Search for new light gauge bosons in Higgs boson decays to four-lepton final states in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector at the LHC

DOI
10.1103/PhysRevD.92.092001

Publication date
2015

Document Version
Final published version

Published in
Physical Review D. Particles and Fields

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
I. INTRODUCTION

Hidden sector or dark sector states appear in many extensions to the Standard Model (SM) [1–10], to provide a candidate for the dark matter in the Universe [11] or to explain astrophysical observations of positron excesses [12–14]. A hidden or dark sector can be introduced with an additional $U(1)_{d}$ dark gauge symmetry [5–10].

In this paper, we present model-independent searches for dark sector states. We then interpret the results in benchmark models where the dark gauge symmetry is mediated by a dark vector boson Z_{d}. The dark sector could couple to the SM through kinetic mixing with the hypercharge gauge boson [15–17]. In this hypercharge portal scenario, the kinetic mixing parameter ϵ controls the coupling strength of the dark vector boson and SM particles. If, in addition, the $U(1)_{d}$ symmetry is broken by the introduction of a dark Higgs boson, then there could also be a mixing between the SM Higgs boson and the dark sector Higgs boson [5–10]. In this scenario, the Higgs portal coupling κ controls the strength of the Higgs coupling to dark vector bosons. The observed Higgs boson would then be the lighter partner of the new Higgs doublet, and could also decay via the dark sector. There is an additional Higgs portal scenario where there could be a mass-mixing between the SM Z boson and Z_{d} [7,8]. In this scenario, the dark vector boson Z_{d} may couple to the SM Z boson with a coupling proportional to the mass mixing parameter δ.

The presence of the dark sector could be inferred either from deviations from the SM-predicted rates of Drell-Yan (DY) events or from Higgs boson decays through exotic intermediate states. Model-independent upper bounds, from electroweak constraints, on the kinetic mixing parameter of $\epsilon \lesssim 0.03$ are reported in Refs. [5,18,19] for dark vector boson masses between 1 and 200 GeV. Upper bounds on the kinetic mixing parameter based on searches for dilepton resonances, $pp \rightarrow Z_{d} \rightarrow \ell\ell'$, below the Z-boson mass are found to be in the range of 0.005–0.020 for dark vector boson masses between 20 and 80 GeV [20].

The discovery of the Higgs boson [21–23] during Run I of the Large Hadron Collider (LHC) [24,25] opens a new and rich experimental program that includes the search for exotic decays $H \rightarrow ZZ_{d} \rightarrow 4\ell\ell'$ and $H \rightarrow Z_{d}Z_{d} \rightarrow 4\ell\ell'$. This scenario is not entirely excluded by electroweak constraints [5–10,18,20]. The $H \rightarrow ZZ_{d} \rightarrow 4\ell\ell'$ process probes the parameter space of ϵ and $m_{Z_{d}}$, or δ and $m_{Z_{d}}$, where $m_{Z_{d}}$ is the mass of the dark vector boson, and the $H \rightarrow Z_{d}Z_{d} \rightarrow 4\ell\ell'$ process covers the parameter space of κ and $m_{Z_{d}}$ [5,6]. DY production, $pp \rightarrow Z_{d} \rightarrow \ell\ell'$, offers the most promising discovery potential for dark vector bosons in the event of no mixing between the dark Higgs boson and the SM Higgs boson. The $H \rightarrow ZZ_{d} \rightarrow 4\ell\ell'$ process offers a discovery potential complementary to the DY process for $m_{Z_{d}} < m_{Z}$ [5,20]. Both of these would be needed to understand the properties

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
of the dark vector boson [5]. If the dark Higgs boson mixes with the SM Higgs boson, the \(H \rightarrow Z_dZ_d \rightarrow 4\ell \) process would be important, probing the dark sector through the Higgs portal coupling [5,6].

This paper presents a search for Higgs bosons decaying to four leptons via one or two \(Z_d \) bosons using \(p p \) collision data at \(\sqrt{s} = 8 \) TeV collected at the CERN LHC with the ATLAS experiment. The search uses a data set corresponding to an integrated luminosity of 20.7 fb\(^{-1}\) with an uncertainty of 3.6\% for \(H \rightarrow ZZ_d \rightarrow 4\ell \) based on the luminosity calibration used in Refs. [26,27], and 20.3 fb\(^{-1}\) with an uncertainty of 2.8\% for \(H \rightarrow Z_dZ_d \rightarrow 4\ell \) based on a more recent calibration [28]. Same-flavor decays of the \(Z \) and \(Z_d \) bosons to electron and muon pairs are considered, giving the 4e, 2e2\(\mu \), and 4\(\mu \) final states. Final states including \(\tau \) leptons are not considered in the \(H \rightarrow ZZ_d \rightarrow 4\ell \) and \(H \rightarrow Z_dZ_d \rightarrow 4\ell \) decays. In the absence of a significant signal, upper bounds are set on the relative branching ratios \(\mathrm{BR}(H \rightarrow ZZ_d \rightarrow 4\ell)/\mathrm{BR}(H \rightarrow 4\ell) \) and \(\mathrm{BR}(H \rightarrow Z_dZ_d \rightarrow 4\ell)/\mathrm{BR}(H \rightarrow ZZ^* \rightarrow 4\ell) \) as functions of the mass of the dark vector boson \(m_{Z_d} \). The branching ratio limits are used to set upper bounds on the kinetic mixing, mass mixing, and Higgs boson mixing parameters [5,6]. The search is restricted to the mass range where the \(Z_d \) from the decay of the Higgs boson is on-shell, i.e., 15 GeV < \(m_{Z_d} < m_H/2 \), where \(m_H = 125 \) GeV. Dark vector boson masses below 15 GeV are not considered in the present search. Although the low-mass region is theoretically well motivated [7,8], the high \(p_T \) of the \(Z_d \) boson relative to its mass leads to signatures that are better studied in dedicated searches [29].

The paper is organized as follows. The ATLAS detector is briefly described in Sec. II. The signal and background modeling is summarized in Sec. III. The data set, triggers, and event reconstruction are presented in Sec. IV. Detailed descriptions of the searches are given in Secs. V and VI. Finally, the concluding remarks are presented in Sec. VII.

II. EXPERIMENTAL SETUP

The ATLAS detector [30] covers almost the whole solid angle around the collision point with layers of tracking detectors, calorimeters and muon chambers. The ATLAS inner detector (ID) has full coverage\(^1\) in the azimuthal angle \(\phi \) and covers the pseudorapidity range \(|\eta| < 2.5\). It consists of a silicon pixel detector, a silicon microstrip detector, and a straw-tube tracker that also measures transition radiation for particle identification, all immersed in a 2 T axial magnetic field produced by a superconducting solenoid.

High-granularity liquid-argon (LAr) electromagnetic sampling calorimeters, with excellent energy and position resolution, cover the pseudorapidity range \(|\eta| < 3.2\). The hadronic calorimeter in the range \(|\eta| < 1.7\) is provided by a scintillator-tile calorimeter, consisting of a large barrel and two smaller extended barrel cylinders, one on either side of the central barrel. The LAr endcap (1.5 < \(|\eta| < 3.2\)) and forward sampling calorimeters (3.1 < \(|\eta| < 4.9\)) provide electromagnetic and hadronic energy measurements.

The muon spectrometer (MS) measures the deflection of muon trajectories with \(|\eta| < 2.7\) in a toroidal magnetic field. Over most of the \(\eta \)-range, precision measurement of the track coordinates in the principal bending direction of the magnetic field is provided by monitored drift tubes. Cathode strip chambers are used in the innermost layer for 2.0 < \(|\eta| < 2.7\). The muon spectrometer is also instrumented with dedicated trigger chambers, resistive-plate chambers in the barrel and thin-gap chambers in the end-cap, covering \(|\eta| < 2.4\).

The data are collected using an online three-level trigger system [31] that selects events of interest and reduces the event rate from several MHz to about 400 Hz for recording and offline processing.

III. MONTE CARLO SIMULATION

Samples of Higgs boson production in the gluon fusion (ggF) mode, with \(H \rightarrow ZZ_d \rightarrow 4\ell \) and \(H \rightarrow Z_dZ_d \rightarrow 4\ell \), are generated for \(m_H = 125 \) GeV and 15 < \(m_{Z'} < 60 \) GeV (in 5 GeV steps) in MadGraph5 [32] with CTEQ6L1 [33] parton distribution functions (PDF) using the hidden Abelian Higgs model (HAHM) as a benchmark signal model [5,9,10]. Pythia8 [34,35] and Photos [36–38] are used to take into account parton showering, hadronization, and initial- and final-state radiation.

The background processes considered in the \(H \rightarrow ZZ_d \rightarrow 4\ell \) and \(H \rightarrow Z_dZ_d \rightarrow 4\ell \) searches follow those used in the \(H \rightarrow ZZ^* \rightarrow 4\ell \) measurements [39], and consist of the following:

(i) Higgs boson production via the SM ggF, VBF (vector boson fusion), WH, ZH, and \(t\bar{t}H \) processes with \(H \rightarrow ZZ^* \rightarrow 4\ell \) final states. In the \(H \rightarrow Z_dZ_d \rightarrow 4\ell \) search, these background processes are normalized with the theoretical cross sections, where the Higgs boson production cross sections and decay branching ratios, as well as their uncertainties, are taken from Refs. [40,41]. In the \(H \rightarrow ZZ_d \rightarrow 4\ell \) search, the normalization of \(H \rightarrow 4\ell \) is determined from data. The cross section for the ggF process has been calculated to next-to-leading order (NLO) [42–44] and next-to-next-to-leading order (NNLO) [45–47] in QCD. In addition, QCD
soft-gluon resummations calculated in the next-to-next-to-leading-logarithmic (NNLL) approximation are applied for the ggF process [48]. NLO electroweak (EW) radiative corrections are also applied [49,50]. These results are compiled in Refs. [51–53] assuming factorization between QCD and EW corrections. For the VBF process, full QCD and EW corrections up to NLO [54–56] and approximate NNLO QCD [57] corrections are used to calculate the cross section. The cross sections for the associated WH and ZH production processes are calculated at NLO [58] and at NNLO [59] in QCD, and NLO EW radiative corrections are applied [60].

The cross section for associated Higgs boson production with a $\bar{t}\bar{t}$ pair is calculated at NLO in QCD [61–64]. The SM ggF and VBF processes producing $H \rightarrow ZZ^* \rightarrow 4\ell$ backgrounds are modeled with POWHEG, PYTHIA8 and CT10 PDFs [33]. The SM WH, ZH, and $t\bar{t}H$ processes producing $H \rightarrow ZZ^* \rightarrow 4\ell$ backgrounds are modeled with PYTHIA8 with CTQ6L1 PDFs.

(ii) SM ZZ^* production. The rate of this background is estimated using simulation normalized to the SM cross section at NLO. The $ZZ^* \rightarrow 4\ell$ background is modeled using simulated samples generated with POWHEG [65] and PYTHIA8 [35] for $gq \rightarrow ZZ^*$, and $gg2ZZ$ [66] and JIMMY [67] for $gg \rightarrow ZZ^*$, and CT10 PDFs for both.

(iii) $Z +$ jets and $\bar{t}\bar{t}$. The rates of these background processes are estimated using data-driven methods. However Monte Carlo (MC) simulation is used to understand the systematic uncertainty on the data-driven techniques. The $Z +$ jets production is modeled with up to five partons using ALPGEN [68] and is divided into two sources: $Z +$ light-jets, which includes $Zc\bar{c}$ in the massless c-quark approximation and $Zb\bar{b}$ with $b\bar{b}$ from parton showers; and $Zb\bar{b}$ using matrix-element calculations that take into account the b-quark mass. The matching scheme of matrix elements and parton shower evolution (see Ref. [69] and the references therein) is used to remove any double counting of identical jets produced via the matrix-element calculation and the parton shower, but this scheme is not implemented for b-jets. Therefore, $b\bar{b}$ pairs with separation $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} > 0.4$ between the b-quarks are taken from the matrix-element calculation, whereas for $\Delta R < 0.4$ the parton-shower $b\bar{b}$ pairs are used. For comparison between data and simulation, the NNLO QCD FEWZ [70,71] and NLO QCD MCFM [72,73] cross-section calculations are used to normalize the simulations for inclusive Z boson and $Zb\bar{b}$ production, respectively. The $\bar{t}\bar{t}$ background is simulated with MC@NLO-4.06 [74] with parton showers and underlying-event modeling as implemented in HERWIG 6.5.20 [75] and JIMMY. The AUET2C [76] tune for the underlying events is used for $\bar{t}\bar{t}$ with CT10 PDFs.

(iv) SM WZ and WW production. The rates of these backgrounds are normalized to theoretical calculations at NLO in perturbative QCD [77]. The simulated event samples are produced with SHERPA [78] and CT10 PDFs.

(v) Backgrounds containing J/ψ and Υ, namely ZJ/ψ and ΥZ. These backgrounds are normalized using the ATLAS measurements described in Ref. [79]. These processes are modeled with PYTHIA8 [35] and CTEQ6L1 PDFs.

Differing pileup conditions (multiple proton-proton interactions in the same or neighboring bunch crossings) as a function of the instantaneous luminosity are taken into account by overlaying simulated minimum-bias events generated with PYTHIA8 onto the hard-scattering process and reweighting them according to the distribution of the mean number of interactions observed in data. The MC generated samples are processed either with a full ATLAS detector simulation [80] based on the GEANT4 program [81] or a fast simulation based on the parametrization of the response to the electromagnetic and hadronic showers in the ATLAS calorimeters [82] and a detailed simulation of other parts of the detector and the trigger system. The results based on the fast simulation are validated against fully simulated samples and the difference is found to be negligible. The simulated events are reconstructed and analyzed with the same procedure as the data, using the same trigger and event selection criteria.

IV. EVENT RECONSTRUCTION

A combination of single-lepton and dilepton triggers is used to select the data samples. The single-electron trigger has a transverse energy (E_T) threshold of 25 GeV while the single-muon trigger has a transverse momentum (p_T) threshold of 24 GeV. The dielectron trigger has a threshold of $E_T = 12$ GeV for both electrons. In the case of muons, triggers with symmetric thresholds at $p_T = 13$ GeV and asymmetric thresholds at 18 and 8 GeV are used. Finally, electron-muon triggers are used with electron E_T thresholds of 12 or 24 GeV depending on the electron identification requirement, and a muon p_T threshold of 8 GeV. The trigger efficiency for events passing the final selection is above 97% [39] in each of the final states considered.

Data events recorded during periods when significant portions of the relevant detector subsystems were not fully functional are rejected. These requirements are applied independently of the lepton final state. Events in a time window around a noise burst in the calorimeter are removed [83]. Further, all triggered events are required to contain a reconstructed primary vertex formed from at least three tracks, each with $p_T > 0.4$ GeV.
Electron candidates consist of clusters of energy deposited in the electromagnetic calorimeter and associated with ID tracks [84]. The clusters matched to tracks are required to satisfy a set of identification criteria such that the longitudinal and transverse shower profiles are consistent with those expected from electromagnetic showers. The electron transverse momentum is computed from the cluster energy and the track direction at the interaction point. Selected electrons must satisfy $E_T > 7$ GeV and $|\eta| < 2.47$. Each electron must have a longitudinal impact parameter (z_0) of less than 10 mm with respect to the reconstructed primary vertex, defined as the vertex with at least three associated tracks for which the $\sum p_T^2$ of the associated tracks is the highest. Muon candidates are formed by matching reconstructed ID tracks with either complete or partial tracks reconstructed in the muon spectrometer [85]. If a complete track is present, the two independent momentum measurements are combined; otherwise the momentum is measured using the ID. The muon reconstruction and identification coverage is extended by using tracks reconstructed in the forward region ($2.5 < |\eta| < 2.7$) of the MS, which is outside the ID coverage. In the center of the barrel region ($|\eta| < 0.1$), where there is no coverage from muon chambers, ID tracks with $p_T > 15$ GeV are identified as muons if their calorimetric energy deposits are consistent with a minimum ionizing particle. Only one muon per event is allowed to be reconstructed in the MS only or identified with the calorimeter. Selected muons must satisfy $p_T > 6$ GeV and $|\eta| < 2.7$. The requirement on the longitudinal impact parameter is the same as for electrons except for the muons reconstructed in the forward region without an ID track. To reject cosmic-ray muons, the impact parameter in the bending plane (d_0) is required to be within 1 mm of the primary vertex.

In order to avoid double-counting of leptons, an overlap removal procedure is applied. If two reconstructed electron candidates share the same ID track or are too close to each other in η and ϕ ($\Delta R < 0.1$), the one with the highest transverse energy deposit in the calorimeter is kept. An electron within $\Delta R = 0.2$ of a muon candidate is removed, and a calorimeter-based reconstructed muon within $\Delta R = 0.2$ of an electron is removed.

Once the leptons have been selected with the aforementioned basic identification and kinematic requirements, events with at least four selected leptons are kept. All possible combinations of four leptons (quadruplets) containing two same-flavor, opposite-charge sign (SFOS) leptons, are made. The selected leptons are ordered by decreasing transverse momentum and the three highest-p_T leptons should have, respectively, $p_T > 20$ GeV, $p_T > 15$ GeV and $p_T > 10$ GeV. It is then required that one (two) leptons match the single-lepton (dilepton) trigger objects. The leptons within each quadruplet are then ordered in SFOS pairs, and denoted 1 to 4, indices 1 and 2 being for the first pair, 3 and 4 for the second pair.

V. $H \to ZZ \to 4\ell$

A. Search strategy

The $H \to ZZ_d \to 4\ell$ search is conducted with the same sample of selected 4ℓ events as used in Refs. [26,27] with the four-lepton invariant mass requirement of $115 < m_{4\ell} < 130$ GeV. This collection of events is referred to as the 4ℓ sample. The invariant mass of the opposite-sign, same-flavor pair closest to the Z-boson pole mass of 91.2 GeV [86] is denoted m_{12}. The invariant mass of the remaining dilepton pair is defined as m_{34}. The $H \to 4\ell$ yield, denoted $n(H \to 4\ell)$, is determined by subtracting the relevant backgrounds from the 4ℓ sample as shown in Eq. (1):

$$n(H \to 4\ell) = n(4\ell) - n(ZZ^*) - n(t\bar{t}) - n(Z + \text{jets}).$$ \hspace{1cm} (1)

The other backgrounds from WW, WZ, ZJ/ψ and ZY are negligible and not considered.

The search is performed by inspecting the m_{34} mass spectrum and testing for a local excess consistent with the decay of a narrow Z_d resonance. This is accomplished through a template fit of the m_{34} distribution, using histogram-based templates of the $H \to ZZ_d \to 4\ell$ signal and backgrounds. The signal template is obtained from simulation and is described in Sec. V B. The m_{34} distributions and the expected normalizations of the $t\bar{t}$ and $Z + \text{jets}$ backgrounds, along with the m_{34} distributions of the $H \to ZZ^* \to 4\ell$ background, as shown in Fig. 1, are determined as described in Sec. V D. The prefit signal and $H \to ZZ^* \to 4\ell$ background event yields are set equal to the $H \to 4\ell$ observed yield given by Eq. (1). The expected yields for the 4ℓ sample are shown in Table I.
In the absence of any significant local excess, the search can be used to constrain a relative branching ratio R_B, defined as

$$R_B = \frac{\text{BR}(H \rightarrow ZZ_d \rightarrow 4\ell)}{\text{BR}(H \rightarrow 4\ell)} = \frac{\text{BR}(H \rightarrow ZZ_d \rightarrow 4\ell)}{\text{BR}(H \rightarrow ZZ_d \rightarrow 4\ell) + \text{BR}(H \rightarrow ZZ^* \rightarrow 4\ell)},$$

where R_B is zero in the Standard Model. A likelihood function (\mathcal{L}) is defined as a product of Poisson probability densities (\mathcal{P}) in each bin (i) of the m_{34} distribution, and is used to obtain a measurement of R_B:

$$\mathcal{L}(\rho, \mu_H, \nu) = \prod_{i=1}^{N_{\text{bins}}} \mathcal{P}(n_{i}^{\text{exp}} | n_{i}^{\text{exp}}) = \prod_{i=1}^{N_{\text{bins}}} \mathcal{P}(n_{i}^{\text{obs}} | \mu_H \times (n_{i}^{\text{exp}} + \rho \times n_{i}^{Z_d}) + b_{i}(\nu)), \tag{3}$$

where μ_H is the normalization of the $H \rightarrow ZZ^* \rightarrow 4\ell$ background (and allowed to float in the fit), ρ the parameter of interest related to the $H \rightarrow ZZ_d \rightarrow 4\ell$ normalization and $\rho \times \mu_H$ the normalization of the $H \rightarrow ZZ_d \rightarrow 4\ell$ signal. The symbol ν represents the systematic uncertainties on the background estimates that are treated as nuisance parameters, and N_{bins} the total number of bins of the m_{34} distribution. The likelihood to observe the yield in some bin, n_{i}^{obs}, given the expected yield n_{i}^{exp} is then a function of the expected yields $n(H \rightarrow 4\ell)$ of $H \rightarrow ZZ_d \rightarrow 4\ell$ ($\mu_H \times n_{i}^{Z_d}$) and $H \rightarrow ZZ^* \rightarrow 4\ell$ ($\mu_H \times n_{i}^{ZZ^*}$), and the contribution of backgrounds $b_{i}(\nu)$.

An upper bound on ρ is obtained from the binned likelihood fit to the data, and used in Eq. (2) to obtain a measurement of R_B, taking into account the detector acceptance (A) and reconstruction efficiency (ϵ):

$$R_B = \frac{\rho \times \mu_H \times n(H \rightarrow 4\ell)}{\rho \times \mu_H \times n(H \rightarrow 4\ell) + C \times \mu_H \times n(H \rightarrow 4\ell)} = \frac{\rho}{\rho + C}, \tag{4}$$

where C is the ratio of the products of the acceptances and reconstruction efficiencies in $H \rightarrow ZZ_d \rightarrow 4\ell$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ events:

$$C = \frac{A_{ZZ_d} \times \epsilon_{ZZ_d}}{A_{ZZ^*} \times \epsilon_{ZZ^*}}. \tag{5}$$

The acceptance is defined as the fraction of generated events that are within a fiducial region. The reconstruction efficiency is defined as the fraction of events within the fiducial region that are reconstructed and selected as part of the 4ℓ signal sample.

B. Signal modeling

A signal would produce a narrow peak in the m_{34} mass spectrum. The width of the m_{34} peak for the Z_d signal is dominated by detector resolution for all Z_d masses considered. For the individual decay channels and their combination, the resolutions of the m_{34} distributions are determined from Gaussian fits. The m_{34} resolutions show a linear trend between $m_{Z_d} = 15$ GeV and $m_{Z_d} = 55$ GeV and vary from 0.3 to 1.5 GeV, respectively, for the combination of all the final states. The resolutions of the m_{34} distributions are smaller than the mass spacing between the generated signal samples (5 GeV), requiring an interpolation to probe intermediate values of m_{Z_d}. Histogram-based templates are used to model the Z_d signal where no simulation is available; these templates are obtained from morphed signals produced with the procedure defined in Ref. [87]. The morphed signal templates are generated with a mass spacing of 1 GeV.

The acceptances and reconstruction efficiencies of the $H \rightarrow ZZ_d \rightarrow 4\ell$ signal and $H \rightarrow ZZ^* \rightarrow 4\ell$ background are used in Eqs. (4) and (5) to obtain the measurement of the relative branching ratio R_B. The acceptances and...
TABLE II. Summary of the estimated expected numbers of \(Z + \) jets and \(\bar{t}t \) background events for the 20.7 fb\(^{-1}\) of data at \(\sqrt{s} = 8 \) TeV for the full mass range after kinematic selections, for the \(H \rightarrow ZZ_d \rightarrow 4\ell \) search. The first uncertainty is statistical while the second is systematic. The uncertainties are given on the event yields. Approximately 80% of the \(\bar{t}t \) and \(Z + \) jets backgrounds have \(m_{4\ell} < 160 \) GeV.

<table>
<thead>
<tr>
<th>Method</th>
<th>Estimated background</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{12}) fit: (Z +) jets contribution</td>
<td>(2.4 \pm 0.5 \pm 0.6)</td>
</tr>
<tr>
<td>(m_{12}) fit: (\bar{t}t) contribution</td>
<td>(0.14 \pm 0.03 \pm 0.03)</td>
</tr>
<tr>
<td>(m_{12}) fit: (Z +) jets contribution</td>
<td>(2.5 \pm 0.5 \pm 0.6)</td>
</tr>
<tr>
<td>(m_{12}) fit: (\bar{t}t) contribution</td>
<td>(0.10 \pm 0.02 \pm 0.02)</td>
</tr>
<tr>
<td>(\ell\ell + e^+e^-) relaxed requirements:</td>
<td>(5.2 \pm 0.4 \pm 0.5)</td>
</tr>
<tr>
<td>sum of (Z +) jets and (\bar{t}t) contributions</td>
<td>(4\ell)</td>
</tr>
<tr>
<td>(\ell\ell + e^+e^-) relaxed requirements:</td>
<td>(3.2 \pm 0.5 \pm 0.4)</td>
</tr>
<tr>
<td>sum of (Z +) jets and (\bar{t}t) contributions</td>
<td>(2\ell2\mu)</td>
</tr>
</tbody>
</table>

TABLE III. The relative systematic uncertainties on the event yields in the \(H \rightarrow ZZ_d \rightarrow 4\ell \) search.

<table>
<thead>
<tr>
<th>Systematic uncertainties (%)</th>
<th>(4\mu)</th>
<th>(4e)</th>
<th>(2\mu2e)</th>
<th>(2e2\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron identification</td>
<td>\ldots</td>
<td>9.4</td>
<td>8.7</td>
<td>2.4</td>
</tr>
<tr>
<td>Electron energy scale</td>
<td>\ldots</td>
<td>0.4</td>
<td>\ldots</td>
<td>0.2</td>
</tr>
<tr>
<td>Muon identification</td>
<td>0.8</td>
<td>\ldots</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Muon momentum scale</td>
<td>0.2</td>
<td>\ldots</td>
<td>0.1</td>
<td>\ldots</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>(\bar{t}t) and (Z +) jets normalization</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>(ZZ) (QCD scale)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>(ZZ) ((q\bar{q}/PDF and \alpha_s))</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>(ZZ) ((gg/PDF and \alpha_s))</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

The expected rates of the \(\bar{t}t \) and \(Z + \) jets backgrounds are estimated using data-driven methods as described in detail in Refs. [26,27]. The results of the expected \(\bar{t}t \) and \(Z + \) jets background estimations from data control regions are summarized in Table II. In the “\(m_{12} \) fit method,” the \(m_{12} \) distribution of \(\bar{t}t \) is fitted with a second-order Chebychev polynomial, and the \(Z + \) jets component is fitted with a Breit-Wigner line shape convolved with a Crystal Ball resolution function [26]. In the “\(\ell\ell + e^+e^- \) relaxed requirements” method, a background control region is formed by relaxing the electron selection criteria for electrons of the subleading pairs [26]. Since a fit to the data using \(m_{134} \) background templates is carried out in the search, both the distribution in \(m_{34} \) and normalization of the backgrounds are relevant. For all relevant backgrounds (\(H \rightarrow ZZ \rightarrow 4\ell, ZZ, \bar{t}t \) and \(Z + \) jets) the \(m_{34} \) distribution is obtained from simulation.

E. Systematic uncertainties

The sources of the systematic uncertainties in the \(H \rightarrow ZZ_d \rightarrow 4\ell \) search are the same as in the \(H \rightarrow ZZ \rightarrow 4\ell \) measurements. Uncertainties on the lepton reconstruction and identification efficiencies, as well as on the energy and momentum reconstruction and scale are described in detail in Refs. [26,27], and shown in Table III. The lepton identification is the dominant contribution to the systematic uncertainties on the \(ZZ \) background. The largest uncertainty in the \(H \rightarrow ZZ_d \rightarrow 4\ell \) search is the normalization of the \(\bar{t}t \) and \(Z + \) jets backgrounds. Systematic uncertainties related to the determination of selection efficiencies of isolation and impact parameters requirements are shown to be negligible in comparison with other systematic uncertainties. The uncertainty in luminosity [28] is applied to the \(ZZ \) background normalization. The electron energy scale uncertainty is determined from \(Z \rightarrow ee \) samples and for energies below 15 GeV from \(J/\psi \rightarrow ee \) decays [26,27]. Final-state QED radiation modeling and background contamination affect the mass scale uncertainty negligibly. The muon momentum scale systematic uncertainty is determined from \(Z \rightarrow \mu\mu \) samples and from \(J/\psi \rightarrow \mu\mu \) as well as \(Y \rightarrow \mu\mu \) decays [26,27]. Theory related systematic uncertainties on the Higgs production cross section and branching ratios are discussed in Refs. [39–41], but do not apply in this search since the...
$H \to 4\ell$ normalization is obtained from data. Uncertainties on the m_{34} shapes arising from theory uncertainties on the PDFs and renormalization and factorization scales are found to be negligible. Theory cross-section uncertainties are applied to the ZZ background. Normalization uncertainties are taken into account for the $Z + \text{jets}$ and $t\bar{t}$ backgrounds based on the data-driven determination of these backgrounds.

F. Results and interpretation

A profile-likelihood test statistic is used with the CL_s modified frequentist formalism [88–91] implemented in the RooStats framework [92] to test whether the data are compatible with the signal-plus-background and background-only hypotheses. Separate fits are performed for different m_{Z_d} hypotheses from 15 to 55 GeV, with 1 GeV spacing. After scanning the m_{34} mass spectrum for an excess consistent with the presence of an $H \to ZZ_d \to 4\ell$ signal, no significant deviation from SM expectations is observed.

The asymptotic approximation [90] is used to estimate the expected and observed exclusion limits on ρ for the combination of all the final states, and the result is shown in Fig. 2. The relative branching ratio R_B as a function of m_{Z_d} is extracted using Eqs. (2) and (4) where the value of C as a function of m_{34} is shown in Fig. 3, for the combination of all four final states. This is then used with ρ to constrain the value of R_B, and the result is shown in Fig. 4 for the combination of all four final states.

The simplest benchmark model adds to the SM Lagrangian [6–8,10] a $U(1)_d$ gauge symmetry that introduces the dark vector boson Z_d. The dark vector boson may mix kinetically with the SM hypercharge gauge boson with kinetic mixing parameter ϵ [6,10]. This enables the decay $H \to ZZ_d$ through the hypercharge portal. The Z_d is assumed to be narrow and on shell. Furthermore, the present search assumes prompt Z_d decays consistent with current bounds on ϵ from electroweak constraints [18,19]. The coupling of the Z_d to SM fermions is given in Eq. (47) of Ref. [6] to be linear in ϵ, so that $\text{BR}(Z_d \to \ell\ell')$ is independent of ϵ due to cancellations [6]. In this model, the $H \to ZZ_d \to 4\ell$ search can be used to constrain the hypercharge kinetic mixing parameter ϵ as follows: the upper limit on R_B shown in Fig. 4 leads to an upper limit on $\text{BR}(H \to ZZ_d \to 4\ell')$ assuming the SM branching ratio of $H \to ZZ' \to 4\ell'$ of 1.25×10^{-4} [40,41] as shown in Fig. 5. The limit on ϵ can be obtained directly from the $\text{BR}(H \to ZZ_d \to 4\ell')$ upper bounds and by using Table 2.
of Ref. [5]. The 95% C.L. upper bounds on ϵ are shown in Fig. 6 as a function of m_{Z_d} in the case $\epsilon \gg \kappa$ where κ is the Higgs portal coupling.

The measurement of the relative branching ratio R_B as shown in Fig. 4 can also be used to constrain the mass-mixing parameter of the model described in Refs. [7,8] where the SM is extended with a dark vector boson and another Higgs doublet, and a mass mixing between the dark vector boson and the SM Z boson is introduced. This model explores how a $U(1)_d$ gauge interaction in the hidden sector may manifest itself in the decays of the Higgs boson. The model also assumes that the Z_d, being in the hidden sector, does not couple directly to any SM particles including the Higgs boson (i.e. the SM particles do not carry dark charges). However, particles in the extensions to the SM, such as a second Higgs doublet, may carry dark charges allowing for indirect couplings via the $Z-Z_d$ mass mixing. The possibility of mixing between the SM Higgs boson with other scalars such as the dark sector Higgs boson is not considered for simplicity. The $Z-Z_d$ mass-mixing scenario also leads to potentially observable $H \to ZZ_d \to 4\ell$ decays at the LHC even with the total integrated luminosity collected in Run 1. The partial widths of $H \to ZZ_d \to 4\ell$ and $H \to ZZ_d$ are given in terms of the $Z-Z_d$ mass-mixing parameter δ and m_{Z_d} in Eq. (34) of Ref. [8] and Eq. (A.4) of Ref. [7], respectively. As a result, using the measurement of the relative branching ratio R_B described in this paper, one may set upper bounds on the product $\delta^2 \times \text{BR}(Z_d \to 2\ell)$ as a function of m_{Z_d} as follows. From Eq. (2) and for $m_{Z_d} < (m_H - m_Z)$

$$\frac{R_B}{(1 - R_B)} = \frac{\Gamma(H \to ZZ_d)}{\Gamma_{\text{SM}}} \times \frac{\text{BR}(Z \to 2\ell) \times \text{BR}(Z_d \to 2\ell)}{\text{BR}(H \to ZZ^* \to 4\ell)},$$

(6)

where Γ_{SM} is the total width of the SM Higgs boson and $\Gamma(H \to ZZ_d) \ll \Gamma_{\text{SM}}$. From Eqs. (4), (A.3) and (A.4) of Ref. [7], $\Gamma(H \to ZZ_d) \sim \delta^2$. It therefore follows from Eq. (6), with the further assumption $m_{Z_d}^2 \ll (m_H^2 - m_Z^2)$ that

$$\frac{R_B}{(1 - R_B)} = \delta^2 \times \text{BR}(Z_d \to 2\ell) \times \frac{\text{BR}(Z \to 2\ell) \times f(m_{Z_d})}{\Gamma_{\text{SM}}},$$

$$f(m_{Z_d}) = \frac{1}{16\pi} \frac{(m_H^2 - m_Z^2)^3}{v^2 m_H^4},$$

(7)

where v is the vacuum expectation value of the SM Higgs field. The limit is set on the product $\delta^2 \times \text{BR}(Z_d \to 2\ell)$ since both δ and $\text{BR}(Z_d \to 2\ell)$ are model dependent: in the case where kinetic mixing dominates, $\text{BR}(Z_d \to 2\ell) \sim 30\%$ for the model presented in Ref. [6] but it could be smaller when $Z-Z_d$ mass mixing dominates [8]. In the m_{Z_d} mass range of 15 GeV to $(m_H - m_Z)$, the upper bounds on $\delta^2 \times \text{BR}(Z_d \to 2\ell)$ are in the range $\sim (1.5-8.7) \times 10^{-5}$ as shown in Fig. 7, assuming the same signal acceptances shown in Fig. 3.

VI. $H \to Z_dZ_d \to 4\ell$

A. Search strategy

$H \to Z_dZ_d \to 4\ell$ candidate events are selected as discussed in Sec. VIB. The Z, J/ψ, Y vetoes are applied as
FIG. 7 (color online). The 95% C.L. upper limits on the product of the mass-mixing parameter \(\delta \) and the branching ratio of \(Z_d \) decays to two leptons (electrons, or muons), \(\delta^2 \times \text{BR}(Z_d \rightarrow 2\ell) \), as a function of \(m_{Z_d} \), using the combined upper limit on the relative branching ratio of \(H \rightarrow ZZ_d \rightarrow 4\ell \) and the partial width of \(H \rightarrow ZZ_d \) computed in Refs. [7,8].

FIG. 8 (color online). Absolute mass difference between the two dilepton pairs, \(\Delta m = |m_{12} - m_{34}| \) in the 2\(e2\mu \) channel, for \(m_H = 125 \text{ GeV} \). The shaded area shows both the statistical and systematic uncertainties. The bottom plot shows the significance of the observed number of events in the data compared to the expected number of events from the backgrounds. These distributions are obtained after the impact parameter significance requirements.

also discussed in Sec. VI B. Subsequently, the analysis exploits the small mass difference between the two SFOS lepton pairs of the selected quadruplet to perform a counting experiment. After the small mass difference requirements between the SFOS lepton pairs, the estimated background contributions, coming from \(H \rightarrow ZZ' \rightarrow 4\ell \) and \(ZZ' \rightarrow 4\ell \), are small. These backgrounds are normalized with the theoretical calculations of their cross sections. The other backgrounds are found to be negligible. Since there is no significant excess, upper bounds on the signal strength, defined as the ratio of the \(H \rightarrow Z_dZ_d \rightarrow 4\ell \) rate normalized to the SM \(H \rightarrow ZZ' \rightarrow 4\ell \) expectation are set as a function of the hypothesized \(m_{Z_d} \). In a benchmark model where the SM is extended with a dark vector boson and a dark Higgs boson, the measured upper bounds on the signal strength are used to set limits on the branching ratio of \(H \rightarrow Z_dZ_d \) and on the Higgs boson mixing parameter as a function of \(m_{Z_d} \) [5,6].

B. Event selection

For the \(H \rightarrow Z_dZ_d \rightarrow 4\ell \) search, unlike in the \(H \rightarrow ZZ' \rightarrow 4\ell \) study [93], there is no distinction between a primary pair (on-shell \(Z \)) and a secondary pair (off-shell \(Z \)), since both \(Z_d \) bosons are considered to be on shell. Among all the different quadruplets, only one is selected by minimizing the mass difference \(\Delta m = |m_{12} - m_{34}| \) where \(m_{12} \) and \(m_{34} \) are the invariant masses of the first and second pairs, respectively. The mass difference \(\Delta m \) is expected to be minimal for the signal since the two dilepton systems should have invariant masses consistent with the same \(m_{Z_d} \). No requirement is made on \(\Delta m \); it is used only to select a unique quadruplet with the smallest \(\Delta m \). Subsequently, isolation and impact parameter significance requirements are imposed on the leptons of the selected quadruplet after the impact parameter significance requirements.

(1) \(115 < m_{34} < 130 \text{ GeV} \) where \(m_{34} \) is the invariant mass of the four leptons in the quadruplet, consistent with the mass of the discovered Higgs boson of about 125 GeV [94].

(2) \(Z, J/\psi, \) and \(Y \) vetoes on all SFOS pairs in the selected quadruplet. The \(Z \) veto discards the event if either of the dilepton invariant masses is consistent with the \(Z \)-boson pole mass: \(|m_{12} - m_Z| < 10 \text{ GeV} \) or \(|m_{34} - m_Z| < 10 \text{ GeV} \). For the \(J/\psi \) and \(Y \) veto, the dilepton invariant masses are required to be above 12 GeV. This requirement suppresses backgrounds with \(Z \) bosons, \(J/\psi \), and \(Y \).

(3) The loose signal region requirement: \(m_{12} < m_H/2 \) and \(m_{34} < m_H/2 \), where \(m_H = 125 \text{ GeV} \). In the \(H \rightarrow Z_dZ_d \rightarrow 4\ell \) search, the kinematic limit for on-shell \(Z_d \) is \(m_{Z_d} < m_H/2 \).

(4) The tight signal region requirement: \(|m_{Z_d} - m_{12}| < \delta m \) and \(|m_{Z_d} - m_{34}| < \delta m \). The optimized values of the \(\delta m \) requirements are 5/3/4.5 GeV for the \(4\ell/4\mu/2e2\mu \) final states, respectively (the \(\delta m \)...
These requirements (1)–(4) define the signal region (SR) of \(H \rightarrow Z_d Z_d \rightarrow 4 \ell \) that is dependent on the hypothesized \(m_{Z_d} \), and is essentially background-free, but contains small estimated background contributions from \(H \rightarrow ZZ' \rightarrow 4 \ell \) and \(ZZ' \rightarrow 4 \ell \) processes as shown in Sec. VI E.

C. Background estimation

For the \(H \rightarrow Z_d Z_d \rightarrow 4 \ell \) search, the main background contributions in the signal region come from the \(H \rightarrow ZZ' \rightarrow 4 \ell \) and \(ZZ' \rightarrow 4 \ell \) processes. These backgrounds are suppressed by the requirements of the tight signal region, as explained in Sec. VI B. Other backgrounds with smaller contributions come from the \(Z + \) jets and \(t\bar{t} \), \(WW \) and \(WZ \) processes as shown in Fig. 11. The \(H \rightarrow ZZ' \rightarrow 4 \ell \), \(ZZ' \rightarrow 4 \ell \), \(WW \) and \(WZ \) backgrounds are estimated from simulation and normalized with theoretical calculations of their cross sections. After applying the tight signal region requirements described in Sec. VI B, the \(Z + \) jets, \(t\bar{t} \) and diboson backgrounds are negligible. In the case where the Monte Carlo calculation yields zero expected background events in the tight signal region, an upper bound at 68\% C.L. on the expected events is estimated using 1.14 events \[86\], scaled to the data luminosity and normalized to the background cross section:

\[
N_{\text{background}} < L \times \sigma \times \left(\frac{1.14}{N_{\text{tot}}} \right),
\]

where \(L \) is the total integrated luminosity, \(\sigma \) the cross section of the background process, and \(N_{\text{tot}} \) the total

FIG. 9 (color online). Dilepton invariant mass, \(m_{\ell\ell} \equiv m_{12} \) or \(m_{34} \), in the combined \(4e + 2e2\mu + 4\mu \) final state, for \(m_{H} = 125 \text{ GeV} \). The shaded area shows both the statistical and systematic uncertainties. The bottom plots show the significance of the observed number of events in the data compared to the expected number of events from the backgrounds. These distributions are obtained after the impact parameter significance requirement.

FIG. 10 (color online). Four-lepton invariant mass, in the combined \(4e + 2e2\mu + 4\mu \) final state, for \(m_{H} = 125 \text{ GeV} \). The shaded area shows both the statistical and systematic uncertainties. The bottom plots show the significance of the observed number of events in the data compared to the expected number of events from the backgrounds. These distributions are obtained after the impact parameter significance requirement.

FIG. 11 (color online). Dilepton invariant mass, \(m_{\ell\ell} \equiv m_{12} \) or \(m_{34} \), after the loose signal region requirements described in Sec. VI B for the \(4e, 4\mu \) and, \(2e2\mu \) final states combined, for \(m_{H} = 125 \text{ GeV} \). The data is represented by the black dots, and the backgrounds are represented by the filled histograms. The shaded area shows both the statistical and systematic uncertainties. The bottom plots show the significance of the observed data events compared to the expected number of events from the backgrounds. The dashed vertical line is the kinematic limit \((m_{12} \text{ or } m_{34} < 63 \text{ GeV})\) of the loose signal region requirements as discussed in Sec. VI B.
and scale, are included. For the electrons, uncertainties in the electron identification efficiency, and in the momentum resolution are estimated within the acceptance of the signal region requirements. There are several components to these uncertainties. The detector systematic uncertainties due to uncertainties in the Higgs production by ggF, VBF, VH and t\(\bar{t}\)H are obtained from Refs. [40,41]. The renormalization, factorization scales and PDFs and \(\alpha_S\) uncertainties are applied to the ZZ' background estimates. The uncertainties due to the limited number of MC events in the \(t\bar{t}, Z + \text{jets}, Z\gamma, Z\gamma\) and WW/WZ background simulations are estimated as described in Sec. V. C. The luminosity uncertainty [28] is applied to all signal yields, as well as to the background yields that are normalized with their theory cross sections. The detector systematic uncertainties due to uncertainties in the electron and muon identification efficiencies are estimated within the acceptance of the signal region requirements. There are several components to these uncertainties. For the muons, uncertainties in the reconstruction and identification efficiency, and in the momentum resolution and scale, are included. For the electrons, uncertainties in the reconstruction and identification efficiency, the isolation and impact parameter significance requirements, and the energy scale and energy resolution are considered. The systematic uncertainties are summarized in Table IV.

E. Results and interpretation

Figures 11 and 13 show the distributions of the dilepton invariant mass (for \(m_{l_1}^2\) and \(m_{34}^2\) combined) and the absolute mass difference \(\Delta m = |m_{12} - m_{34}|\) after the loose signal region requirements. Four data events pass the loose signal region requirements, one in the 4\(\mu\) channel, two in the 4\(\mu\) channel and one in the 2\(e\)2\(\mu\) channel. Two of these four events pass the tight signal region requirements: the event in the 4\(\mu\) channel and one of the events in the 2\(e\)2\(\mu\) channel. The event in the 4\(\mu\) channel has dilepton masses of 21.8 and 28.1 GeV as shown in Fig. 11, and is consistent with a \(Z_d\)

This content is a continuation of previous text. It seems to be part of a scientific or technical document discussing the results of a Higgs boson search experiment, likely using the ATLAS detector at the Large Hadron Collider. The text describes the systematic uncertainties and how they are estimated for electrons and muons, including contributions from electron identification and muon momentum scale uncertainties. It also mentions the application of these uncertainties to all signal yields, as well as to the background.

Table IV

The table summarizes the relative systematic uncertainties on the event yields in the \(H \rightarrow Z_d Z_d \rightarrow 4l\) search. The uncertainties are broken down by source, including electron identification, electron energy scale, muon identification, muon momentum scale, luminosity, ggF QCD, ggF PDFs and \(\alpha_S\), and normalization. The data shows a range of uncertainties for different combinations of sources.

Figure 12

This figure illustrates the minimal absolute mass difference for the 2\(e\)2\(\mu\) final state. The shaded area in the figure shows both the statistical and systematic uncertainties. The figures are color coded to represent different processes, such as \(Z\) and \(WW\) events. The y-axis shows the number of weighted events simulated for the background process. The x-axis represents the absolute mass difference, with bins labeled for different mass ranges.

Figure 13

This figure shows the absolute mass difference, \(\Delta m = |m_{12} - m_{34}|\), for the 4\(e\) and 2\(e\)2\(\mu\) final states combined, for \(m_{12} = 125\) GeV. The data is represented by black dots, and the backgrounds are represented by the filled histograms. The shaded area shows both the statistical and systematic uncertainties. The bottom plots show the significance of the observed data events compared to the expected number of events from the backgrounds.
mass in the range $23.5 \leq m_{Zd} \leq 26.5$ GeV. For the event in the 4μ channel that passes the tight signal region requirements, the dilepton invariant masses are 23.2 and 18.0 GeV as shown in Fig. 11, and they are consistent with a Z_d mass in the range $20.5 \leq m_{Z_d} \leq 21.0$ GeV. In the m_{Z_d} range of 15 to 30 GeV where four data events pass the loose signal region requirements, histogram interpolation [87] is used in steps of 0.5 GeV to obtain the signal acceptances and efficiencies at the hypothesized m_{Z_d}. The expected numbers of signal, background and data events, after applying the tight signal region requirements, are shown in Table V.

For each m_{Z_d}, in the absence of any significant excess of events consistent with the signal hypothesis, the upper limits are computed from a maximum-likelihood fit to the numbers of data and expected signal and background events in the tight signal regions, following the CL_s modified frequentist formalism [88,89] with the profile-likelihood test statistic [90,91]. The nuisance parameters associated with the systematic uncertainties described in Sec. VI D are profiled. The parameter of interest in the fit is the signal strength μ_d defined as the ratio of the $H \rightarrow Z_dZ_d \rightarrow 4\ell^\prime$ rate relative to the SM $H \rightarrow ZZ^* \rightarrow 4\ell^\prime$ rate:

$$\mu_d = \frac{\sigma \times \text{BR}(H \rightarrow Z_dZ_d \rightarrow 4\ell^\prime)}{\sigma \times \text{BR}(H \rightarrow ZZ^* \rightarrow 4\ell^\prime)}_{\text{SM}}.$$

The systematic uncertainties in the electron and muon identification efficiencies, renormalization and factorization scales and PDF are 100% correlated between the signal and backgrounds. Pseudoexperiments are used to compute the 95% C.L. upper bound μ_d in each of the final states and their combination, and for each of the hypothesized m_{Z_d}. The 95% confidence level upper bounds on the $H \rightarrow Z_dZ_d \rightarrow 4\ell^\prime$ rates are shown in Fig. 14 relative to the SM Higgs boson process $H \rightarrow ZZ^* \rightarrow 4\ell^\prime$ as a function of the hypothesized m_{Z_d} for the combination of the three final states 4e, 2e2μ and 4μ. Assuming the SM Higgs boson production cross section and using $\text{BR}(H \rightarrow ZZ^* \rightarrow 4\ell^\prime)_{\text{SM}} = 1.25 \times 10^{-4}$ [40,41], upper bounds on the branching ratio of $H \rightarrow Z_dZ_d \rightarrow 4\ell^\prime$ can be obtained from Eq. (9), as shown in Fig. 15.

The simplest benchmark model is the SM plus a dark vector boson and a dark Higgs boson as discussed in Refs. [6,10], where the branching ratio of $Z_d \rightarrow \ell^\prime\ell^\prime$ is given as a function of m_{Z_d}. This can be used to convert the measurement of the upper bound on the signal strength μ_d into an upper bound on the branching ratio $\text{BR}(H \rightarrow Z_dZ_d)$ assuming the SM Higgs boson production cross section. Figure 16 shows the 95% C.L. upper limit on the branching ratio of $H \rightarrow Z_dZ_d$ as a function of m_{Z_d} using the combined μ_d of the three final states. The weaker bound at higher m_{Z_d} is due to the fact that the branching ratio $Z_d \rightarrow \ell^\prime\ell^\prime$ drops slightly at higher m_{Z_d} [6] as other decay channels become accessible. The $H \rightarrow Z_dZ_d$ decay can be used to obtain an m_{Z_d}-dependent limit on an Higgs mixing parameter κ' [6]:

$$\kappa' = \kappa \times \frac{m_H^2}{m_H^2 - m_{Z_d}^2}.$$

<table>
<thead>
<tr>
<th>Process</th>
<th>4e</th>
<th>4μ</th>
<th>2e2μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow ZZ^* \rightarrow 4\ell^\prime$</td>
<td>$(1.5 \pm 0.3 \pm 0.2) \times 10^{-2}$</td>
<td>$(1.0 \pm 0.3 \pm 0.3) \times 10^{-2}$</td>
<td>$(2.9 \pm 1.0 \pm 2.0) \times 10^{-3}$</td>
</tr>
<tr>
<td>$ZZ^* \rightarrow 4\ell^\prime$</td>
<td>$(7.1 \pm 3.6 \pm 0.5) \times 10^{-4}$</td>
<td>$(8.4 \pm 3.8 \pm 0.5) \times 10^{-3}$</td>
<td>$(9.1 \pm 3.6 \pm 0.6) \times 10^{-3}$</td>
</tr>
<tr>
<td>WW, WZ</td>
<td>$<0.7 \times 10^{-2}$</td>
<td>$<0.7 \times 10^{-2}$</td>
<td>$<0.7 \times 10^{-2}$</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>$<3.0 \times 10^{-2}$</td>
<td>$<3.0 \times 10^{-2}$</td>
<td>$<3.0 \times 10^{-2}$</td>
</tr>
<tr>
<td>Zbb, $Z +$ jets</td>
<td>$<0.2 \times 10^{-2}$</td>
<td>$<0.2 \times 10^{-2}$</td>
<td>$<0.2 \times 10^{-2}$</td>
</tr>
<tr>
<td>ZJ/γ and ZY</td>
<td>$<2.3 \times 10^{-3}$</td>
<td>$<2.3 \times 10^{-3}$</td>
<td>$<2.3 \times 10^{-3}$</td>
</tr>
<tr>
<td>Total background</td>
<td>$<5.6 \times 10^{-2}$</td>
<td>$<5.9 \times 10^{-2}$</td>
<td>$<5.3 \times 10^{-2}$</td>
</tr>
<tr>
<td>Data</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$H \rightarrow ZZ^* \rightarrow 4\ell^\prime$</td>
<td>$(1.2 \pm 0.3 \pm 0.2) \times 10^{-2}$</td>
<td>$(5.8 \pm 2.0 \pm 2.0) \times 10^{-3}$</td>
<td>$(2.6 \pm 1.0 \pm 2.0) \times 10^{-3}$</td>
</tr>
<tr>
<td>$ZZ^* \rightarrow 4\ell^\prime$</td>
<td>$(3.5 \pm 2.0 \pm 0.2) \times 10^{-3}$</td>
<td>$(4.1 \pm 2.7 \pm 0.2) \times 10^{-3}$</td>
<td>$(2.0 \pm 0.6 \pm 0.1) \times 10^{-2}$</td>
</tr>
<tr>
<td>WW, WZ</td>
<td>$<0.7 \times 10^{-2}$</td>
<td>$<0.7 \times 10^{-2}$</td>
<td>$<0.7 \times 10^{-2}$</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>$<3.0 \times 10^{-2}$</td>
<td>$<3.0 \times 10^{-2}$</td>
<td>$<3.0 \times 10^{-2}$</td>
</tr>
<tr>
<td>Zbb, $Z +$ jets</td>
<td>$<0.2 \times 10^{-2}$</td>
<td>$<0.2 \times 10^{-2}$</td>
<td>$<0.2 \times 10^{-2}$</td>
</tr>
<tr>
<td>ZJ/γ and ZY</td>
<td>$<2.3 \times 10^{-3}$</td>
<td>$<2.3 \times 10^{-3}$</td>
<td>$<2.3 \times 10^{-3}$</td>
</tr>
<tr>
<td>Total background</td>
<td>$<5.3 \times 10^{-2}$</td>
<td>$<5.1 \times 10^{-2}$</td>
<td>$<6.4 \times 10^{-2}$</td>
</tr>
<tr>
<td>Data</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
where κ is the size of the Higgs portal coupling and m_S is the mass of the dark Higgs boson. The partial width of $H \to Z_dZ_d$ is given in terms of κ [5]. In the regime where the Higgs mixing parameter dominates ($\kappa \gg \epsilon$), $m_S > m_H/2$, $m_{Z_d} < m_H/2$ and $H \to Z_dZ_d \to 4\epsilon$ is negligible, the only relevant decay is $H \to Z_dZ_d$. Therefore the partial width $\Gamma(H \to Z_dZ_d)$ can be written as

$$\Gamma(H \to Z_dZ_d) = \frac{\Gamma_{\text{SM}}}{1 - BR(H \to Z_dZ_d)} \frac{\text{BR}(H \to Z_dZ_d)}{1 - \text{BR}(H \to Z_dZ_d)}.$$

The Higgs portal coupling parameter κ is obtained using Eq. (53) of Ref. [6] or Table 2 of Ref. [5]:
$m_H/2 < m_S < 2m_H$, this would correspond to an upper bound on the Higgs portal coupling in the range $\kappa \sim (1-10) \times 10^{-4}$.

An interpretation for $H \to Z_dZ_d$ is not done in the $Z-Z_d$ mass mixing scenario described in Refs. [7,8] since in this model the rate of $H \to Z_dZ_d$ is highly suppressed relative to that of $H \to ZZ_d$.

VII. CONCLUSIONS

Two searches for an exotic gauge boson Z_d that couples to the discovered SM Higgs boson at a mass around 125 GeV in four-lepton events are presented, using the ATLAS detector at the LHC.

The $H \to ZZ_d \to 4\ell$ analysis uses the events resulting from Higgs boson decays to four leptons to search for an exotic gauge boson Z_d, by examining the m_{34} mass distribution. The results obtained in this search cover the exotic gauge boson mass range of $15 < m_{Z_d} < 55$ GeV, and are based on proton-proton collisions data at $\sqrt{s} = 8$ TeV with an integrated luminosity of 20.7 fb$^{-1}$. Observed and expected exclusion limits on the branching ratio of $H \to ZZ_d \to 4\ell$ relative to $H \to 4\ell$ are estimated for the combination of all the final states. For relative branching ratios above 0.4 (observed) and 0.2 (expected), the entire mass range of $15 < m_{Z_d} < 55$ GeV is excluded at 95% C.L. Upper bounds at 95% C.L. on the branching ratio of $H \to ZZ_d \to 4\ell$ are set in the range $(1-9) \times 10^{-5}$ for $15 < m_{Z_d} < 55$ GeV, assuming the SM branching ratio $H \to ZZ_d \to 4\ell$.

The $H \to Z_dZ_d \to 4\ell$ search covers the exotic gauge boson mass range from 15 GeV up to the kinematic limit of $m_H/2$. An integrated luminosity of 20.3 fb$^{-1}$ at 8 TeV is used in this search. One data event is observed to pass all the signal region selections in the 4ℓ channel, and has dilepton invariant masses of 21.8 and 28.1 GeV. This 4ℓ event is consistent with a Z_d mass in the range $23.5 < m_{Z_d} < 26.5$ GeV. Another data event is observed to pass all the signal region selections in the 4μ channel, and has dilepton invariant masses of 23.2 and 18.0 GeV. This 4μ event is consistent with a Z_d mass in the range $20.5 < m_{Z_d} < 21.0$ GeV. In the absence of a significant excess, upper bounds on the signal strength (and thus on the cross section times branching ratio) are set for the mass range of $15 < m_{Z_d} < 60$ GeV using the combined 4ℓ, $2e2\mu$, 4μ final states.

Using a simplified model where the SM is extended with the addition of an exotic gauge boson and a dark Higgs boson, upper bounds on the gauge kinetic mixing parameter ϵ (when $\epsilon \gg \kappa$), are set in the range $(4-17) \times 10^{-2}$ at 95% C.L., assuming the SM branching ratio of $H \to ZZ' \to 4\ell$, for $15 < m_{Z_d} < 55$ GeV. Assuming the SM Higgs production cross section, upper bounds on the branching ratio of $H \to Z_dZ_d$, as well as on the Higgs portal coupling parameter κ, are set in the range $(2-3) \times 10^{-5}$ and $(1-10) \times 10^{-4}$, respectively, at 95% C.L., for $15 < m_{Z_d} < 60$ GeV.

Upper bounds on the effective mass-mixing parameter $\delta^2 \times \text{BR}(Z_d \to \ell\ell')$, resulting from the $U(1)_d$ gauge symmetry, are also set using the branching ratio measurements in the $H \to ZZ_d \to 4\ell$ search, and are in the range $(1.5-8.7) \times 10^{-5}$ for $15 < m_{Z_d} < 35$ GeV.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNI and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[63] S. Dawson, L. H. Orr, L. Reina, and D. Wackeroth, Next-to-leading order QCD corrections to $pp \to t\bar{t}h$ at the CERN Large Hadron Collider, Phys. Rev. D 67, 071503 (2003).

(ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4aDepartment of Physics, Ankara University, Ankara, Turkey
4bIstanbul Aydin University, Istanbul, Turkey
5Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
6LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7Department of Physics, University of Arizona, Tucson, Arizona, USA
8Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
9Physics Department, University of Athens, Athens, Greece
10Physics Department, National Technical University of Athens, Zografou, Greece
11Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13Institute of Physics, University of Belgrade, Belgrade, Serbia
14Department for Physics and Technology, University of Bergen, Bergen, Norway
15Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
16Department of Physics, Humboldt University, Berlin, Germany
17Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19aDepartment of Physics, Bogazici University, Istanbul, Turkey
19bDepartment of Physics, Dogus University, Istanbul, Turkey
19cDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20aINFN Sezione di Bologna, Italy
20bDipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21Physikalisches Institut, University of Bonn, Bonn, Germany
22Department of Physics, Boston University, Boston, Massachusetts, USA
23Department of Physics, Brandeis University, Waltham, Massachusetts, USA
24Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
24bElectrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
24cFederal University of Sao Joao del Rei (UFSJ), Sao Joao do Rei, Brazil
24dInstituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25Physics Department, Brookhaven National Laboratory, Upton, New York, USA
25aNational Institute of Physics and Nuclear Engineering, Bucharest, Romania
26National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
26aUniversity Politehnica Bucharest, Bucharest, Romania
26bWest University in Timisoara, Timisoara, Romania
27Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29Department of Physics, Carleton University, Ottawa, Ontario, Canada
30CERN, Geneva, Switzerland
31Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
32aDepartamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile

092001-25
Also at International School for Advanced Studies (SISSA), Trieste, Italy.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA.

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.

Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.

Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Department of Physics, Stanford University, Stanford CA, USA.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA.

Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.

Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.