Hydrodynamics of embedded planets’ first atmospheres – II. A rapid recycling of atmospheric gas

Chris W. Ormel,1,2*† Ji-Ming Shi1,3 and Rolf Kuiper4

1Astronomy Department, University of California, Berkeley, CA 94720, USA
2Astronomical Institute Anton Pannekoek, University of Amsterdam, PO Box 94249, NL-1090 GE Amsterdam, the Netherlands
3Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
4Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany

Accepted 2014 December 18. Received 2014 November 20; in original form 2014 September 21

ABSTRACT

Following Paper I we investigate the properties of atmospheres that form around small protoplanets embedded in a protoplanetary disc by conducting hydrodynamical simulations. These are now extended to three dimensions, employing a spherical grid centred on the planet. Compression of gas is shown to reduce rotational motions. Contrasting the 2D case, no clear boundary demarcates bound atmospheric gas from disc material; instead, we find an open system where gas enters the Bondi sphere at high latitudes and leaves through the mid-plane regions, or, vice versa, when the disc gas rotates sub-Keplerian. The simulations do not converge to a time-independent solution; instead, the atmosphere is characterized by a time-varying velocity field. Of particular interest is the time-scale to replenish the atmosphere by nebular gas, $t_{\text{replenish}}$. It is shown that the replenishment rate, $M_{\text{atm}}/t_{\text{replenish}}$, can be understood in terms of a modified Bondi accretion rate, $\sim R_{\text{Bondi}}^2 \rho_{\text{disc}} v_{\text{Bondi}}$, where v_{Bondi} is set by the Keplerian shear or the magnitude of the sub-Keplerian motion of the gas, whichever is larger. In the inner disc, the atmosphere of embedded protoplanets replenishes on a time-scale that is shorter than the Kelvin–Helmholtz contraction (or cooling) time-scale. As a result, atmospheric gas can no longer contract and the growth of these atmospheres terminates. Future work must confirm whether these findings continue to apply when the (thermodynamical) idealizations employed in this study are relaxed. But if shown to be broadly applicable, replenishment of atmospheric gas provides a natural explanation for the preponderance of gas-rich but rock-dominant planets like super-Earths and mini-Neptunes.

Key words: hydrodynamics – planets and satellites: atmospheres – planets and satellites: formation – protoplanetary discs.

1 INTRODUCTION

In this paper, the second of a series, we continue to investigate the properties of the atmospheres that form around low-mass protoplanets as they reside in a circumstellar disc. The low-mass regime that we study entails that the planet’s response to the disc falls in the linear regime (Lin & Papaloizou 1993), but that the planet is massive enough to bind material. The first criterion implies that R_{Bondi} is less than the pressure scaleheight of the circumstellar gas H; and the latter criterion means that its Bondi radius $R_{\text{Bondi}} = GM_p/c_s^2$, where G is Newton’s constant, M_p the planet mass, and c_s the local (isothermal) sound speed of the disc, is larger than the surface radius R_surf. Such planets ($R_\text{surf} \leq R_{\text{Bondi}} \leq H$) are referred to as ‘embedded’. Two key questions regarding these atmospheres are as follows. (i) Does the material stay bound to the planet instead of flowing back to the circumstellar disc? (ii) Does the flow pattern (the density and velocity field) of the atmosphere attain a steady, time-independent, solution in the frame corotating with the planet?

The answer of Ormel, Kuiper & Shi (2015, from here on referred to as Paper I), where we conducted 2D (planar) hydrodynamical simulations using the PLUTO code (Mignone et al. 2007), to these questions is positive, consistent with earlier findings (Korycansky & Papaloizou 1996; Ormel 2013). Paper I also highlighted two features of embedded atmospheres. The first is that the topology of the flow qualitatively depends on the value of the so called headwind of the gas – the amount the gas lags in velocity with respect to Keplerian. This lag arises by virtue of a radial pressure gradient of the circumstellar disc material (Adachi, Hayashi & Nakazawa 1971).
1976; Weidenschilling 1997). If there is no lag (zero headwind) the horseshoe region is centred at the planet’s position, which gives rise to large atmospheres. However, in the more realistic case of a pressure gradient, the horseshoe region of a low-mass planet is offset and no longer connects to the atmosphere (Ormel 2013). The bound atmosphere (defined by circulating streamlines) is asymmetrical and much smaller.

Secondly, we found that the size of the bound atmosphere increases strongly with its mass. That is, as the atmosphere contracts and gas settles towards the centre (i.e. towards \(R_{\text{init}} \)), the angular momentum of the newly accreted gas causes the atmosphere to spin more rapidly, thereby increasing the size of the circulating – bound – region. This is a consequence of vortensity conservation and Kelvin’s circulation theorem. We showed that such atmospheres conceivably start to rotate at Keplerian speeds before their masses become critical (gas-to-core mass ratio of \(\approx 1 \)), which implies a rotational bottleneck for the formation of giant planets.

These findings have been made under the assumption of several idealizations for the flow: primarily, that it is inviscid, isothermal, and 2D (i.e. planar). In this paper we will relax the latter assumption, which is indeed rather awkward as small planets are fully embedded in the disc. Therefore, the flow is expected to have a vertical component. It is the goal of this paper to conduct 3D hydrodynamical calculations and to contrast it with the 2D findings of Paper I.

Three-dimensional simulations are, however, computationally more challenging and expensive. In Paper I we saw that a polar grid, with its origin centred on the planet, was advantageous; and we will consider its 3D extension – spherical grids – in this work. However, as explained in Section 2.3, grid cells in spherical geometries become very small near the polar angle (the \(\theta \)-axis), which implies a small timestep and a corresponding penalty to the computational efficiency. Another drawback is that 3D flows no longer conserve vortensity. In the 2D simulations vortensity conservation served as a measure to test the fidelity of the hydrodynamical simulations; i.e. we could quantify the effects of, e.g., the computational geometry and resolution simply by calculating the vortensity of the flow and ascertaining whether or not it deviates from its expected (constant) value. In 3D, no such fidelity check is available.

In this paper we will show that the 3D flow is qualitatively different from the 2D case. First of all, the atmosphere carries less rotation, which is attributed to the non-conservation of vortensity. For the parameters adopted in this work, we do not see a transition to a Keplerian-rotating circumplanetary disc. Secondly, we do not see the emergence of a steady flow – the gas within the atmosphere is instead prone to fluctuations, small in magnitude but sufficient to alter the integrated quantities (i.e. streamlines). Most profoundly, we will show that the atmosphere is no longer bound; that is, atmospheric gas is continually exchanged with gas from the circumplanetary disc. This implies that the replenishment timescale of the atmosphere \(t_{\text{replenish}} \) becomes a factor in the long-term evolution of protoplanetary atmospheres.

The structure of this paper is as follows: the model, highlighting the differences with the 2D case is presented in Section 2. Results of the hydrodynamical calculations are presented and analysed in Section 3. We discuss these findings and its implications in Section 4. A summary of the key results is given in Section 5.

2 Model

We briefly discuss the setup of the simulation runs, accentuating the differences with the 2D case of Paper I.

2.1 Units

Following Paper I, we employ dimensionless units, where lengths are expressed in terms of the scaleheight of the disc \(H \), time in units of the inverse orbital frequency \(\Omega^{-1} \), velocities in terms of the (isothermal) sound speed \(c_s = \Omega H \), and gas densities in terms of the density of the circumstellar disc at the location of the planet, \(\rho_{\text{disc}} \).

In these units the Bondi radius and the gravitating mass of the planet \(M_p \) are equal and denoted by \(m = R_{\text{Bondi}}/H = GM_p/H^2\Omega^2 \). The simulations neglect self-gravity of the gas.

2.2 Governing equations, domain, and boundary conditions

Like Paper I we consider a compressible, inviscid, and isothermal flow around a gravitating body (planet) on a circular orbit around a star at orbital frequency \(\Omega \). We consider the governing equations of this flow – the Euler and continuity equations – in a local frame centred on and corotating with the planet (see Paper I). The key difference from Paper I is that the gravitational force due to planet, \(F_{\phi, \text{grav}} \), has a vertical component. Other forces are the Coriolis force (which does not have a vertical component) and the tidal force. The latter does have a vertical component, \(C \left(\sim 2\Omega^2 \right) \) in magnitude. It causes the vertical stratification of the circumstellar disc at scales \(\sim H \). However, for a low-mass embedded planet this force is negligible. Because the planet mass in this paper is \(m = 10^{-7} \), we have for simplicity omitted the vertical tidal force so that the unperturbed density is independent of \(z \) as in Paper I. We have verified that adding the vertical tidal force has negligible implications to the flow pattern.\(^1\)

In Paper I we employed two geometries for the numerical grid: polar (\(r, \phi \)) and (uniform) Cartesian (\(x, y \)) where \(x \) points away from the star and \(y \) into the direction of the planet’s orbit. For the polar geometry we used a logarithmic grid for the radial dimension, which has the advantage that the region within the Bondi sphere (BS) is adequately sampled. Both Cartesian and polar geometries led to convergent results but we favoured the polar geometry as it was shown to be numerically more efficient than the Cartesian grid. In this paper, we only consider a spherical grid (\(r, \theta, \phi \)), where the radial dimension is uniformly sampled in \(\log r \).

Following Paper I, we again consider shear-only runs and headwind runs. In the latter, the radial pressure support of the circumstellar disc causes the gas to rotate slower than Keplerian, which adds a systematic and negative component to the unperturbed flow pattern as seen from the planet. That is, the velocity of the unperturbed flow reads \(v_r = -(\mathcal{M}_{\text{hw}} + \frac{1}{2} x) e_r \), where \(\mathcal{M}_{\text{hw}} \) is the Mach number of the headwind and \(e_r \) points in the direction of the planet’s orbit. For the headwind runs, we consider \(\mathcal{M}_{\text{hw}} = 0.1 \).

A summary of simulations is given in Table 1. Boundary conditions (BCs) and the domain size for \(r \) and \(\phi \) are the same as in Paper I. Note that for the shear-only runs only the \(y > 0 \) plane (0 \(\leq \phi \leq \pi \)) is included in the domain, because of symmetry considerations, whereas for the headwind runs the azimuthal domain consists of the full \(2\pi \). In Paper I, the inner radial domain boundary \(r_{\text{in}} \) was found to be an important parameter as it, because of the isothermal nature of the flow, regulates the mass of the atmosphere. We consider three values of \(r_{\text{in}} \): \(10^{-3}, 7 \times 10^{-4} \), and \(5.5 \times 10^{-4} \) or, respectively, 10, 7, and 5.5 per cent of the Bondi radius.

\(^1\) This conclusion holds only for our specific case where the planet’s Bondi radius is so much smaller than the disc scaleheight. For more massive planets, one must account for the vertical tidal force.
For the (θ) dimension we only follow the upper hemisphere, z ≥ 0 or 0 ≤ θ ≤ π/2, because of the symmetry of the governing equations. The BC at θ = π/2 is therefore taken to be reflective: the flow cannot cross the θ-plane. More subtle is the BC for θ = 0. In PLUTO we must specify the values of the ghost cells, which lie at θ < 0. Here, we adopt the so-called π-BC: Q(σ, −θ, ϕ) = Q(σ, θ, ϕ + π) for any quantity Q. The π-boundary simply expresses continuity as one crosses the pole.

Because of the CPU-intensive nature of the simulations, we are unable to conduct a parameter study as diverse as that of Paper I. We decided to fix the planet mass at a dimensionless number of 10^{-5} (the ratio between the planet’s Bondi radius and gas scaleheight of the disc), low enough to ensure that the planet is fully embedded in the disc. We conduct these simulations at two grid resolutions: standard and high (hiRs) where in the latter the number of grid points is increased by a factor of 2 in every dimension.

2.3 The polar angle grid

Spherical grids feature two singularities: at $r = 0$ and $\theta = 0$. The radial $r \to 0$ is not problematic as we only start the grid at the inner radius r_{min} due to the presence of the planet. However, carving out a cone to tackle the polar angle region ($\theta \to 0$) is unphysical for embedded planets. The problem is that the circumference of the parallels (circles of constant θ) strongly decrease with θ but that each parallel is sub-divided by N_ϕ azimuthal grid points. Thus, the minimum grid length in the simulation is of the order of $\Delta_{\text{min}} \approx 2\pi r_{\text{min}} \sin \theta_1 / N_\phi \approx 2\pi r_{\text{min}} \theta_1 / N_\phi$ where θ_1 is the first (smallest) point in the polar direction and r_{min} the inner radius of the grid. When the θ-points are uniformly distributed this implies a decrease of Δ_{min} by $1/N_\phi$ compared to the polar grid, which, due to the Courant condition, also implies a subsequent reduction of the timestep.

This is a well-known problem for conducting spherical simulations. A possible solution is to use a cubic spherical grid (Koldoba et al. 2002; Fragile et al. 2009). As a partial remedy we have adopted a uniform spacing for $\cos \theta$ instead of θ itself. The uniform spacing in $\cos \theta$ amounts to an equal-area projection and thereby shifts grid points to lower latitudes. Consequently, the first grid point shifts from $\theta_1 \approx \pi / 2N_\phi$ for the uniform-θ spacing to $\theta_1 \approx \sqrt{2/N_\phi}$ for the uniform $\cos \theta$. This decreases the computational expense for the high-resolution runs ($N_\phi = 64$) by a factor 7.

2.4 The two-body force

In Paper I we adopted a gravitational potential that included a (modest) smoothing length to avoid a singularity in the Cartesian simulations. As we do not consider a Cartesian geometry in this paper, the most natural way is to abolish any softening altogether, i.e. to use a Newtonian potential.

However, after conducting several test runs we discovered that the Newtonian potential resulted in an unsteady and unphysical flow pattern. We were unable to precisely pinpoint the source of this behaviour, but its origin is clearly associated with the large gravitational force at the inner radial boundary. In Appendix A we illustrate this phenomenon with a simple 1D application of a damped radial collapse. Clearly, we must modify the BC to prevent this effect (that is, we found that a simple copying or mirroring of the velocities and densities into the ghost cells to produce reflective or no-slip BCs is not sufficient).

Instead of modifying the BCs, we solve the problem by modifying the gravitational potential such that it yields force-free boundary behaviour. A similar procedure has previously been adopted by Ayliffe & Bate (2009b). The modified force reads:

$$ F_{2b} = -\frac{m}{r^2} \exp \left[-A \left(\frac{r_{\text{min}}}{r} \right)^p \right], $$

(1)

where A and p are control parameters chosen to be $A = 10$ and $p = 8$. Equation (1) has the effect that F_{2b} very quickly, but continuously, transitions from a pure Newtonian force, $F_{2b} = -m/r^2$ for $r \gtrsim 2r_{\text{min}}$ to zero for $r \lesssim r_{\text{min}}$.

The gravitational potential corresponding to equation (1) is

$$ \Phi_{2b} = \frac{m}{r_0} \frac{\Gamma(1/p, A(r_0/r)^p)}{p A^{1/p}}. $$

(2)

where $\Gamma(x)$ is the Gamma function and $\Gamma(a, x)$ the incomplete Gamma function. This function is plotted in Fig. 1 together with the Newtonian potential $\Phi_{\text{Newt}} = -m/r$ for the values of r_{min} that we consider in this study: $r_{\text{min}} = 0.1m, 0.07m,$ and $0.055m$. For an isothermal equation of state (EOS) the hydrostatic solution for the density reads $\rho = \rho_{\text{lin}} \equiv \exp[- \Phi_{2b}]$ and is indicated on the right y-axis in Fig. 1.
Figure 1. The exponential potential used in this paper, Φ_{2b} (solid curves, equation 2) for several values of r_{run} and the Newtonian $-m/r$ (dashed). The right axis gives the density in the hydrostatic limit.

As in Paper I the planet potential is only gradually fed into the simulations. Its temporal dependence is

$$F_{2b}(t) = F_{2b,0} \left(1 - \exp \left[-\frac{1}{2} \left(\frac{t}{t_{\text{inj}}}\right)^2\right]\right), \quad (3)$$

with $t_{\text{inj}} = 0.5$ unless otherwise noted. Equation (3) is small initially, but quickly reaches its asymptotic limit for $t \gtrsim 2$.

3 RESULTS

Below we present and analyse the 3D hydrodynamical simulations. The discussion is organized thematically. The first sub-sections focus on the differences and similarities with the 2D runs of Paper I: we present the time-evolution in Section 3.1 and discuss the vortensity (non)conservation in Section 3.2. The velocity and density profiles are presented in Section 3.3 and the statistical properties of the flow in Section 3.4. The 3D velocity field is presented in Section 3.5. Finally, we analyse the 3D results by presenting a classification scheme for streamlines (Section 3.6) and calculate the replenishment time-scale of the atmosphere (Section 3.7).

3.1 Emergence to steady state?

The time-evolution of the density and stream pattern in the mid-plane ($z = 0$) for the shear\3ph-h\2Ra run are presented in Fig. 2. The thick blue curves in Fig. 2 are critical streamlines. These are the streamlines that cross a stagnation point of the flow – the point where $v = 0$. The existence of these points is not obvious in 3D; however, at the mid-plane vertical motions vanish by symmetry and the flow much resembles the 2D case. Thus, we can find the ‘X-point’ and draw the ‘critical streamlines’, which also reside in the $z = 0$ plane. However, contrasting the 2D case, these streamlines do not demarcate different topological regions, because the critical streamlines do not extend above the mid-plane regions.

In Fig. 2 the very earliest phases representing the buildup of the hydrostatic atmosphere ($t \lesssim 1.5$) are not shown (see Paper I for that). By $t = 1.7$ the planet is at 99.7 per cent of its final value. A clear difference from the 2D case is the absence of closed, circulating streamlines near the planet. Instead, gas is flowing out of the inner regions towards the edges of the horseshoe region. This mid-plane outflow behaviour is the rule as seen in the other panels, although it tends to weaken with time.

After $t = 2.5$ the outflow is at its peak. Because the density hardly changes from its near-hydrostatic values (see Section 3.3) continuity requires that material is replenished from layers $|z| > 0$. We will see in Section 3.5 that the material that flows in originates from high latitudes. This is understandable as in the shear-only runs the material at $X = 0$ corotates with the planet. For the gas directly above the planet there is simply only one way to flow: downwards. However, pressure forces will resist the inflow. Material thus spirals in at snail pace – nowhere near free-fall – with many revolutions before it finally arrives at the mid-plane. The preferentially vertical inflow behaviour of the gas has been seen previously in hydrodynamical simulations involving more massive planets (Tanigawa, Ohtsuki & Machida 2012; Gressel et al. 2013; Szulágyi et al. 2014).

A key question is whether the mid-plane flow pattern will reach a steady solution, even if it is not bound. From Fig. 2 this does not seem to be the case: after $t = 6$ the outflow streams have closed just to re-open at $t = 8$, after which they narrow once again. While for the 2D case, a steady state emerged quickly after the potential has been fully injected, i.e. around $t = 2$, the slow inspiral motions retard the development of a steady flow: clearly, it can only materialize after a replenishment cycle. For these reasons the integration must be carried out on longer time-scales, which has the drawback that numerical viscosity affects the result as well as being computationally intensive.

3.2 Quenching of the vortensity

Fig. 3 contrast the flow pattern of the 2D and 3D cases. Fig. 3(a) shows the flow pattern and the vortensity from one of the runs described in Paper I. The vortensity is defined $\zeta_i = (\omega_i + 2\Omega)/\rho$ where ω_i is the vertical component of the vorticity, $\omega = \nabla \times v$. In 2D we see excellent vortensity conservation: $\zeta_i = 1/2$ – the value in the unperturbed state.

Fig. 3(b) shows ζ_i of the 3D simulations in the mid-plane regions after a time $t = 4$. Strikingly, the vortensity is lower, especially near the planet and in the regions where the flow advects to. As a result of the non-conservation of the vortensity, azimuthal velocities are much reduced compared to the 2D case. In the 2D case circulating streamlines demarcate a bound atmosphere. For the 3D, the analogous topological demarcation would be a closed stream surface. However, 3D flows generally lack a closed stream surface (albeit they may temporarily possess a closed mid-plane streamline, as is the case in Fig. 2d). Therefore, the atmosphere in the 3D case is unbound – as far as boundness is identified with the existence of a closed stream surface.

We give a heuristic explanation for the vanishing of the vortensity and, hence, the generally lower amounts of rotation compared to the 2D case. In Paper I we derived the following equation for the vortensity:

$$\frac{D\zeta}{Dt} = (\zeta \cdot \nabla) v, \quad (4)$$

where D/Dt is the Lagrangian derivative. In the 2D case the RHS evaluates to 0 because ζ only has a z-component and v lies in the XY-plane: the vortensity is conserved. In 3D this no longer applies. The vertical component, for example, evolves as

$$\frac{D\zeta_z}{Dt} = \zeta_x \frac{\partial v_z}{\partial x} + \zeta_y \frac{\partial v_z}{\partial y} + \zeta_z \frac{\partial v_z}{\partial z}. \quad (5)$$

Similar equations apply for ζ_x and ζ_y; in 3D these are generally non-zero. However, for a streamline initially far from the planet, the unperturbed solution applies and $\zeta_x = \zeta_y = 0$ while $\zeta_z = 1/2$.

Downloaded from http://mnras.oxfordjournals.org/ on Universiteit van Amsterdam on March 21, 2016
Figure 2. Mid-plane time sequence of the shearSph-r17%-hiRs run, depicting the flow pattern (arrows and streamlines) and the density (shading) in the mid-plane (Z = 0). The streamline that crosses the stagnation (X-) point is the critical streamline (thick blue curves). It only exists in the mid-plane regions where \(v_z\) = 0 by symmetry.

Figure 3. Flow pattern (streamlines and arrows) and vortensity (shading) for the 2D flow of Paper I and the 3D flow in the Z = 0 plane. Both runs feature the same mass \((m = 10^{-2})\) and inner radius (10 per cent of \(R_{\text{Bondi}}\)). In 3D the vortensity is no longer conserved and generally drops below its unperturbed value of 1/2. As a result the circulation is greatly diminished compared to the 2D case.

Ignoring \(\zeta_x\) and \(\zeta_y\), or assuming that they stay small, we find that \((D\zeta_z/Dt) \propto \zeta_z (\partial_z v_z)\). Now, because of the compression of the gas towards the planet, streamlines converge on each other towards the mid-plane. This means that the sign of \(\partial_z v_z\) is negative and that \(D\zeta_z/Dt\) has the opposite sign as \(\zeta_z\). Therefore, the vortensity vanishes.

In the fluid dynamical literature, the changes in vortensity are often described in terms of vortex tubes. When these tubes are stretched, the vorticity increases. Vortex stretching plays a central role in the physical explanation of turbulence (Tennekes & Lumley 1972). Here, we encounter the reverse situation: the vortex tubes get compressed and quench the rotation.
Figure 4. Top: mean azimuthal component of the mid-plane velocity as function of radius for the shearSph, shearSph-ri17%, and shearSph-ri15.5% runs at time $t = 6$. This shows that velocities increase as the atmosphere contracts and accretes more mass. However, the velocities display a large spread at a fixed r (not shown) and fluctuate strongly in time (see Fig. 5). Bottom: angularly- (i.e. shell-) averaged density profile of the atmosphere. The density profiles are constant in time and closely follow the hydrostatic solution (curves).

3.3 Density and rotation profiles

Fig. 4 shows the density and velocity profiles for three runs that differ only by the value of the inner radius r_{inn}. By virtue of the isothermal EOS a decreasing r_{inn} implies a strong increase of the gas mass within a certain reference radius. As a result, the atmosphere spins up. In the 2D calculations of Paper I we saw that by $r_{\text{inn}} = 0.05m$ the inner regions were tending towards Keplerian rotation and their density profiles had deviated from hydrostatic. However, in the 3D case the tendency towards rotation is suppressed. Fig. 4(a) shows that Keplerian rotation is nowhere obtained and Fig. 4(b) shows that the density follows the hydrostatic solution (solid curves; note that these curves bend over at small r_{inn} because of the softening of the potential for $r \rightarrow r_{\text{inn}}$). We would like to remark that the velocities are time-dependent – in the shear runs they tend to decrease with time as seen in Fig. 2 – but gas density is not.

Nevertheless, Fig. 4 also shows that the trend identified in Paper I – more massive atmospheres rotate faster – still holds: the shearSph-ri15.5% run has a more massive atmosphere and stronger rotational motions than the shearSph curve. Conceivably, these atmospheres may become rotationally dominated when r_{inn} decreases further, or when the mass of the planet increases. In Paper I, we identified this point as a centrifugal barrier for the growth of the atmosphere, which, when the circumstellar disc is not too massive, acts to prevent the atmosphere from reaching a mass similar to that of the core (a.k.a. the critical core mass). Conducting simulations at even lower r_{inn} is beyond the scope of this work. Computationally, they are very expensive: resolving the steep density gradients imply a very fine radial grid and the large velocities render the explicit hydrodynamical timestep short. In addition, as noted, the flow must be followed for longer time-scales.

3.4 Fluctuations

We return to the question whether the 3D flow can be characterized as steady. In Fig. 5(a) we plot the spatially-averaged azimuthal velocity of all grid points that lie at a distance between 30 and 60 per cent of the Bondi radius. This shows that the bulk motion of the gas changes from retrograde to prograde. Initially, at $t = 0$ it is retrograde ($v_\phi < 0$) because of the Keplerian shear. However, as gas falls in, towards $t \approx 2$, the sense of rotation becomes clearly prograde. Also, one observes that the low r_{inn} runs rotate faster, for reasons explained above. However, for the shear runs the rotation then diminishes as the atmosphere is being replenished by material that enters from the polar regions, which is low in angular momentum. As a result, the atmosphere contracts and accretes more mass. However, the velocities display a large spread at a fixed r and fluctuate strongly in time (see Fig. 5). Bottom: angularly- (i.e. shell-) averaged density profile of the atmosphere. The density profiles are constant in time and closely follow the hydrostatic solution (curves).

3.5 The 3D velocity field

The 2D mid-plane flow pattern, as we have surveyed in Figs 2 and 3 is merely a projection of the full 3D flow structure. Fig. 6 presents several cuts at fixed heights for the headw-hiRs run. Except at $z = 0$, the velocities have a vertical component, which we indicate by a red-to-blue colour shading: red corresponding to receding motions (negative v_z), while blue represents a blueshift of the velocity (positive v_z).

In panel (a) the critical streamline is indicated. It shows, intriguingly, an open configuration: material flows into a rotating region close to the planet surface. This is the reverse of the shear-only runs where the mid-plane regions saw outflow. This (inflow) configuration of the critical streamline is typical. Although, as we saw in
Figure 5. Left: spatially-averaged azimuthal velocity \(\langle v_\phi \rangle \) in a shell of \(0.003 \leq r \leq 0.006 \) for all eight runs. Middle: azimuthal velocity at 20 random points within the shell for the shearSph-ri7%-hiRs run. Right: same for the headwSph-ri7%-hiRs run. These results indicate that, although the spatially-averaged \(v_\phi \) evolves smoothly, the velocity at a fixed point can experience significant temporal, albeit sub-sonic, fluctuations. The y-axis is the same for all three panels.

Figure 6. Several slices at fixed Z illustrating the 3D flow structure for the headwSph-hiRa run. The gas density is given in grey in a logarithmic scaling. The intersection with the BS is given by the dashed circle. In panel (a), corresponding to \(z = 0 \), the mid-plane critical streamline in thick blue shows the ‘trap’ by which the gas inspirals. By symmetry, there are no vertical velocities at the mid-plane. At the higher levels (panels b–f) the vertical motion of the velocity is given by the colour of the arrow with blue colours denoting approaching motions (positive \(v_z \)) and red colours receding motions (negative \(v_z \)). Spiralling motions extends above the surface of the planet (c) and (d), but at heights above the Bondi radius the flow pattern closely resembles its unperturbed state (f).

Fig. 5, the position of the X-point and thereby of the critical streamline itself wobbles in time, the open configuration is characteristic of the headwind runs.

Going to larger heights, we see that the flow structure becomes three dimensional. Very crudely, one notes that the vertical motions in the \(+Y \) planes are towards the planet while those at \(-Y \) are away from the planet, but also that the right-half planes (at positive \(X \)) are ‘bluer’ than the left-half. The explanation for the first trend is that upstream material compresses when it approaches it planet. The second trend is a manifestation of the Coriolis force, which swirls material from \(-X\) to \(+X\), especially in the mid-plane regions. Material at larger \(Z \) then decreases in \(Z \) to compensate this removal.
Figure 7. Examples of the two classes of BS penetrating streamlines for the \textit{headwSph-hiRs} run. The top panel gives the projection in the \textit{XY}-plane and the bottom panel in the \textit{XZ}-plane. Open symbols give the point where the streams enter the BS; closed symbols where they exit. Spiralling streamlines (square and triangle) complete at least one revolution around the \(z \)-axis. The numerical integration of the stream labeled ‘Spiralling/in’ is terminated after five revolutions.

This circulation seen at \(z = 0 \) is repeated, in its projected sense, at heights \(\lesssim 3 \times 10^{-3} \); there exists a point in the plane where \(v_x = v_y = 0 \). It is, admittedly, arbitrary to define ‘circulatory’ motions based on a projection alone; as we will see, streamline trajectories are very much 3D. However, for circulation to be present the azimuthal velocity \(v_y \) must be positive somewhere in the plane, which it is in panels (a)–(d) but no longer in panel (e). Here, at \(z = 6 \times 10^{-3} \), vertical motions are still obvious, but all velocities have a negative \(Y \)-component, aligned with the headwind. Thus, we can argue that this height – still well within the Bondi radius – represents the transition from where the flow is primarily influenced by the planet to where it is influenced by the headwind. By \(z = 1.2 \times 10^{-2} \) (Fig. 6f), just out of the BS, the planet barely influences the flow pattern.

3.6 The streamline topology

We classify streamlines that enter the BS in two categories:

(i) BS-spiralling trajectories: these are streams that are subjected to circulatory motions within the BS, that is, they complete at least one full revolution around the \(z \)-axis.

(ii) BS-crossing trajectories: these are streamlines that do not make revolutions.

Figure 8. Same as Fig. 7 but for the \textit{shearSph-hiRs} run. The ‘Spiral/out’ stream is followed stream-upward. The horseshoe orbit is classified as a BS-crossing stream.

This classification also applies to the streams that leave the BS, where we conduct the integration in reverse (stream-upwards).

Examples of BS-crossing and BS-spiralling streams are shown in Fig. 7 for the \textit{headwSph-hiRs} run and in Fig. 8 for the \textit{shearSph-hiRs} run. These figures show the projection on the \textit{XY} and \textit{XZ} planes. In these figures the symbols denote the position where the streams enter or leave the BS. Trajectories of BS-crossing streams can be strongly influenced by the planet, like the horseshoe streams in Fig. 8, and occasionally show significant vertical motion, but they do not complete a full revolution around the origin. BS-spiralling streams, on the other hand, are even more strongly influenced by the planet: they tend to come closer to the planet and start to orbit it, albeit not on closed – bound – streamlines.

Numerically, we terminate the integration of spiralling streams when the number of revolutions (in either direction) has hit five. A reason for discontinuing the integration at a certain point is that it may have entered an infinite loop because the flow pattern is not time-steady or because of numerical integration errors. Consequently, the integration terminates within the BS. For this reason we have also conducted upstream integrations. Physically, these streams originate from the central regions and flow out of the BS. But computationally, it is expedient to start from a point at/beyond the BS and integrate backwards to the central regions. In Fig. 8 we have labeled the forward and backward integrated streams as ‘Spiral/in’ and ‘Spiral/out’, respectively.

From Figs 7 and 8 it is clear that spiralling streams penetrate the atmosphere most deeply. More systematically, we have classified
In addition, we record the minimum distance to the planet of revolutions exceeds five (whereafter we stop the integration). We follow each trajectory until it exits the BS or until the number upstream direction. Like with the streams shown in Figs 7 and 8 that approximately half of the integrations are integrated in the BS. Trajectories are always followed into the BS, which means that one faces the BS from the negative -axis. Only the upper hemisphere is shown. However, we have extended the azimuth to cover the full 2π. Red (blue) colours imply that material leaves (enters) the BS (outflow/inflow). The colour indicates how deep the streamlines penetrate the BS with more intense colours corresponding to lower r_{\text{min}}.

From Fig. 9 it is clear that the flow predominantly enters the BS at high latitudes, while it leaves the BS in the mid-plane regions. The latter was already seen in the 2D projection of Fig. 2, but it is with Fig. 9 that the full 3D flow topology becomes clear. In Fig. 9 the black contour indicates the region where the nature of the streamline changes from ‘normal’ to spiralling. At this point one often sees a jump in r_{\text{min}} with spiralling streamlines being associated with very low r_{\text{min}}. Interestingly, spiralling streamlines often occur at the interface of horseshoe orbits. Near the mid-plane regions the dark blue spiralling region around \(\theta \approx \pi/4 \) is separated to the left (0 \(\leq \theta \leq \pi/4 \)) by BS-crossing but non-horseshoe orbits and to the right (around the antipode of the map: \(\theta \approx \pi/2 \)) by horseshoe orbits. Then, re-emerging at the Western hemisphere, these horseshoe orbits are once again separated from non-horseshoe orbits around \(\theta = \pi \) by a region of streamlines that spiral out of the BS. This crude distinction however applies only to the mid-plane regions; at larger latitudes horseshoe and non-horseshoe regions blend and inspiralling streamlines start to dominate.

The topological map corresponding to the headwSph-hiRs run is presented in Fig. 10. Due to the headwind, the topology is somewhat simpler than Fig. 9: gas flows in from the +Y plane (the antipode) and it leaves the BS in the same direction of the headwind. Like Fig. 9 spiralling streams (those enclosed within the dark contours) penetrate most deeply into the atmosphere. However, a difference with the shear-only runs is that these streams enter from the mid-plane regions and leave at higher latitudes. See for example, the spiralling stream in Fig. 7 (purple line with square markers). First, after entering the BS, it falls in, significantly decreasing its z-coordinate. However, during the spiralling it is lofted to considerable height, where the influence of the ‘erosive’ headwind becomes stronger and that of the planet’s gravity weaker. It is then carried away with the headwind in the −Y direction to emerge ‘face on’ in Fig. 10.

Finally, let us emphasize that Figs 9 and 10 are not time-independent. The coverage of spiralling trajectories expands and

Figure 9. Mollweide equal-area projection of the minimum distance \(r_{\text{min}}(\theta, \phi) \) for all streamlines on the BS (\(r = 10^{-2} \)) at time \(t = 4 \). The prime meridian has been chosen as \(\phi = 3\pi/2 \), so that the BS is viewed from a position that follows the orbit of the planet. Blue colours indicate that streamlines enter the BS \((v_r < 0) \) while red colours indicate outflow motions \((v_r > 0) \). White regions indicate that streamlines do not much penetrate the BS, whereas dark red and blue regions imply streamlines make it close to the ‘surface’ of the planet \((r_{\text{min}}) \). The black contour line gives the region of spiralling trajectories: those where streamlines revolve around the origin; these mostly coincide with the lowest \(r_{\text{min}} \). Symbols indicate the same position as in Fig. 8. Dotted lines give the 20°, 40°, 60°, and 80° parallels (as measured from the equator).

Figure 10. Topology map of the headwSph-hiRs run at time \(t = 4 \). See Fig. 9 for a description. Spiralling trajectories (those within the black contour) reach closest to the planet core (most intense colour). They preferentially enter the BS at low latitudes and leave at mid-to-high latitudes.
Figure 11. The total rate at which spiralling trajectories – those that make at least one complete revolution in azimuth – enter or leave (dashed and solid, respectively) the BS. Overall the incoming and outgoing rates match, reflecting mass conservation. Note that the y-scaling differs among the panels.

The atmospheric replenishment time-scale

Next, we calculate the mass flux from streams that enter or leave the BS. For streams that enter the BS (where v_{rad} is negative) this reads:

$$M_{in} = \frac{4\pi}{N_{\theta}N_{\phi}} \sum_{i} |v_{rad,i}| [r_{Bondi}]^{2} \rho_i,$$

where the summation can be over a sub-set (e.g. only spiralling streams) or over all streams that enter the BS. Similarly, M_{out} gives the rate at which material leaves the BS. Note that the geometry factor $\sin \theta$ in equation (6) is already accounted for by the equal-area spacing of the grid.

Fig. 11 presents these in- and outflow rates corresponding to spiralling streams for all the high-resolution runs. Inflow rates are given by a dashed curve while solid curves denotes the amount of gas that leaves the BS. The curves fluctuate strongly in time (especially those of the headwind runs), a clear indication that the flow is unsteady. However, the key point of Fig. 11 is that the in- and outflow rates of spiralling streams match: a jump in M_{in} is accompanied by a proportional jump of M_{out}. Averaged over time the rates evolve little, except for the headwind headwSph-ri7%-hiRs run (cf. Fig. 5).

Fig. 12 presents a different perspective on the outflow rates. Here we have used the minimum radius r_{min} for each of the $N_{\theta} \times N_{\phi}$ integrations (Figs 9 and 10), sorted these by r_{min}, and took the cumulative sum such that $M'(r)$ gives the total rate of streams that have reached a minimum distance from the planet no larger than r. We have conducted these calculations separately for the BS-crossing and BS-spiralling encounters and time-averaged the rates for times $t > 4\Omega^{-1}$. As the sampling interval is $0.1\Omega^{-1}$ this implies that several tens of streams are averaged. In Fig. 12 we have stacked the $\{M'(r)\}$ for the two categories, so that it shows the in- and outflow rates of spiralling streams (black) and all (light grey) BS-penetrating streams. Dashed lines again denote the inflow rates, whereas solid curves give the outflow rates (in many cases they overlap).

Overall Fig. 12 confirms the point made above that outflow and inflow rates are (approximately) in balance. We focus here on the radial distribution; i.e. how deep the streams penetrate into the atmosphere. Clearly one notes that the deeper layers are only replenished from orbiting (i.e. only) spiralling streams: $M'(r)$ for the headwind runs.

Finally, the blue curve in Fig. 12 gives the cumulative gas mass $M_{cum}(R)$ of the atmosphere. The ratio between M_{cum} and M thus gives an indication of the time-scale on which the atmosphere at the particular radius R is being replenished. In the headwSph-hiRs case, for example, the lines cross at $R = 0.2 R_{Bondi}$, which implies that the gas at this location is replenished on a time-scale of $\sim \Omega^{-1}$. Above this radius replenishment occurs faster. Below this slower, but not by much: the gas in the headwSph-hiRs run is only temporarily bound.

This is a general result, although the time-scales of the replenishment vary. In the shearSph-hiRs run the accretion rates, $M'(r)$, are lower and it takes longer, up to $10^{2} \Omega^{-1}$, to replenish the atmosphere. This explains why integrations much longer than the potential injection time-scale ($t_{inj} = 0.5\Omega^{-1}$) are required. For the shearSph-ri7%-hiRs run replenish even reaches $100\Omega^{-1}$ for $r \lesssim 0.4$, indicating perhaps that some evolution past $t = 10^{2} \Omega^{-1}$ can be expected.

A striking feature of Fig. 12 is that the (cumulative) rates (\dot{M}') hardly change when decreasing the inner radius, whereas the cumulative mass M_{cum} does. This implies that the replenishment is, in first order, a surface effect and that the pace of the replenishment decreases when more mass resides near the interior as is the case for isothermal atmosphere for low r_{min}.

We can, crudely, explain the numerical values of the accretion rates from simple geometrical considerations: $\dot{M}(r_{min}) \sim R_{Bondi}^{2} v_{Bondi} \rho_{disc} f_{cover}$, where v_{Bondi} is the velocity at R_{Bondi}, and $f_{cover}(r_{min})$ the fraction of streams that reach a certain minimum depth. For the classical Bondi accretion rate (Bondi & Hoyle 1944), $v_{Bondi} = c_s$, and $f_{cover} \approx 1$. However, in our case gas is not in free-fall but the pressure balance with the disc ensures that v_{Bondi} is given by either the Keplerian shear ($\sim 2R_{Bondi}$) or by the headwind ($M_{headw}c_s$). This leads to a rate $\sim R_{Bondi} v_{Bondi} \Omega \sim 10^{-6}$ for the shear-only case and $\dot{M}_{headw} R_{Bondi}^{2} c_s \sim 10^{-5}$ for the headwind case. These numbers, which do not account for f_{cover}, are generally consistent with Figs 11 and 12.
such that R of mass R lie close to r of the atmosphere. For convectively-supported atmospheres lifetimes – even if scales can become very short – much shorter than the typical disc isothermal layer replenishment will affect the thermal balance of such protoplanets.

Spheres of embedded planets should not be regarded as isolated; Hayashi, Nakazawa & Nakagawa 1985), for which we inserted a standard MMSN disc model (Weidenschilling 1977;

$\frac{Q}{\rho} \sim$ peaks. The value of f_{cover} thus depends on the density structure of the atmosphere. For convectively-supported atmospheres r^3 will lie close to R_{Bondi} and $f_{\text{cover}} \sim 1$. For atmospheres with an (outer) isothermal layer r^3 and f_{cover} will be lower.

Equation (7) shows, foremost, that atmosphere recycling time-scales can become very short – much shorter than the typical disc lifetimes – even if f_{cover} is low and $\chi_{\text{atm}} \approx 1$. Therefore, atmospheres of embedded planets should not be regarded as isolated; replenishment will affect the thermal balance of such protoplanets.

Secondly, equation (7) shows that $t_{\text{replenish}}$ sensitively depends on the position of the planet in the disc: replenishment is much slower in the outer disc.

The thermal structure of protoplanet atmospheres is often calculated assuming the existence of a reservoir of solids (planetesimals) that are accreted by the planet. For a given planet mass, planetesimal accretion rate and atmosphere properties (e.g. opacity) χ_{atm} will then attain a quasi-static value; and it is only the increase in core mass that drives the evolution (e.g. Rafikov 2006). However, if this planetesimal bombardment is negligible, or shuts off altogether, the luminosity will instead be due to the Kelvin–Helmholtz (KH) contraction of the atmosphere – a mechanism that increases χ_{atm} with time for constant core mass (e.g. Ikoma, Nakazawa & Emori 2000).

One can numerically calculate the KH-contraction, or cooling time-scale t_{cool}, which depend on grain and gas properties (opacity and molecular weight), planet mass, and nebular parameters (Hori & Ikoma 2010; Bodenheimer & Lissauer 2014; Lee, Chiang & Ormel 2014; Piso & Youdin 2014). For a grain-free atmosphere it can be parametrized as

$$t_{\text{cool}} \sim 10^7 \chi_{\text{atm}}^2 \left(\frac{M_p}{M_\oplus} \right)^{-4.5} \text{yr}.$$

(8)

When $t_{\text{cool}} \ll t_{\text{replenish}}$ atmospheric recycling is slow and does not interfere with the contraction of the atmosphere, allowing χ_{atm} to increase. However, for $t_{\text{cool}} \gg t_{\text{replenish}}$ radiative cooling becomes irrelevant, because the atmospheric gas is removed before it cools.

2 Equation (8) is an empirical fit, based on the calculations by Hori & Ikoma (2010) for a grain-free (but not metal-free) atmosphere. The quadratic dependence on χ_{atm} follows from the analytical consideration by Piso & Youdin (2014), although it appears to be steeper in the numerical calculations. Other factors that affect t_{cool} are the metallicity of the atmosphere and nebular BCs (Lee et al. 2014). These uncertainties do not affect the argument made here.
The KH-contraction thus ceases when \(t_{\text{cool}} = t_{\text{replenish}} \) or at an atmosphere mass fraction of

\[
\chi_{\text{atm}} \sim \frac{10^{-3}}{f_{\text{cover}}} \left(\frac{M_p}{M_\oplus} \right)^{2.5} \left(\frac{a}{\text{au}} \right)^{2.75}.
\]

(9)

This equation suggests that grain-free atmospheres of low mass planets \((M_p \lesssim M_\oplus)\) do not reach critical values \((\chi_{\text{atm}} \sim 1)\) unless \(f_{\text{cover}}\) turns out to be very low; for the inner disc regions \((a \lesssim 0.1 \text{ au})\) even planets up to 10 Earth masses can avoid massive atmospheres.

A caveat in the above argument concerns the assumption that the atmosphere can be described by a single value of \(f_{\text{cover}}\). If cooling is effective, as it is initially, and the atmosphere contracts, the deeper dense layers may be reached with more difficulty, as we saw in the \(r_{\text{run}} = 0.07m\) simulation runs. This would reduce \(f_{\text{cover}}\). However, we never saw the emergence of a region that was truly isolated. In contrast, Lissauer et al. (2009), for parameters tuned to study the formation of Jupiter, found that gas within \(R_{\text{Sat}}/4\) stays bound. This is at odds with our findings; but we note that the Lissauer et al. (2009) setup and numerical parameters are very different from ours. Also, their cores are already massive \((\approx 10 \text{ Earth masses})\), and may no longer be fully embedded in the disc.

None the less, the replenishment is an attractive idea to explain the preponderance of super-Earths and mini-Neptunes: planets up to \(\approx 10 \text{ M}_\oplus\) inferred by the Kepler mission (Fressin et al. 2013; Petigura, Marcy & Howard 2013). Radial-velocity follow-up analysis indicates that the densities are relatively low (e.g. Weiss & Marcy 2014). Perhaps the preferred interpretation is that they started with a mass-dominant solid core overlaid by a H/He-rich envelope (Owen & Wu 2013; Wu & Lithwick 2013; Lopez & Fortney 2014). Thus, during the gas-rich circumstellar disc phase these planets somehow avoided crossing the critical core mass, i.e. their \(\chi_{\text{atm}}\) remained below unity. However, as has been pointed out, accretion of material (planetesimals) in the inner disc regions is rapid (Chiang & Laughlin 2013); and when these atmospheres are no longer bombarded by dust-ablating planetesimals, the grain opacity must be negligible (Mordasini 2014; Ormel 2014). Consequently, \(t_{\text{cool}}\) is shorter than the disc lifetime for all \(\chi_{\text{atm}} \lesssim 1\), implying that these atmospheres should have collapsed to end up as hot-Jupiters. Ideas to prevent the premature collapse of the atmosphere include a short disc lifetime (Ikoma & Hori 2012) or a supersolar metallicity atmosphere (Lee et al. 2014), which render \(t_{\text{cool}}(\chi_{\text{atm}} \sim 1) > t_{\text{disc}}\). Replenishment offers an alternative solution where short cooling time-scales are simply irrelevant because of an even more rapid recycling of atmospheric gas. In addition, equations (7) and (9) show that replenishment is especially important in the inner disc regions – planets have a hard time to bind gas because they encounter so much of it.

However, to apply the replenishment argument to super-Earths constitutes a significant extrapolation as a 10 \(\text{M}_\oplus\) planet situated at 0.1 au corresponds to a dimensionless \(m = a/q_h h^4 \sim 1\) – at the transition between low- and high-mass planets. Thus, these planets can hardly be called embedded and it is still to be proven that the key characteristic of our simulations – the recycling of gas well within the BS – seen in this paper also applies for these systems. On the other hand, such planets, despite being thermodynamically massive \((m \sim 1)\), will have a large physical radius; i.e. \(R_{\text{phys}}/R_{\text{Bondi}} \approx 0.1\) consistent with the value of \(r_{\text{run}}\) used in this work.

4.2 Comparison with previous works

In Paper I we conducted 2D simulations and found circulating streamlines, meaning that the atmosphere is bound. Furthermore, the simulations converged to a steady flow. In this work, by changing the dimensionality of the problem, we no longer find bound material. In addition, we find that the flow pattern is variable. Although the magnitude of the fluctuations are small – the density obeys the hydrostatic solution – these in effect break the isolation of the atmospheres. Finally, we find that in 3D, the role of rotation is suppressed compared to the 2D case.

From this, we must conclude that the dimensionality of the disc greatly influences the results (cf. D’Angelo, Henning & Kley 2002; D’Angelo, Kley & Henning 2003; Paardekooper & Mellema 2006, 2008). Our results for low-mass, embedded protoplanets are generally in agreement with recent literature findings, although these are often more sophisticated regarding their thermodynamic treatment. Like the 3D calculation of this work, Ayliffe & Bate (2009a) and D’Angelo & Bodenheimer (2013) do not observe the formation of disc-like structures. D’Angelo & Bodenheimer (2013) were, like us, interested in the question where the interface between the material orbiting the planet (bound to its atmosphere) and orbiting the star lies. They find that this interface lies at \(\approx 0.4R_{\text{Bondi}}\) for their 10 \(\text{au}\) runs. Interestingly, this value roughly corresponds to the point where spiralling streams occur in our calculations (see Fig. 12). However, a difference is that we do observe material from deeper layers to eventually escape the atmosphere. It is not clear what the origin of this difference is. Most likely, it is due to different physics the respective simulations include; e.g. where we use an isothermal EOS and an inviscid gas, D’Angelo & Bodenheimer (2013) solve for the radiation transport and use explicit viscosity. In addition, they use a global setup with a nested grid that refines towards the planets, instead of the local linearized geometry of this paper. In a subsequent work, we will investigate whether these conclusions alter when adopting a more realistic treatment of the thermal balance, instead of simply prescribing an EOS.

Different from these works, and more in line with this study, Wang et al. (2014) find an open system, where material is continuously replenished. The Wang et al. (2014) simulations also adopt an isothermal EOS and omit self-gravity and explicit viscosity. They also focus on low-mass planets, although their smallest mass – 4 Earth masses at 5.2 \(\text{au}\) or \(m = 0.1\) in our dimensionless units – is still a factor 10 larger than the \(m = 10^{-2}\) adopted here. However, Wang et al. (2014) are unique in finding evidence of a circumplanetary disc for low-mass planets, which implies that material is rotating near-Keplerian. It is possible that \(m \sim 0.1\) planets bridge the gap to the high-mass planet regime \((m \gtrsim 1)\), where a flattened, Keplerian-rotating disc emerges (Tanigawa et al. 2012). However, we do expect that such a transition occurs smoothly and does not involve the non-steady spiral shocks reported by Wang et al. (2014). To address these issues it is important to conduct simulations for higher mass planets. However, for planets of mass \(m \gtrsim 0.1\), the adopted local, spherical geometry becomes problematic. The premise of these local simulations is that the conditions at the outer boundary, i.e. at sufficiently large distance from the planet, are given by the unperturbed flow. The advantage of the Cartesian grid is that three outer BCs allow some flexibility to treat phenomena as gap opening and flattening (circumplanetary disc formation) are difficult to follow simultaneously in a spherical geometry. For these reasons, we have limited ourselves to the well-embedded, \(m \ll 1\), case.
5 SUMMARY

In this paper, we have conducted hydrodynamical simulations to study the flow pattern past small, embedded planets by employing a spherical grid centred on the planet and characterized by an inner boundary – a setup that was very beneficial to study 2D flows. However, the 3D calculations have turned out to be considerably more challenging than their 2D counterparts. Numerically, the spherical grid’s inhomogeneous spacing forces a small timestep. In addition, as the 3D flow no longer conserves vortensity the fidelity of the simulation results are more difficult to ascertain. Another formidable drawback is that the simulations take much longer to converge to their long-term solution. The underlying reason for the long timescales is that material takes a long time to cross the atmosphere.

We summarize the key findings:

(i) Compared to the 2D case, atmospheres tend to be less dominated by rotation. The vertical (compressive) motions are effective in quenching the vortensity (Fig. 3). Nevertheless, we do find that the rotation increases for more massive atmospheres, when the inner radius of the simulations – a proxy for the density of the atmosphere – is reduced; see Fig. 4. This hints at a possible transition to a more disc-like configuration for higher mass atmospheres.

(ii) The velocity field is time-variable – with the fluctuations being a substantial fraction of the mean flow velocity. However, for the low-mass planets studied here the fluctuations fell in the subsonic regime. As a result, the atmosphere continuously exchanges mass with the circumstellar disc.

(iii) We have characterized streamlines that enter the BS into crossing and spiralling (see Figs 7 and 8). BS-spiralling streamlines make one or more revolution within the BS and penetrate most deeply into the atmosphere.

(iv) In particular, in the shear-only setup (where the gas on the planet’s orbit corotates with the planet) material enters the BS at mid-to-high latitudes, and exits the BS in the mid-plane regions. For the headwind runs (where the pressure supported gas moves at sub-Keplerian velocities) a reverse trend is seen: material mostly enters in the mid-plane regions, and leaves at higher latitudes (Figs 10 and 9).

(v) Generally, the atmosphere replenishment rates can be understood by geometrical arguments, which leads to a modified Bondi rate of $\dot{M} \sim R_{\text{Bondi}}^2 \Omega_{\text{disc}}$ for the shear-only case and $\dot{M} \sim R_{\text{Bondi}}^3 \rho_{\text{disc}} \Omega_{\text{disc}}$ for the headwind case. For the deeper layers these rates should be multiplied by a coverage fraction $f_{\text{cover}}(r_{\text{min}})$, which characterizes the fraction of streams that reach a certain depth r_{min}. Here, we find that $f_{\text{cover}} \sim 0.1–1$.

(vi) These estimates result in an atmosphere replenishment timescales $t_{\text{replenish}}$ which are short compared to the cooling time-scale of the atmosphere, especially for planets in the inner parts of the discs where ρ_{disc} and Ω^{-1} are large. As a result, the contraction of the atmospheres of such protoplanets stalls at an atmosphere mass fraction $M_{\text{disc}}/M_p \ll 1$.

The last point conclusion is highly timely as it offers a possible explanation for the preponderance of super-Earths and mini-Neptunes – systems that are presumably gas-rich but rock-dominant. We admit that this constitutes a leap of faith, as the simulations of this work pertain a quite different regime (very low mass planets) and neglect realistic thermodynamics. We therefore encourage more studies in this field. At the very least, this work has demonstrated that atmospheres of embedded planets are not necessarily isolated, as has been historically the standard view (e.g. Mizuno 1980; Pollack et al. 1996). If this finding proves robust, it will change the understanding of the early evolution of low-mass planets.

ACKNOWLEDGEMENTS

This work has profited immensely from discussion with many colleagues. The simulations were performed with the Berkeley cluster fizzy, which was made possible by a National Science Foundation Major Research Instrumentation (NSF MRI) grant. For CWO support for this work was provided by NASA through Hubble Fellowship grant #HST-HF-51294.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. RK acknowledges funding from the Max Planck Research Group ‘Star formation throughout the Milky Way Galaxy’ at the Max Planck Institute for Astronomy.

REFERENCES

APPENDIX A: THE GRAVITATIONAL FORCE ON THE INNER BOUNDARY

We motivate the choice of a force-free inner boundary, equation (1), by showing that the standard Newtonian potential in combination with a reflective boundary results in artificially strong radial motions close to the boundary. Here, the setup is a simplified 1D version of the equations described in Section 2 but tailored to isolate this particular problem. Non-inertial forces are omitted; only the two-body force is used, which we inject slowly as in equation (3). The grid is, as in the main text, exponentially spaced and extends from \(r_{\text{in}} = 10^{-3} \) to \(r_{\text{out}} = 0.5 \). In addition, we include a damping force, \(F_{\text{damp}} = -v \), with the aim of damping any excess motion. Therefore, after the infall phase has completed, the density is expected to relax to the hydrostatic solution, \(\rho = \exp \left(-\Phi/2b \right) \), and the velocities should vanish everywhere, \(v = 0 \).

The results for two resolutions, 256 and 512 radial grid points, and for the two potentials, Newtonian (\(\Phi_{\text{Newt}} = -m/r \)) and the exponential potential of equation (2) (see Fig. 1), are shown in Fig. A1. The figure plots the excess radial velocity after a time \(t = 10 \). For the exponential potential the velocities all lie close to zero, as anticipated. The higher resolution run converges better to zero than the lower resolution.

However, for the Newtonian potential velocities deviate significantly from zero, especially near the inner boundary, where the radial motion is \(v \approx -0.11c_s \) (see the legend for the value of the velocity at the first grid point). It seems, then, that there is a flow out of the domain, which is at odds with the reflective BCs. On the other hand, PLUTO does retrieve a steady state: density and velocities have become time-independent.

These findings are obviously boundary effects: after the second grid point the solution converges more quickly. In addition, a higher resolution improves the discrepancy. However, for the

![Figure A1. Excess radial motions after \(t = 10 \) for test calculations where gas settles according to a prescribed gravitational potential. Grid spacing and units are the same as in the main text, but the potential is only 1D and includes a damping term proportional to velocity. Black curves: Newtonian potential; blue curves: \(\Phi_{2b} \) (equation 2). Symbols denote different grid resolution. For the Newtonian potential spurious velocities emerge near the inner boundary.](image)

This paper has been typeset from a \LaTeX/\TeX file prepared by the author.