H747, and HCA7 were obtained from ATCC (USA) and CW-2 cells from 
RIKEN bioresource center (Japan). DMEM was used for HeLa and HCA7. RPMI-1640 was used for 
NCI-H747 and CW-2. All media contained 10% FBS, 2 mM glutamine, 50 I.U./ml penicillin, and 50 � g/
ml streptomycin. �e cell lines were tested for mycoplasma contamination.

Transfection.  1.1 million cells were seeded on 10 cm dishes 24 hours prior to transfection. Transfection 
reactions were performed in 7.5 ml volume using 1.88 nmol of siRNA and 22.5 � l of Oligofectamine (Life 
Technologies) according to manufacturer’s instructions. RAS knockdown was performed with a cocktail 
siRNA targeting H-, K-, and N-RAS. �e total amount of siRNA was the same (250nM) for all transfec-
tions as this did not diminish the e�ciency of the triple-RAS knockdown (Supplementary Fig. 11). �e 
siRNA sequences are listed in Supplementary Table 12. OA (Sigma-Aldrich) was added to control siRNA 
transfected cells at a concentration of 25nM 48 hours a�er transfection. Knockdowns were scaled down 
by a factor of 7.5 for 6-well plates.

Cell lysates.  Cells were collected by scraping in ice cold PBS 72 hours a�er transfection. Snap frozen 
cell pellets were lysed in a bu�er containing 8 M urea, 50 mM Tris pH 7.5, 2 mM EGTA, 5 mM EDTA, 
30 mM sodium �uoride, 60 mM B-glycerophosphate, 20 mM sodium pyrophosphate, 1 mM sodium 
orthovanadate, Roche complete protease inhibitor cocktail tablet, and 5 � M pepstatin A. Samples were 
sonicated with Bioruptor sonicator (Diagenode) at high intensity with 15 seconds pulses and intervals for 
5 minutes and centrifuged at 100,000 g for 35 minutes. Supernatant was collected and protein concentra-
tion was determined by measuring the absorbance at 280 nm (10.0–17.6 mg/ml). Samples were kept at 4 
degrees or on ice at all times.

Digestion and TiO2 phosphopeptide enrichment.  �e lysates (1 mg protein) were diluted to 200 � l 
with a bu�er containing 8 M urea and 50 mM Tris-HCl pH 8.5, a�er spiking in 10 � l of 1 � g/� l bovine 
�  -casein (Sigma-Aldrich). Proteins were reduced for 1 h at 37 °C, alkylated for 30 min at R.T. in the 
dark, and quenched, by adding 200 mM dithiothreitol (DTT), 1 M iodoacetamide, and then 1 M DTT, 
respectively (each 10 � l, dissolved in the Tris/urea bu�er). �e proteins were digested for 18 h at 37 °C 
with 690 � l of 50 mM Tris-HCl pH 8.5 containing 20 � g of sequencing grade modi�ed trypsin (Promega). 
A�er acidi�cation with 80 � l of 10% TFA (total 1 ml), the samples were stored at � 20 °C overnight or 
longer. Aliquots (10 � l) of the digests were desalted with a C18 microcolumn as described previously26,70 
with a slight modi�cation. Brie�y, three pieces of Empore C18 disk (3M) were packed into a 200-� l 
pipette tip, followed by pretreatment with acetonitrile (ACN) and 0.1% formic acid (FA), sample loading, 
3 times washing with 0.1% FA, and then elution with 0.1% FA, 80% ACN (each 50 � l loaded by gentle air 
pressure). �e eluents were evaporated to dryness. For LC-MS/MS analysis, the samples (non-enriched 
digests) were reconstituted in 50 � l of 0.1% FA, of which 6 � l was transferred into an LC sample vial for 
5 � l injection.

�e remaining digests (990 � l) were desalted as well, with some modi�cations. Brie�y, an Empore 
C18-SD 10mm/6mL cartridge (3M) was pretreated with ACN and 0.1% TFA, followed by sample loading 
(repeated once again), 3 times washing with 0.1% TFA, and then elution with 6% TFA, 80% ACN (each 
1 ml loaded by gentle air pressure). Phosphopeptides were enriched by TiO2 a�nity chromatography as 
described by Imanishi et al.26 with some modi�cations: 100 � l of 50 mg/ml Sachtopore-NP TiO2 beads 
(20 � m, 300 Å; ZirChrom) prewashed with 10% TFA and ACN was packed into a 200-� l tip (with three 
pieces of GF/C disk (Whatman) as a column frit), followed by pretreatment with the TFA/ACN solu-
tion, loading whole sample, washing with TFA/ACN twice and 0.1% TFA twice, and then elution with 
5% NH4OH (each 200 � l loaded by gentle air pressure). Immediately, the eluents were acidi�ed with 
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400 � l of 10% FA, desalted with the C18 microcolumn, and then evaporated (the immediate desalting 
prevents induced methionine oxidation26). For LC-MS/MS analysis, the samples (TiO2-enriched phos-
phopeptides) were reconstituted in 11 � l of 0.1% FA, of which 5.5 � l was transferred into an LC sample 
vial for 5 � l injection.

���ƒ�•�•�� �•�’�‡�…�–�”�‘�•�‡�–�”�›�á�� �‹�†�‡�•�–�‹�¤�…�ƒ�–�‹�‘�•�á�� �ƒ�•�†�� �Ž�‘�…�ƒ�Ž�‹�œ�ƒ�–�‹�‘�•�ä LC-MS/MS analysis was performed using 
an EASY-nLC 1000 nano�ow LC instrument coupled to a Q Exactive quadrupole-orbitrap mass spec-
trometer (�ermo Fisher Scienti�c). Data of the TiO2-enriched and non-enriched samples were searched 
with Mascot (v2.4.1) via Proteome Discoverer (v1.4.0.288, �ermo Fisher Scienti�c), against a concate-
nated forward-reverse SwissProt database (v2012_04, Homo sapiens) supplemented with common con-
taminants (total 40,678 protein sequences). For phosphorylation site localization, phosphoRS (v3.0, the 
neutral loss option disabled) was enabled. Also, the data of the TiO2-enriched samples were searched 
against an in-house made spectral library of simulated phosphopeptides (14,761 spectra for 3,208 peptide 
sequences) with SpectraST via Proteome Discoverer (SimSpectraST searching46). �e two search results 
were merged into an identi�cation result. More details are described in Supplementary methods.

���ƒ�„�‡�Ž�æ�ˆ�”�‡�‡���“�—�ƒ�•�–�‹�¤�…�ƒ�–�‹�‘�•�ä Label-free quanti�cation was performed using Progenesis LC-MS (v4.1). 
�e TiO 2-enriched and non-enriched samples were processed separately. All the chromatographic data 
were aligned automatically and further adjusted manually. Peptide ion features were detected in the auto-
matic mode with the highest sensitivity. �e features were assigned by importing the xlsx identi�cation 
�le, followed by applying a 5-ppm mass tolerance �lter. For the non-enriched samples, all the features 
assigned to human peptides were used for global median centering of abundance ratios (global center-
ing normalization). Protein abundance was quanti�ed based on the sum of ion abundances of peptides 
unique to a protein. For the TiO2-enriched samples, in addition to the global centering normalization 
based on all the human phosphopeptide features, normalization to the median ratio of casein phospho-
peptide features was performed. Quantile-based normalization was performed on the abundances of 
human peptide features (quantile centering normalization) using R-package preprocessCore (v1.26.1). 
A�er annotating phosphorylation sites on proteins, abundance of phosphosites (or their combinations) 
was quanti�ed based on the sum of ion abundances of phosphopeptide variants (i.e. di�erent charge, 
missed cleavage, oxidation, and/or acetylation states). When a phosphosite was assigned to both high 
and low localization con�dence features, only the former was taken into account.

Pairwise normalization factors.  Phosphopeptides shared by both the TiO2-enriched digests and 
non-enriched samples were used for the pairwise normalization (refer to Fig.� 2b). A�er the global 
centering normalization, abundances of phosphopeptide ion features with the identical sequences and 
modi�cations were summed up, separately in the TiO2 and digest datasets. Methionine-containing phos-
phopeptides were excluded due to the possible oxidation during the sample preparation, resulting in 
52 unique phosphopeptides quanti�ed in both the samples. An abundance ratio (digest/TiO2) was cal-
culated for each phosphopeptide, followed by normalization to one of the 15 biological samples. If the 
variation in the normalized abundance ratios between the biological samples exceeded a threshold value 
of 16.4 (determined by box plot analysis, see Supplementary Fig. 3), the phosphopeptide was removed 
as an outlier. �e median of the normalized abundance ratios was used as the pairwise normalization 
factor, by which all the phosphopeptide abundances in the TiO2 dataset were multiplied. �e factor was 
calculated based on the quantile-centering-normalized non-enriched digest data as well.

Western blotting.  Antibodies for p-S6 (2211S), p-STAT3 (9134L), p-ERK (4370), and p-GSK3�  
(9336) were purchased from Cell Signaling, the p-MYC antibody (ab78318) from Abcam, the GAPDH 
antibody (5G4–6C5) from Hytest, and � -actin antibody (A5316) from Sigma-Aldrich. �e antibody for 
p-vimentin was a generous gi� from professor John Eriksson (Åbo Akademi University, Turku, Finland). 
Western blot band intensities were quanti�ed with ChemiDoc MP imaging system and Image Lab 4.0.1 
so�ware (Bio-Rad). Multiple exposures were used for quantitation when necessary. �e band intensities 
were normalized between exposures to the average of bands quantitated from both exposures. We used 
GAPDH and ACTB as loading controls for western blotting. However, the abundance ratio of these two 
commonly used loading control proteins varied between the treatments used in this study (Supplementary 
Fig. 12), indicating the variation in their abundance. �erefore, GAPDH and ACTB abundances were 
adjusted to the LC-MS/MS data that were used to determine the respective pairwise normalization 
factors, which improved the average correlation between western blot and the pairwise-normalized data 
(Supplementary Table 9).

Colony formation assay.  For colony formation assays, 2000 HeLa, HCA7 or NCI-H747 cells and 
4000 CW-2 cells were seeded on 6-well plate wells 72h a�er transfection. HCA7 colonies were grown for 
8 days, HeLa colonies for 10 days, and NCI-H747 and CW-2 for 11 days. Cells were �xed with ice cold 
methanol and stained with 0.1% crystal violet in 10% ethanol. A�er washing, colonies were scanned at 
2400 dpi and colony area and intensity were quanti�ed with ImageJ so�ware using ColonyArea plugin71.
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Bioinformatics.  Ingenuity Pathway Analysis was performed on the 2014 spring release version 
(QIAGEN). �e kinase target predictions were performed using NetworKIN 3.055 and GPS 2.056 so�ware. 
�e target site data in the PhosphoSitePlus database57 was downloaded in May 2014. TCGA PANCAN 
gene expression and mutation data sets were obtained via UCSC Cancer Genomics Browser72,73 in June 
2014. �e 5 year survival rates for di�erent cancer types were obtained from the SEER data collected 
during the years 1975–201174. Hierarchical clustering is described in Supplementary methods.

Statistics.  All t-tests were performed as two-tailed and assuming equal variance. Levene’s test was 
used for comparing the standard deviations of peptide intensity distributions (Supplementary �g. 4b) 
and con�rming the equality of variance in colony formation assay results (Fig.� 7b). Survival distribu-
tions were compared using the Log-rank test. Shapiro-Wilk test was used for assessing the normality of 
western blot correlation data (Supplementary table 8) and colony formation assay data (Fig.�7b). Due to 
the large sample size, the approximate normality of the phosphopeptide feature abundance distribution 
was visually assayed (Supplementary �g. 4a). Statistical calculations were performed with JMP 10.0.0 
so�ware (SAS Institue inc.).

Data deposition.  Raw mass spectrometry data, protein sequence databases, spectral libraries, search 
results, and a peptide/protein identi�cation list have been deposited to the ProteomeXchange Consortium 
(http://proteomecentral.proteomexchange.org)75 via the PRIDE partner repository with the dataset iden-
ti�er PXD001374 (to access the data for the review purpose: http://tinyurl.com/k47j47t, reviewer account 
username: reviewer90019@ebi.ac.uk, password: qmEA0bnn). For viewing annotated MS/MS spectra in 
the Proteome Discoverer results (msf �les), a free viewer is available from the �ermo Omics So�ware 
Portal (http://portal.thermo-brims.com).
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