Search for the associated production of the Higgs boson with a top quark pair in multilepton final states with the ATLAS detector

DOI
10.1016/j.physletb.2015.07.079

Publication date
2015

Document Version
Final published version

Published in
Physics Letters B

License
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for the associated production of the Higgs boson with a top quark pair in multilepton final states with the ATLAS detector

ATLAS Collaboration*

ABSTRACT

A search for the associated production of the Higgs boson with a top quark pair is performed in multilepton final states using 20.3 fb$^{-1}$ of proton–proton collision data recorded by the ATLAS experiment at $\sqrt{s} = 8$ TeV at the Large Hadron Collider. Five final states, targeting the decays $H \rightarrow WW^*\tau\tau$, $\tau\tau$, and ZZ^*, are examined for the presence of the Standard Model (SM) Higgs boson: two same-charged light leptons (e or μ) without a hadronically decaying τ lepton; three light leptons; two same-charged light leptons with a hadronically decaying τ lepton; four light leptons; and one light lepton and two hadronically decaying τ leptons. No significant excess of events is observed above the background expectation. The best fit for the $t\bar{t}H$ production cross section, assuming a Higgs boson mass of 125 GeV, is $2.1^{+1.4}_{-1.2}$ times the SM expectation, and the observed (expected) upper limit at the 95% confidence level is 4.7 (2.4) times the SM rate. The p-value for compatibility with the background-only hypothesis is 1.8σ; the expectation in the presence of a Standard Model signal is 0.9σ.

1. Introduction

The discovery of a new particle H with a mass of about 125 GeV in searches for the Standard Model (SM) [1–3] Higgs boson [4–7] at the LHC was reported by the ATLAS [8] and CMS [9] Collaborations in July 2012. The particle has been observed in the decays $H \rightarrow \gamma\gamma$ [10,11], $H \rightarrow Z\gamma^* \rightarrow \ell\ell\gamma$ [12,13], and $H \rightarrow WW^* \rightarrow \ell\ell\nu\nu$ [14,15], and evidence has been reported for $H \rightarrow \tau\tau$ [16,17], consistent with the rates expected for the SM Higgs boson.

The observation of the process in which the Higgs boson is produced in association with a pair of top quarks ($t\bar{t}H$) would permit a direct measurement of the top quark–Higgs boson Yukawa coupling in a process that is tree-level at the lowest order, which is otherwise accessible primarily through loop effects. Having both the tree- and loop-level measurements would allow disambiguation of new physics effects that could affect the two differently, such as dimension-six operators contributing to the ggH vertex. This letter describes a search for the SM Higgs boson in the $t\bar{t}H$ production mode in multilepton final states. The five final states considered are: two same-charge-sign light leptons (e or μ) with no additional hadronically decaying τ lepton; three light leptons; two same-sign light leptons with one hadronically decaying τ lepton; four light leptons; and one light lepton with two hadronically decaying τ candidates. These channels are sensitive to the Higgs decays $H \rightarrow WW^*\tau\tau$, and ZZ^* produced in association with a top quark pair decaying to one or two leptons. A similar search has been performed by the CMS Collaboration [18].

The selections of this search are designed to avoid overlap with ATLAS searches for $t\bar{t}H$ in $H \rightarrow bb$ [19] and $H \rightarrow \gamma\gamma$ [20] decays. The main backgrounds to the signal arise from $t\bar{t}$ production with additional jets and non-prompt leptons, associated production of a top quark pair and a vector boson W or Z (collectively denoted $t\bar{t}V$), and other processes where the electron charge is incorrectly measured or where quark or gluon jets are incorrectly identified as τ candidates.

2. ATLAS detector and dataset

The features of the ATLAS detector [21] most relevant to this analysis are briefly summarized here. The detector consists of an inner tracking detector system surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer. Charged particles in the pseudorapidity1 range $|\eta| < 2.5$ are reconstructed with the inner tracking detector, which is immersed in a 2 T magnetic field parallel to the detector axis.

1 The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector, and the z-axis along the beam line. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. Observables labelled “transverse” are projected onto the x-y plane. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. The transverse momentum is defined as $p_T = p \sin \theta = p / \cosh \eta$, and the transverse energy E_T has an analogous definition.

* E-mail address: atlas.publications@cern.ch.

http://dx.doi.org/10.1016/j.physletb.2015.07.079
0370-2693/© 2015 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.
and consists of pixel and strip semiconductor detectors as well as a straw-tube transition radiation tracker. The solenoid is surrounded by a calorimeter system covering \(||\eta| < 4.9\), which provides three-dimensional reconstruction of particle showers. Lead/liquid-argon (LAr) sampling technology is used for the electromagnetic component. Iron/scintillator-tile sampling calorimeters are used for the hadronic component for \(||\eta| < 1.7\), and copper/LAr and tungsten/LAr technology is used for \(||\eta| > 1.5\). Outside the calorimeter system, air-core toroids provide a magnetic field for the muon spectrometer. Three stations of precision drift tubes and cathode-strap chambers provide a measurement of the muon track position and curvature in the region \(||\eta| < 2.7\). Resistive-plate and thin-gap chambers provide muon triggering capability up to \(||\eta| = 2.4\).

This search uses data collected by the ATLAS experiment in 2012 at a centre-of-mass energy of \(\sqrt{s} = 8\) TeV. All events considered were recorded while the detector and trigger systems were fully functional; the integrated luminosity of this dataset is 20.3 fb\(^{-1}\).

3. Cross sections for signal and background processes

The cross section for the production of \(t\bar{t}H\) in pp collisions has been calculated at next-to-leading order (NLO) in quantum chromodynamics (QCD) [22–26]. Uncertainties on the cross section are evaluated by varying the renormalization and factorization scales by factors of two and by varying the input parton distribution functions (PDF) of the proton. A Higgs boson mass of \(m_{H} = 125\) GeV is assumed; this gives a predicted \(t\bar{t}H\) production cross section at \(\sqrt{s} = 8\) TeV of 129.−12 10 (PDF) fb [27]. This assumed Higgs boson mass is consistent with the combined ATLAS and CMS measurement [28].

In this letter the associated production of single top quarks with a Higgs boson is considered a background process and set to the Standard Model rate. The production of \(t\bar{t}H\) and \(t\bar{t}W\) is taken into account. In the Standard Model these rates are very small compared to \(t\bar{t}H\) production. These processes are simulated with the same parameters as used by the ATLAS \(t\bar{t}H, H \to \gamma\gamma\) search [20]. The cross sections for both are computed using the MG5_AMC@NLO generator [29] at NLO in QCD. For \(t\bar{t}H\), the renormalization and factorization scales are set to 75 GeV and the process is computed in the four-flavour scheme, yielding \(\sigma(t\bar{t}H) = 17.2_{-5.8}^{+7.4}\) (scale) \(\pm 1.2\) (PDF) fb. For \(t\bar{t}W\), dynamic factorization and renormalization scales are used, and the process is computed in the five-flavour scheme; the result is \(\sigma(t\bar{t}W) = 4.7_{-3.0}^{+3.3}\) (scale) \(\pm 0.8\) (PDF) fb. The interference of \(t\bar{t}H\) production with \(t\bar{t}H\), which appears at NLO for \(t\bar{t}WH\) in diagrams with an additional b-quark in the final state, is not considered.

The production of \(t\bar{t}W\) and \(t\bar{t}(Z/\gamma^{*}) → t\bar{t}e^{+}e^{-}\) yield multi-lepton final states with b-quarks and are major backgrounds to the \(t\bar{t}H\) signal. For simplicity of notation the latter process is referred to as \(t\bar{t}Z\) throughout this letter with off-shell \(Z\) and photon components also included except where noted otherwise. The \(t\bar{t}W\) process includes both \(t\bar{t}W^{+}\) and \(t\bar{t}W^{-}\) components. Next-to-leading-order cross sections are used for \(t\bar{t}W\) [30] and \(t\bar{t}Z\) [31]. The MG5_AMC@NLO generator is used to reproduce the QCD scale uncertainties of these calculations and determine uncertainties due to the PDF. For \(t\bar{t}W\) production the value 232 ± 26 (scale) \(\pm 18\) (PDF) fb is used, and for \(t\bar{t}Z\) production the value is 206 ± 23 (scale) \(\pm 18\) (PDF) fb.

The associated production of a single top quark and a Z boson is a subleading background for the most sensitive channels. The cross section has been calculated at NLO for the \(t-\) and \(s\)-channels [32]. The resulting values used in this work are 160 \(\pm 7\) (scale) \(\pm 11\) (PDF) fb for \(tZ\) and 76 \(\pm 4\) (scale) \(\pm 5\) (PDF) fb for \(t\bar{t}Z\). The cross section for the production of \(t\bar{t}WZ\) is computed at leading order (LO) using the \textsc{MadGraph v5} generator [33] and found to be 4.1 fb.

The cross section for inclusive production of vector boson pairs \(WW, WZ\), and \(ZZ\) is computed using \textsc{MCFM} [34]. Contributions from virtual photons and off-shell Z bosons are included. The uncertainties on the acceptance for these processes in the signal regions (which favour production with additional b- or c-quarks) dominate over the inclusive cross-section uncertainty (see Section 7.2) and so the latter is neglected in the analysis.

The inclusive \(t\bar{t}W\) cross section is calculated at next-to-next-to-leading order (NNLO) in QCD which includes resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms using Top++ [35], yielding 253\(\pm 13\) fb for \(\sqrt{s} = 8\) TeV. The single-top-quark samples are normalized to the approximate NNLO theoretical cross sections [36–38] using the MSTW2008 [39] NNLO PDF set. The production of \(Z \to \ell^{+}\ell^{-}\) and \(W \to \ell\nu\) jets is normalized using NNLO cross sections as computed by FEWZ [40].

4. Event generation

The event generator configurations used for simulating the signal and main background processes are shown in Table 1. Additional information is given below.

The \(t\bar{t}H\) signal event simulation samples contain all Higgs bosons decays with branching fractions set to values computed at NNLO in QCD [26,66–69]. The factorization (\(\mu_F\)) and renormalization (\(\mu_R\)) scales are set to \(m_t + m_H/2\). Higgs boson and top quark masses of 125 and 172.5 GeV, respectively, are used. These samples are the same as those used by other ATLAS \(t\bar{t}H\) searches [19, 20].

Production of single top quarks with Higgs bosons is simulated as follows. For \(t\bar{t}H\), events are generated at leading order with \textsc{MadGraph} in the four-flavour scheme. For \(t\bar{t}W\), events are generated at NLO with MG5_AMC@NLO in the five-flavour scheme. Higgs boson and top quark masses are set as for \(t\bar{t}H\) production.

The main irreducible backgrounds are production of \(t\bar{t}W\) and \(t\bar{t}Z\) (\(t\bar{t}V\)). For the \(t\bar{t}W\) process, events are generated at leading order with zero, one, or two extra partons in the final state, while for \(t\bar{t}Z\) zero or one extra parton is generated. The important contribution from off-shell \(\gamma^*/Z \to \ell^+\ell^-\) is included. The \(t\bar{t}Z\) process is simulated with the same setup, without extra partons.

For diboson processes, the full matrix element for \(\ell^+\ell^-\) production, including \(\gamma^*/\) and off-shell Z contributions, is used. The \textsc{Sherpa} \(qq\) and \(gg\) samples include diagrams with additional partons in the final state at the matrix-element (ME) level, and include b- and c-quark mass effects. \textsc{Sherpa} was found to have better agreement with data than \textsc{Powheg} for \(WZ\), while the \textsc{Sherpa} and \textsc{Powheg} descriptions of \(ZZ\) production are similar.

A \(t\bar{t} + \) jets sample generated with the \textsc{Powheg} NLO generator [61] is used; the top quark mass is set to 172.5 GeV. Small corrections to the \(t \bar{t}\) system and top quark \(p_T\) spectra are applied based on discrepancies in differential distributions observed between data and simulation at 7 TeV [78]. Double-counting between the \(t\bar{t}\) and \(W t\) single top production final states is eliminated using the diagram-removal method [71].

Samples of \(Z \to \ell^+\ell^-\) + jets and \(W \to \ell\nu\) + jets events are generated with up to five additional partons using the \textsc{Alpgen} v2.14 [65] leading order (LO) generator. Samples are merged with matrix element-parton shower overlaps removed using \textsc{MLM}.
matching [72]. Production of b- and c-quarks is also computed at matrix-element level, and overlaps between ME and parton shower production are handled by separating the kinematic regimes based on the angular separation of additional heavy partons. The resulting “light” and “heavy” flavour samples are normalized by comparing the resulting b-tagged jet spectra with data.

All simulated samples with PyTHIA 6 and HERWIG [59] parton showering use Photos 2.15 [73] to model photon radiation and TAUOLA 1.20 [74] for τ decays. The HERWIG++ samples model photon radiation with Photos but use the internal τ decay model. Samples using PyTHIA 8.1 and SHERPA use those generators’ internal τ lepton decay and photon radiation generators. For HERWIG samples, multiple parton interactions are modelled with JIMMY [75].

Showered and hadronized events are passed through simulations of the ATLAS detector (either full GEANT4 [76] simulation or a hybrid simulation with parameterized calorimeter showers and GEANT4 simulation of the tracking systems [77,78]). Additional minimum-bias pp interactions (pileup) are modelled with the PyTHIA 8.1 generator with the MSTW2008 LO PDF set and the A2 tune [79]. They are added to the signal and background simulated events according to the luminosity profile of the recorded data, with additional overall scaling to achieve a good match to observed calorimetry and tracking variables. The contributions from pileup interactions both within the same bunch crossing as the hard-scattering process and in neighbouring bunch crossings are included in the simulation.

5. Object selection

Electron candidates are reconstructed from energy clusters in the electromagnetic calorimeter associated with reconstructed tracks in the inner detector. They are required to have $|\eta_{\text{cluster}}| < 2.47$. Candidates in the transition region $1.37 < |\eta_{\text{cluster}}| < 1.52$ between sections of the electromagnetic calorimeter are excluded. A multivariate discriminant based on shower shape and track information is used to distinguish electrons from hadronic showers [80,81]. Only electron candidates with transverse energy E_T greater than 10 GeV are considered. To reduce the background from non-prompt electrons, i.e. from decays of hadrons (including heavy flavour) produced in jets, electron candidates are required to be isolated. Two isolation variables, based on calorimetric and tracking variables, are computed. The first ($E_{\text{T}}^{\text{cone}}$) is based on the sum of transverse energies of calorimeter cells within a cone of radius $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.2$ around the electron candidate direction. This energy sum excludes cells associated with the electron and is corrected for leakage from the electromagnetic shower and ambient energy in the event. The second (p_T^{cone}) is defined based on tracks with $p_T > 1$ GeV within a cone of radius $\Delta R = 0.2$ around the electron candidate. Both isolation energies are separately required to be less than $0.05 \times E_T$. The longitudinal impact parameter of the electron track with respect to the selected event primary vertex, multiplied by the sine of the polar angle, $|z_0 \sin \theta|$, is required to be less than 1 mm. The transverse impact parameter divided by the estimated uncertainty on its measurement, $|d_0|/\sigma(d_0)$, must be less than 4. If two electrons closer than $\Delta R = 0.1$ are selected, only the one with the higher p_T is considered. An electron is rejected if, after passing all the above selections, it lies within $\Delta R = 0.1$ of a selected muon.

Muon candidates are reconstructed by combining inner detector tracks with track segments or full tracks in the muon spectrometer [82]. Only candidates with $|\eta| < 2.5$ and $p_T > 10$ GeV are kept. Additionally, muons are required to be separated by at least $\Delta R > 0.04 + (10 \text{ GeV})/p_T^{\mu}$ from any selected jets (see below for details on jet reconstruction and selection). The cut value is optimized to maximize the acceptance for prompt muons at a fixed rejection factor for non-prompt and fake muon candidates. Furthermore, muons must satisfy similar $E_{\text{T}}^{\text{cone}}$ and p_T^{cone} isolation criteria as for electrons, with both required to be less than $0.10 \times p_T$. The value of $|z_0 \sin \theta|$ is required to be less than 1 mm, while $|d_0|/\sigma(d_0)$ must be less than 3.

Hadronically decaying τ candidates (τ_{had}) are reconstructed using clusters in the electromagnetic and hadronic calorimeters. The τ candidates are required to have $p_T > 25$ GeV and $|\eta| < 2.47$. The number of charged tracks associated with the τ candidates is required to be one or three and the charge of the τ candidates, determined from the associated tracks, must be ± 1. The identification uses calorimeter cluster and tracking-based variables, combined using a boosted decision tree (BDT) [83]. An additional BDT which uses combined calorimeter and track quantities is employed to reject electrons reconstructed as one-prong hadronically decaying τ leptons.

Jets are reconstructed from calibrated topological clusters [21] built from energy deposits in the calorimeters, using the anti-k_t algorithm [84–86] with a radius parameter $R = 0.4$. Prior to jet finding, a local cluster calibration scheme [87,88] is applied to correct the topological cluster energies for the effects of non-compensating calorimeter response, inactive material and out-of-cluster leakage. The jets are calibrated using energy and η-dependent calibration factors, derived from simulations, to the mean energy of stable particles inside the jets. Additional correc-
tions to account for the difference between simulation and data are derived from in-situ techniques [89,90]. After energy calibration, jets are required to have $p_T > 25$ GeV and $|\eta| < 2.5$.

To reduce the contamination from jets originating in pp interactions within the same bunch crossing (pileup), the scalar sum of the p_T values of tracks matched to the jet and originating from the primary vertex must be at least 50% of the scalar sum of the p_T of all tracks matched to the jet. This criterion is only applied to jets with $p_T < 50$ GeV (those most likely to originate from pileup) and $|\eta| < 2.4$ (to avoid inefficiency at the edge of tracking acceptance).

The calorimeter energy deposits from electrons are typically also reconstructed as jets; in order to eliminate double counting, any jets within $\Delta R = 0.3$ of a selected electron are not considered.

Jets containing b-hadrons are identified (b-tagged) via a multivariate discriminant [91] that combines information from the impact parameters of displaced tracks with topological properties of secondary and tertiary decay vertices reconstructed within the jet. The working point used for this search corresponds to approximately 70% efficiency to tag a b-hadron jet, with a light-jet mistag rate of $\approx 1\%$ and a charm-jet rejection factor of 5, as determined for b-tagged jets with p_T of 20–100 GeV and $|\eta| < 2.5$ in simulated $t\bar{t}$ events. To avoid inefficiencies associated with the edge of the tracking coverage, only jets with $|\eta| < 2.4$ are considered as possible b-tagged jets in this analysis. The efficiency and mistag rates of the b-tagging algorithm are measured in data [91,92] and correction factors are applied to the simulated events.

6. Event selection and classification

All events considered in this analysis are required to pass single-lepton (e or μ) triggers. These achieve their maximal plateau efficiency for lepton $p_T > 25$ GeV.

This analysis primarily targets the $H \to WW^*$ and $\tau\tau$ decay modes. Considering the decay of the $t\bar{t}$ system as well, these $t\bar{t}H$ events contain either $WWWWbb$ or $\tau\tau WWbb$. The strategy is to target final states that cannot be produced in $t\bar{t}$ decay alone $-$ i.e., three or more leptons, or two same-sign leptons $-$ thus suppressing what would otherwise be the largest single background.

The analysis categories are classified by the number of light leptons and hadronic τ decay candidates. The leptons are selected using the criteria described earlier. Events are initially classified by counting the number of light leptons with $p_T > 10$ GeV. At least one light lepton is required to match a lepton selected by the trigger system. After initial sorting into analysis categories, in some cases the lepton selection criteria are tightened by raising the p_T threshold, tightening isolation selections or restricting the allowed $|\eta|$ range, as explained in the following per-category descriptions. The analysis includes five distinct categories: two same-sign light leptons with no t_had (2$0t_\text{had}$), three light leptons (3ℓ), two same-sign light leptons and one t_had (2$1t_\text{had}$), four light leptons (4ℓ), and one light lepton and two t_had (1$2t_\text{had}$). The categories with t_had candidates target the $H \to \tau\tau$ decay; the others are primarily sensitive to $H \to WW^*$ with a very small contribution from $H \to ZZ^*$.

The contributions to each category from different Higgs boson decay modes are shown in Table 2. These selection criteria ensure that an event can only contribute to a single category. The contamination from gluon fusion, vector boson fusion, and associated VH production mechanisms for the Higgs boson is predicted to be negligible. Summed over all categories, the total expected number of reconstructed signal events assuming Standard Model $t\bar{t}H$ production is 10.2, corresponding to 0.40% of all produced $t\bar{t}H$ events. The detailed criteria for each category are described below.

Table 2

<table>
<thead>
<tr>
<th>Category</th>
<th>Higgs boson decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW^*</td>
<td>$\tau\tau$</td>
</tr>
<tr>
<td>2$0t_\text{had}$</td>
<td>80%</td>
</tr>
<tr>
<td>3ℓ</td>
<td>74%</td>
</tr>
<tr>
<td>2$1t_\text{had}$</td>
<td>35%</td>
</tr>
<tr>
<td>4ℓ</td>
<td>69%</td>
</tr>
<tr>
<td>1$2t_\text{had}$</td>
<td>4%</td>
</tr>
</tbody>
</table>

6.1. $2t0t_\text{had}$ categories

Selected events are required to include exactly two light leptons, which must have the same charge. Events with t_had candidates are vetoed. To reduce the background from non-prompt leptons, the leading (subleading) lepton is required to satisfy $p_T > 25$ (20) GeV, and the muon isolation requirements are tightened to $E_T^\text{cone}/p_T < 0.05$ and $p_T^\text{cone}/p_T < 0.05$. The angular acceptance of electron candidates is restricted to $|\eta| < 1.37$ in order to suppress $t\bar{t}$ background events where the sign of the electron charge is misreconstructed, as the charge misidentification rate increases at high pseudorapidity.

In order to suppress the lower-multiplicity $t\bar{t} +$ jets and $t\bar{t}W$ backgrounds, events must include at least four reconstructed jets. In order to suppress diboson and single-boson backgrounds, at least one of these jets must be b-tagged. The selected events are separated by lepton flavour ($e^+e^-, e^\pm\mu^\pm$, and $\mu^+\mu^-$) and number of jets (exactly four jets, at least five jets) into six categories with different signal-to-background ratio, resulting in higher overall sensitivity to the $t\bar{t}H$ signal.

6.2. 3ℓ category

Selected events are required to include exactly three light leptons with total charge equal to ± 1. Candidate events arising from non-prompt leptons overwhelmingly originate as opposite-sign dilepton events with one additional non-prompt lepton. As a result, the non-prompt lepton is generally one of the two leptons with the same charge. To reduce these backgrounds, a higher momentum threshold $p_T > 20$ GeV is applied to the two leptons with the same charge. No requirements are imposed on the number of t_had candidates. In order to suppress the $tt +$ jets and $ttVV$ backgrounds, selected events are required to include either at least four jets of which at least one must be b-tagged, or exactly three jets of which at least two are b-tagged. To suppress the $t\bar{t}Z$ background, events that contain an opposite-sign same-flavour lepton pair with the dilepton invariant mass within 10 GeV of the Z mass are vetoed. Events containing an opposite-sign lepton pair with invariant mass below 12 GeV are also removed to suppress background from resonances that decay to light leptons.

6.3. $211t_\text{had}$ category

Selected events are required to include exactly two light leptons, with the same charge and leading (subleading) $p_T > 25$ (15) GeV, and exactly one hadronic τ candidate. The reconstructed charge of the t_had candidate has to be opposite to that of the light leptons. In order to reduce $t\bar{t} +$ jets and $t\bar{t}V$ backgrounds, events must include at least four reconstructed jets. In order to suppress diboson and single-boson backgrounds at least one jet must be b-tagged. To suppress the $Z \to e^+e^-$ + jets background, events with dielectron invariant mass within 10 GeV of the Z mass are vetoed.
6.4. 4ℓ categories

Selected events are required to include exactly four light leptons with total charge equal to zero and leading (subleading) \(p_T > 25 \) (15) GeV. No requirements are applied on the number of \(\tau_{\text{had}} \) candidates. In order to suppress the \(t\bar{t} + \text{jets} \) and \(t\bar{t}V \) backgrounds, the selected events are required to include at least two jets of which at least one must be \(b \)-tagged. To suppress the \(t\bar{t}Z \) background, events that contain an opposite-sign same-flavour lepton pair with dilepton invariant mass within 10 GeV of the \(Z \) mass are vetoed. In order to suppress background contributions from resonances that decay to light leptons, all opposite-sign same-flavour lepton pairs are required to have a dilepton invariant mass greater than 10 GeV. The four-lepton invariant mass is required to be between 100 and 500 GeV, which gives high acceptance for \(t\bar{t}H, H \rightarrow WW^{*} \rightarrow \ell\ell V \ell \), but rejects \(Z \rightarrow 4\ell \) and high-mass \(t\bar{t}Z \) events. Selected events are separated by the presence or absence of a same-flavour, opposite-sign lepton pair into two categories, referred to respectively as the \(Z \)-enriched and \(Z \)-depleted categories. In both cases the \(Z \) mass veto is applied, but background events in the \(Z \)-enriched category can arise from off-shell \(Z \) and \(\gamma^{*} \rightarrow \ell^{+}\ell^{-} \) processes while in the \(Z \)-depleted category these backgrounds are absent.

6.5. 1ℓ2\(\tau_{\text{had}} \) category

Selected events are required to include exactly one light lepton with \(p_T > 25 \) GeV and exactly two hadronic \(\tau \) candidates. The \(\tau_{\text{had}} \) candidates must have opposite charge. In order to suppress the \(t\bar{t} + \text{jets} \) and \(t\bar{t}V \) backgrounds, events must include at least three reconstructed jets. In order to suppress diboson and single-boson backgrounds, at least one of the jets must be \(b \)-tagged. This final state is primarily sensitive to \(H \rightarrow \tau^{+}\tau^{-} \) decays, allowing use of the invariant mass of the visible decay products of the \(\tau_{\text{had}}\tau_{\text{had}} \) system \((m_{\text{vis}}) \) as a signal discriminant. Signal events are required to satisfy \(60 < m_{\text{vis}} < 120 \) GeV.

7. Background estimation

Important irreducible backgrounds include \(t\bar{t}V \) and diboson production and are estimated from MC simulation. Validation regions enriched in these backgrounds are used to verify proper modelling of data by simulation. Reducible backgrounds are due to non-prompt lepton production and electron charge misidentification, and are estimated from data, with input from simulation in some categories. In the \(1\ell 2\tau_{\text{had}} \) category the primary concern is fake \(\tau_{\text{had}} \) candidates, which are modelled using simulation and validated against a data-driven estimate.

7.1. \(t\bar{t}V \) and \(t\bar{t}Z \)

The primary backgrounds with prompt leptons stem from the production of \(t\bar{t}W \) and \(t\bar{t}Z \). The \(t\bar{t}W \) background tends to have lower jet multiplicity than the signal and so the leading contribution comes from events with additional high-\(p_T \) jets; it is the major \(t\bar{t}W \) contribution in the \(2\ell 0\tau_{\text{had}} \) categories and comparable to \(t\bar{t}Z \) in the \(2\ell 1\tau_{\text{had}} \) category. The \(t\bar{t}Z \) process has similar multiplicity to the \(t\bar{t}H \) signal but can only contribute to the signal categories when the \(Z \) boson decays leptonically, so the on-shell contribution can be removed by vetoing events with opposite-sign dilepton pairs with invariant mass near the \(Z \) pole. This is the larger of the two \(t\bar{t}V \) contributions for the \(3\ell, 4\ell \), and \(1\ell 2\tau_{\text{had}} \) categories. The \(\ell \) \(\tau \) process makes a subleading contribution to both channels. A validation region is used to verify the modelling of \(t\bar{t}Z \) using on-shell \(Z \) decays. Agreement is seen within the large statistical uncertainty. No region of equivalent purity and statistical power exists for \(t\bar{t}W \) production; nevertheless the expectations are cross-checked with a validation region defined with the \(2\ell 0\tau_{\text{had}} \) selection except with two or more \(b \)-tagged jets and either two or three jets, where the \(t\bar{t}W \) purity is \(\approx 30\% \), and are found to be consistent within uncertainties. The spectra of the number of jets in these validation regions are shown in Fig. 1.
Table 3

<table>
<thead>
<tr>
<th>Category</th>
<th>q mis-id</th>
<th>Non-prompt</th>
<th>ttW</th>
<th>ttZ</th>
<th>Diboson</th>
<th>Expected bkg.</th>
<th>ttH (μ = 1)</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ee± ≥ 5j</td>
<td>1.1 ± 0.5</td>
<td>2.3 ± 1.2</td>
<td>1.4 ± 0.4</td>
<td>0.98 ± 0.26</td>
<td>0.47 ± 0.29</td>
<td>6.5 ± 1.8</td>
<td>0.73 ± 0.14</td>
<td>10</td>
</tr>
<tr>
<td>eeμ ± ≥ 5j</td>
<td>0.85 ± 0.35</td>
<td>6.7 ± 2.4</td>
<td>4.8 ± 1.2</td>
<td>2.1 ± 0.5</td>
<td>0.38 ± 0.30</td>
<td>15 ± 3</td>
<td>2.13 ± 0.41</td>
<td>22</td>
</tr>
<tr>
<td>μνμ + ≥ 5j</td>
<td>2.9 ± 1.4</td>
<td>3.8 ± 0.9</td>
<td>0.95 ± 0.25</td>
<td>0.69 ± 0.39</td>
<td>8.6 ± 2.2</td>
<td>1.41 ± 0.28</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>ee + 4j</td>
<td>1.8 ± 0.7</td>
<td>3.4 ± 1.7</td>
<td>2.0 ± 0.8</td>
<td>0.75 ± 0.20</td>
<td>0.74 ± 0.42</td>
<td>9.1 ± 2.1</td>
<td>0.44 ± 0.06</td>
<td>9</td>
</tr>
<tr>
<td>μν + 4j</td>
<td>1.4 ± 0.6</td>
<td>12 ± 4</td>
<td>6.2 ± 1.0</td>
<td>1.5 ± 0.3</td>
<td>1.9 ± 1.0</td>
<td>24 ± 5</td>
<td>1.16 ± 0.14</td>
<td>26</td>
</tr>
<tr>
<td>μτμ + 4j</td>
<td>6.3 ± 2.6</td>
<td>4.7 ± 0.9</td>
<td>0.80 ± 0.22</td>
<td>0.53 ± 0.30</td>
<td>12.7 ± 2.9</td>
<td>0.74 ± 0.10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>τττ had</td>
<td>3.2 ± 0.7</td>
<td>2.3 ± 0.7</td>
<td>3.9 ± 0.8</td>
<td>0.86 ± 0.55</td>
<td>11.4 ± 2.3</td>
<td>2.34 ± 0.35</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>τττ had</td>
<td>0.4 ± 0.26</td>
<td>0.38 ± 0.12</td>
<td>0.37 ± 0.08</td>
<td>0.12 ± 0.11</td>
<td>1.4 ± 0.6</td>
<td>0.47 ± 0.08</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>τττ had</td>
<td>15 ± 5</td>
<td>0.17 ± 0.06</td>
<td>0.37 ± 0.09</td>
<td>0.41 ± 0.42</td>
<td>16 ± 5</td>
<td>0.68 ± 0.13</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4Z entr.</td>
<td>≤ 10⁻³</td>
<td>≤ 3 × 10⁻³</td>
<td>0.43 ± 0.12</td>
<td>0.05 ± 0.02</td>
<td>0.55 ± 0.15</td>
<td>0.17 ± 0.02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4Z dep.</td>
<td>≤ 10⁻⁴</td>
<td>≤ 10⁻⁴</td>
<td>0.002 ± 0.002</td>
<td>≤ 2 × 10⁻⁶</td>
<td>0.007 ± 0.005</td>
<td>0.025 ± 0.003</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The charge mis-id probability is determined by a maximum-likelihood fit using Z → ee events reconstructed as same-sign and as opposite-sign pairs, as a function of electron η and pT. This probability function is then applied to a sample of events passing the 2τττ had selection except that the lepton pair is required to be opposite sign. The charge mis-id probability from the relatively low momentum Z daughters is extrapolated to higher pT using scaling functions extracted from Monte Carlo simulations. The dominant uncertainty is due to the statistical precision of the charge mis-id probability determination, and is ≈ 40% in the signal regions.

7.4. Non-prompt light leptons

A significant background arises from leptons not produced in decays of electroweak bosons (non-prompt leptons), which can promote (for example) a single-lepton ττ event into a 2τττ had category or a dilepton ττ event to the 3e or 2τττ had categories. These backgrounds in the signal regions are expected to be dominated by ττ or single top quark production with leptons produced in decays of heavy-flavour hadrons. Production of ττ with an additional photon which converts in the detector material is a subdominant contribution. With the tight object selection requirements applied in this analysis, almost all reconstructed electron and muon objects correspond to real electrons and muons; the fraction arising from incorrect particle identification is negligible. Estimates of these backgrounds are obtained from data. Each channel has a slightly different procedure, motivated by the specific event topology and the statistical power available in the control regions. The methods are discussed below, and the expected non-prompt lepton contributions to the various categories are shown in Table 3. In the following, a tight lepton is a lepton that passes the nominal selection, a sideband lepton is defined as a lepton candidate which satisfies different criteria than the tight lepton selection (identification selection, isolation, or pT), and (sideband) control regions either require one or more sideband leptons to replace a tight lepton in the signal region selection, or have the same lepton selection as the signal region but different jet requirements.

7.4.1. 2τττ had categories

The non-prompt lepton yields in the signal regions are estimated by extrapolating from sideband control regions in data which are enriched in ττ non-prompt contributions. For electrons, sideband objects are selected by inverting the electron identification and isolation requirements; for muons the sideband objects have low transverse momentum, 6 < pT < 10 GeV, but otherwise are selected the same way as nominal muons. Transfer factors are used to extrapolate from events with one tight and one sideband
lepton, but which otherwise pass the signal region selections, to
the signal regions with two tight leptons. These transfer factors are
determined from additional data control regions (tight + sideband
and two tight leptons) with lower jet multiplicity ($1 \leq n_{\text{jet}} \leq 3$ for
electrons, $2 \leq n_{\text{jet}} \leq 3$ for muons). In all regions the expected con-
tribution from processes producing prompt leptons is subtracted
before extracting transfer factors or using the yields for extrapolation.
For channels with electrons, the charge mis-id background is
also subtracted, and a dilepton mass veto is applied in the control
regions to suppress contributions from $Z \rightarrow e^+e^-$ decays. A cross-
check on the muon estimate, using an extrapolation in muon iso-
lation instead of muon p_T, agrees well with the nominal procedure
and provides additional confidence in the estimate.

The systematic uncertainties on this procedure are estimated by
checking a) its ability to successfully predict the non-prompt back-
ground in $t\bar{t}$ simulation and b) the stability of the prediction using
data when the selection of the control regions is altered. For the
former, different parton shower and b-hadron decay models were
checked, as was the result of removing the b-tagged jet require-
ment. In addition, for electrons, the effects of relaxing the pseudo-
rapidity requirement to $|\eta| < 2.5$ and of raising the p_T threshold
were studied. These checks show stability at the 25–30% level, lim-
ited by the statistical precision of the simulations. The stability in
data is checked by altering the p_T required for the b-tagged jet,
applying a requirement on missing transverse momentum E_T^{miss},
extracting the transfer factors only from events with three jets, or
(for muons) using 10–15 GeV muons as the sideband objects. This
check shows stability of the predictions to 14% for muons and 19%
for electrons. Additional systematic uncertainties in the prediction
arise from the statistical uncertainties on the yields in the control
regions and the subtraction of prompt and charge mis-id contribu-
tions. The overall uncertainties on the non-prompt yield prediction
in any given category range from 32% to 52%, and correlations be-
tween the categories due to uncertainties in the transfer factors
are included in the fit (see Section 9).

7.4.2. 3ℓ category

Sideband leptons are defined by reversing the isolation require-
ment for electrons and muons and, for electrons, requiring that
the candidate fail the tight electron identification discriminant require-
ment of the analysis but pass a looser selection. The non-prompt
lepton contribution in the signal region is estimated by extrapolat-
ing from data regions with two tight and one sideband lepton, us-
ing transfer factors estimated from Monte Carlo simulation. These
events typically contain two prompt opposite-sign leptons and one
non-prompt lepton, which necessarily must be of the same sign as
one of the prompt leptons. Therefore the non-prompt lepton esti-
mation procedure is applied only to the two same-sign leptons.
The simulation-derived transfer factor is validated in a region of
lower jet multiplicity ($2 \leq n_{\text{jet}} \leq 3$ and exactly one b-tagged jet).
Good agreement is observed in this validation region between the
prediction (11.8 ± 2.3) and the observed yield (9.8 ± 4.9 events
after prompt background subtraction). Systematic uncertainties in
the procedure are derived by studying the agreement between data
and simulation in the variables used for the extrapolation, which is
$\approx 20\%$ for both electrons and muons. Additional uncertainties arise
from the statistical uncertainties on the yields in the control re-

7.4.3. 2ℓ τ_{had} category

Reconstructing two same-sign light leptons from $t\bar{t}$ production
or similar sources requires that one of the light leptons is non-
prompt or has its charge misidentified. In the 2ℓ τ_{had} category,
the charge mis-id contribution is negligible and the primary concern
is non-prompt light leptons. Around half of the τ_{had} candidates in
these events come from $W \rightarrow \tau\nu$ decays, while the remain-
der arise from misidentified light-quark or gluon jets. Regardless
of whether the τ_{had} candidate is a fake, there is also a non-prompt
light lepton. Due to this fact, sidebands in the light-lepton selec-
tion criteria are used, analogously to the 2ℓ τ_{horad} and 3ℓ
categories. Since the ratio of real and fake τ_{had} candidates is similar in the sig-
nal and all control regions, fake τ_{had} candidates are not accounted
for separately; the small variations in the ratio in the control re-

4 This is calculated using calorimeter energy deposits, calibrated according to as-
sociated reconstructed physics objects, and also including the transverse momenta
of reconstructed muons.

7.4.4. 4ℓ category

The non-prompt lepton contribution in this category is ex-
pected to be negligible and is estimated to be $\lesssim 10^{-3}$ events in the
Z-enriched sample and $\lesssim 10^{-4}$ events in the Z-depleted sample.
In both cases this represents $\lesssim 2\%$ of the total background expecta-
tion. These estimates are obtained using the transfer factors from the
3ℓ channel and appropriate control regions with two loose lep-
tons and relaxed jet multiplicity requirements.

7.5. τ_{had} misidentification in the 12ℓ τ_{had} category

The nominal estimate for the fake τ_{had} yield is derived from $t\bar{t}$ simulation.
To obtain a sufficiently large sample size, fast simul-
atization using parameterized calorimeter showers is used. At all
preselection stages the simulation is found to give an acceptable
description of the $t\bar{t}$ background, both in kinematic distributions
and total yield. This estimate is cross-checked with the data-driven
method described below.

Of the two τ_{had} candidates, one is opposite in sign to the light
lepton (OS) and the other has the same sign (SS). The SS can-
didate is almost always a fake τ_{had}, while the light lepton is prompt
and the OS τ_{had} candidate is often real ($\approx 30\%$). A sideband $\tau_{\text{had}}
is defined as a candidate passing a loose identification BDT selec-
tion but not the nominal tight one. Assuming the τ_{had} candidate
fake probabilities are not correlated between jets identified as OS
and SS candidates, control regions can be used to predict yields
in the signal region. There are three control regions, depending on
whether only the OS, only the SS, or both the OS and SS τ_{had} can-
didates are sideband objects. The regions with sideband OS
τ_{had} candidates are used to obtain the transfer factor for the SS
τ_{had} candidate, which is then applied to the region with a tight
OS and sideband SS candidate to obtain the prediction for the sig-
}
as a function of the p_T, η, number of tracks, and b-tag discriminant value of the SS τ_{had} candidate. The data-driven method is cross-checked in $t\bar{t}$ simulation and found to successfully predict the yields in the signal region. The main limitation of this method is the statistical power of the control regions.

The simulation-driven method is taken as the primary estimate, as the validation of the method at preselection stages is more precise than the data-driven method due to larger event yield for the former. The comparison of the simulation- and data-driven techniques gives a 36% uncertainty in the prediction in the signal region, which is taken as the systematic uncertainty on the estimate.

8. Other systematic uncertainties

Systematic uncertainties not already discussed are summarized below. The uncertainty on the integrated luminosity is 2.8%. This uncertainty is derived from a calibration of the luminosity scale derived from beam-separation scans performed in November 2012, following the same methodology as that detailed in Ref. [94].
Lepton reconstruction and identification uncertainties are obtained from $Z \rightarrow \ell\ell$, $Z \rightarrow \ell\ell\gamma$, $\gamma \rightarrow \ell\ell$, and $J/\psi \rightarrow \ell\ell$ events [80–82]. Uncertainties on the detector response are assessed similarly to other ATLAS analyses. The modelling of the efficiency of the tight isolation requirements in simulation is explicitly checked as a function of the number of jets in the event. These corrections are found to be very small, with uncertainties limited by data statistics.

The largest jet-related systematic uncertainty arises from the jet energy scale, in particular contributions from the in-situ calibration in data, the different response to quark and gluon jets, and the pileup subtraction. The impact of the b-tagging efficiency uncertainty on the signal strength $\mu = \sigma_{tH,\text{obs}}/\sigma_{tH,\text{SM}}$ at the best-fit value of μ is $\Delta \mu = -0.08$. Because only one (of typically two) b-jets present in signal or $t\bar{t}W$ events is required to be tagged, the uncertainty on the b-tagging efficiency (while included) does not have as large an effect in this analysis as it does in other $t\bar{t}H$ searches such as those targeting the $H \rightarrow b\bar{b}$ decay.

The uncertainties on the inclusive $t\bar{t}H$ production cross section are discussed in Section 3. Additionally, the effects of PDF uncertainty, QCD scale choice, and parton shower algorithm on the signal acceptance in each analysis category are considered. The resulting relative uncertainties on the acceptance are 0.3–1.4% for PDF, 0.1–2.7% for scale choice, and 1.5–13% for parton shower algorithm.

For most backgrounds the uncertainties from Monte Carlo simulation sample sizes are negligible. For the diboson backgrounds, however, these can reach 50% of the total diboson yield uncertainties shown in Table 3.

9. Results

The observed yields, and a comparison with the expected backgrounds and $t\bar{t}H$ signal, are shown in Table 3. The distributions of the number of jets in the events passing signal region selections are shown in Fig. 2. The best-fit value of the signal strength $\mu = \sigma_{tH,\text{obs}}/\sigma_{tH,\text{SM}}$ is determined using a maximum likelihood fit to the data yields of the categories listed in Table 3, which are treated as independent Poisson terms in the likelihood. The fit is based on the profile-likelihood approach where the systematic uncertainties are treated as nuisance parameters with prior uncertainties that can be further constrained by the fit [95]. The $\mu = 1$ hypothesis assumes Standard Model Higgs boson production and decay with $m_H = 125$ GeV; for all other values of μ only the $t\bar{t}H$ production cross section is scaled (the Higgs boson branching fractions are fixed to their SM values).

Systematic uncertainties are allowed to float in the fit as nuisance parameters and take on their best-fit values. The only constraints on nuisance parameter uncertainties found by the fit are for non-prompt lepton transfer factors and normalization region yields in the 2ℓ0τ_{had} categories and the fake τ_{had} background yield in the 1ℓ2τ_{had} category. The former all have large statistical components and so the additional information from the signal regions is expected to constrain them. The latter has a very large initial uncertainty which the fit is able to constrain as μ is required to be the same in all categories. The largest difference between pre- and post-fit nuisance parameter values is in the 1ℓ2τ_{had} fake estimate, which shifts by -1.0σ due to the deficit observed relative to expected events. The next largest effect is a $+0.4\sigma$ shift in the 2ℓ0τ_{had} non-prompt μ transfer factor.

The results of the fit are shown in Fig. 3. The impact of the most important systematic uncertainties on the measured value of μ in the combined fit is shown in Table 4. In each category, the uncertainties on μ are mainly statistical, except for the combined 2ℓ0τ_{had} result where the statistical and systematic uncertainties are of comparable size. In the 4ℓ Z-depleted category, a (non-physical) signal strength $\mu < -0.17$ results in a negative expected total yield and so the lower uncertainty is truncated at this point.

![Fig. 3. Best-fit values of the signal strength parameter $\mu = \sigma_{tH,\text{obs}}/\sigma_{tH,\text{SM}}$ for the 4ℓ Z-depleted category, $\mu < -0.17$ results in a negative expected total yield and so the lower uncertainty is truncated at this point.](image)

Table 4 Leading sources of systematic uncertainty and their impact on the measured value of μ.

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ℓ0τ_{had} non-prompt muon transfer factor</td>
<td>$+0.38$</td>
</tr>
<tr>
<td>$t\bar{t}W$ acceptance</td>
<td>$+0.26$</td>
</tr>
<tr>
<td>$t\bar{t}H$ inclusive cross section</td>
<td>$+0.28$</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>-0.24</td>
</tr>
<tr>
<td>2ℓ0τ_{had} non-prompt electron transfer factor</td>
<td>$+0.26$</td>
</tr>
<tr>
<td>$t\bar{t}H$ acceptance</td>
<td>$+0.22$</td>
</tr>
<tr>
<td>$t\bar{t}Z$ inclusive cross section</td>
<td>$+0.19$</td>
</tr>
<tr>
<td>$t\bar{t}W$ inclusive cross section</td>
<td>$+0.18$</td>
</tr>
<tr>
<td>Muon isolation efficiency</td>
<td>$+0.19$</td>
</tr>
<tr>
<td>Luminosity</td>
<td>$+0.18$</td>
</tr>
</tbody>
</table>

This analysis is a search for $t\bar{t}H$ production; as such, production of $t\bar{t}Hq$ and $t\bar{t}HW$ is considered as a background and set to Standard Model expectation. Including this contribution as a background induces a shift of $\Delta \mu = -0.04$ compared to setting it to zero. A full extraction of limits on the top quark Yukawa coupling including the relevant modifications of single top plus Higgs boson production is reported in Ref. [97].

The results are sensitive to the assumed cross sections for $t\bar{t}W$ and $t\bar{t}Z$ production, and use theoretical predictions for these values as experimental measurements do not yet have sufficient precision. The best-fit μ value as a function of these cross sections is
\[
\mu(t\bar{t}H) = 2.1 - 1.4 \left(\frac{\sigma(t\bar{t}W)}{232 \text{ fb}} - 1 \right) - 1.3 \left(\frac{\sigma(t\bar{t}Z)}{206 \text{ fb}} - 1 \right).
\]

10. Conclusions

A search for \(t\bar{t}H\) production in multilepton final states has been performed using 20.3 fb\(^{-1}\) of proton–proton collision data at \(\sqrt{s} = 8\) TeV recorded by the ATLAS experiment at the LHC. The best-fit value of the ratio \(\mu\) of the observed production rate to that predicted by the Standard Model is 2,\(^{+1.4}_{-1.2}\). This result is consistent with the Standard Model expectation. A 95% confidence level limit of \(\mu < 4.7\) is set. The expected limit in the absence of \(t\bar{t}H\) signal is \(\mu < 2.4\). The observed (expected) \(p\)-value of the no-signal hypothesis corresponds to 1.8\(\sigma\) (0.9\(\sigma\)).

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CPNP and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; CONCILIA, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG and MPG, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINEVA, GIF, I-CORE and Ben-Zvi Center, Israel; INFN, Italy; MEK and JPSP, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNISW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR, MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

Materials and Methods

text continues here...
ATLAS Collaboration

157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto, ON, Canada
159 a) TRIUMF, Vancouver, BC; b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
160 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
161 Department of Physics and Astronomy, Tufts University, Medford, MA, United States
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
164 a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; b) ICTP, Trieste; c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois, Urbana, IL, United States
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver, BC, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
170 Department of Physics, University of Warwick, Coventry, United Kingdom
171 Waseda University, Tokyo, Japan
172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173 Department of Physics, University of Wisconsin, Madison, WI, United States
174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176 Department of Physics, Yale University, New Haven, CT, United States
177 Yerevan Physics Institute, Yerevan, Armenia
178 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, United Kingdom.
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
c Also at Novosibirsk State University, Novosibirsk, Russia.
d Also at TRIUMF, Vancouver, BC, Canada.
e Also at Department of Physics, California State University, Fresno, CA, United States.
f Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
g Also at Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal.
h Also at Tomsk State University, Tomsk, Russia.
i Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
j Also at Universita di Napoli Parthenope, Napoli, Italy.
k Also at Institute of Particle Physics (IPP), Canada.
l Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
m Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at Georgia Tech University, Atlanta, GA, United States.
o Also at Instituto Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
p Also at Department of Physics, National Tsing Hua University, Taiwan.
q Also at Department of Physics, The University of Texas at Austin, Austin, TX, United States.
r Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
s Also at CERN, Geneva, Switzerland.
t Also at Georgian Technical University (GTU), Tbilisi, Georgia.
u Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
v Also at Manhattan College, New York, NY, United States.
w Also at Hellenic Open University, Patras, Greece.
x Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
y Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
z Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
a Also at School of Physics, Shandong University, Shandong, China.
b Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
c Also at Section de Physique, Université de Genève, Geneva, Switzerland.
d Also at International School for Advanced Studies (SISSA), Trieste, Italy.
e Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
f Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
g Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
h Also at National Research Nuclear University MEPhI, Moscow, Russia.
i Also at Department of Physics, Stanford University, Stanford, CA, United States.
j Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
k Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
l Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.
m Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.

* Deceased.