Search for scalar charm quark pair production in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

Published in: Physical Review Letters

DOI: 10.1103/PhysRevLett.114.161801

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for Scalar Charm Quark Pair Production in \(pp \) Collisions at \(\sqrt{s} = 8 \) TeV with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 6 January 2015; published 22 April 2015)

The results of a dedicated search for pair production of scalar partners of charm quarks are reported. The search is based on an integrated luminosity of 20.3 fb\(^{-1}\) of \(pp \) collisions at \(\sqrt{s} = 8 \) TeV recorded with the ATLAS detector at the LHC. The search is performed using events with large missing transverse momentum and at least two jets, where the two leading jets are each tagged as originating from c quarks. Events containing isolated electrons or muons are vetoed. In an \(R \)-parity-conserving minimal supersymmetric scenario in which a single scalar-charm state is kinematically accessible, and where it decays exclusively into a charm quark and a neutralino, 95% confidence-level upper limits are obtained in the scalar-charm–neutralino mass plane such that, for neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded.

DOI: 10.1103/PhysRevLett.114.161801 PACS numbers: 14.80.Ly, 12.60.Jv, 13.85.Rm

Supersymmetry (SUSY) [1–9] is a theory that extends the Standard Model (SM) and naturally resolves the hierarchy problem by introducing supersymmetric partners of the known bosons and fermions. In the framework of a generic \(R \)-parity-conserving minimal supersymmetric extension of the SM, the MSSM [10–14], SUSY particles are produced in pairs and the lightest supersymmetric particle (LSP) is stable, providing a possible candidate for dark matter. In a large variety of models, the LSP is the lightest neutralino, \(\chi_1^0 \).

The scalar partners (squarks) of various flavors of quarks may, rather generally, have different masses despite constraints on quark flavor mixing [15]. Recent searches disfavor low-mass top squarks (stops), sbottoms, and gluinos, so direct scalar-charm (\(\tilde{c} \)) pair production could be the only squark production process accessible at the LHC. Searches for \(\tilde{c} \) states provide not only a possible supersymmetry discovery mode but also the potential to probe the flavor structure of the underlying theory.

Since no dedicated search for \(\tilde{c} \) has previously been performed, the best existing lower limits on \(\tilde{c} \) masses are obtained from searches for generic squark and gluino production at the LHC [16,17], and from the reinterpretation of LHC searches [18] for direct pair production of the scalar partner of the top quark followed by decays \(\tilde{t}_1 \rightarrow c + \chi_1^0 \). The top squark searches have a final state similar to that expected for scalar charm quarks, but are optimized for small \(m_{\tilde{t}_1} - m_{\chi_1^0} \) mass differences, and so have good sensitivity to the scalar charm quark only when \(m_{\chi_1^0} \lesssim m_W \).

In this Letter, a dedicated search for direct \(\tilde{c} \) pair production is presented. The scalar charm quark is assumed to decay dominantly or exclusively via \(\tilde{c} \rightarrow c + \chi_1^0 \). The expected signal is therefore characterized by the presence of two jets originating from the hadronization of the c quarks, accompanied by missing transverse momentum \(E_{T}^{\text{miss}} \) resulting from the undetected neutralinos.

The ATLAS detector is described in detail elsewhere [19]. This search uses \(pp \) collision data at a center-of-mass energy of 8 TeV recorded during 2012 at the LHC. After the application of beam, detector, and data quality requirements, the data set corresponds to a total integrated luminosity of 20.3 fb\(^{-1}\) with a 2.8% uncertainty, using the methods of Ref. [20].

The data are selected with a three-level trigger system that required a high transverse momentum \(p_T \) jet and \(E_{T}^{\text{miss}} \) [21]. While events containing charged leptons (electrons or muons) in the search region are vetoed, single-lepton triggers are used for control regions. Events are required to have a reconstructed primary vertex consistent with the beam positions, and to meet basic quality criteria that suppress detector noise and noncollision backgrounds [22]. Jets are reconstructed from three-dimensional topological calorimeter energy clusters by using the anti-\(k_T \) jet algorithm [23,24] with a radius parameter of 0.4. The measured jet energy is corrected for inhomogeneities and for the noncompensating response of the calorimeter by using \(p_T \)- and \(\eta \)-dependent [25] correction factors [26].

The impact of multiple overlapping \(pp \) interactions (pileup) is accounted for using a technique, based on jet areas, that provides an event-by-event and jet-by-jet correction [27]. Only jet candidates with \(p_T > 20 \) GeV within \(|\eta| < 2.8 \) are retained.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

© 2015 CERN, for the ATLAS Collaboration
Electron candidates are required to have $p_T > 7$ GeV, $|\eta| < 2.47$ and to satisfy “medium” selection criteria [28]. Muon candidates are required to have $p_T > 6$ GeV, $|\eta| < 2.4$ and are identified by matching an extrapolated inner-detector track to one or more track segments in the muon spectrometer [29]. When defining lepton control regions, muons and electrons must meet additional “tight” selection criteria [29,30], and must satisfy track and calorimeter isolation criteria similar to those in Ref. [31].

Following this object reconstruction, overlaps between jet candidates and electrons or muons are resolved. Any jet within a distance $\Delta R = 0.2$ of a medium quality electron candidate is discarded. Any remaining lepton within $\Delta R = 0.4$ of a jet is discarded. Remaining muons must have longitudinal and transverse impact parameters within 1 mm and 0.2 mm of the primary vertex, respectively.

The calculation of E_T^{miss} is based on the vector sum of the calibrated p_T of reconstructed jets (with $p_T > 20$ GeV and $|\eta| < 4.5$), electrons, muons and photons, and the calorimeter energy clusters not belonging to these reconstructed objects [32].

Jets containing c-flavored hadrons without b-flavored parent hadrons are identified using an algorithm, optimized for charm tagging, based on a neural network that exploits both impact parameter and secondary vertex information and with a B to D decay chain vertex fitter [33]. This algorithm achieves a tagging efficiency of 19% (13%, 0.5%) for c-jets (b-jets, light-flavor or gluon jets) in $t\bar{t}$ events. The efficiency for tagging b-jets is determined from measurements of dileptonic $t\bar{t}$ events [34]. The c-jet tagging efficiency and its uncertainty have been calibrated in inclusive jet events over a range of p_T using jets from collision data containing D^* mesons [35]. Jets can be c-tagged only within the acceptance of the inner detector ($|\eta| < 2.5$), so only such central jets are retained after the above selection.

Events are then required to have $E_T^{miss} > 150$ GeV and one jet with $p_T > 130$ GeV to ensure full trigger efficiency, as well as a second jet with $p_T > 100$ GeV. The two highest-p_T jets are required to be c tagged. The multijet background contribution with large E_T^{miss}, caused by mis-measurement of jet energies in the calorimeters or by neutrino production in heavy-quark decays, is suppressed by requiring a minimum azimuthal separation ($\Delta \phi_{min}$) of 0.4 between the E_T^{miss} direction and any of the three leading jets. To reduce the effect of pileup, the third jet is exempted from this requirement if it has $p_T < 50$ GeV, $|\eta| < 2.4$ and less than half of the sum of its track p_T is associated with tracks matched to the primary vertex. In addition, the ratio of E_T^{miss} to the scalar sum of the transverse momenta of the two leading jets is required to be above one-third. Events containing residual electron or muon candidates are vetoed in order to reduce electroweak backgrounds.

After these requirements, the main SM processes contributing to the background are top quark pair and single top production, together referred to as top production, as well as associated production of W/Z bosons with light- and heavy-flavor jets, referred to as $W +$ jets and $Z +$ jets. A selection based on the boost-corrected contransverse mass m_{CT} [36] is employed to further discriminate scalar-charm pair from top production. For two identical decays of heavy particles into two visible particles v_1 and v_2, and into invisible particles, the contransverse mass [37] is defined as $\{E_T(v_1) + E_T(v_2)\}^2 - \{p_T(v_1) - p_T(v_2)\}^2)^{1/2}$. The boost correction preserves the expected endpoint in the distribution against boosts caused by initial-state radiation. In the case of scalar-charm pair production with $c \rightarrow c + \chi^0_1$, m_{CT} is expected to have an endpoint at $(m^2_c - m^2_{\chi^0_1})/m_c$. For $t\bar{t}$ production, if both b-jets are mistagged as c-jets, the m_{CT} built using those two jets is expected to have a kinematic endpoint at 135 GeV.

To maximize the sensitivity across the $c-\chi^0_1$ mass plane, three overlapping signal regions (SR) are defined: $m_{CT} > 150$, 200, and 250 GeV. The remaining $t\bar{t}$ background after the m_{CT} requirement mostly comprises events with one true c-jet from a W decay and a mistagged b-jet from a top quark decay. Events in which a Z boson is produced in association with heavy-flavor jets where the Z boson decays into $\nu\bar{\nu}$ also enter the high-m_{CT} regions. The heavy-flavor jets often originate from a gluon splitting, $g \rightarrow c\bar{c}$, which can lead to a small angular separation between the resulting c-jets and therefore a small invariant mass $m_{c\bar{c}}$. The remaining $t\bar{t}$ background is also concentrated at low $m_{c\bar{c}}$. Consequently, a final requirement selects events for which the invariant mass of the two c-tagged jets is larger than 200 GeV.

Simulated-event samples are used to aid the description of the background and to model the SUSY signal. Top quark pair and single top production in the s and Wt channels are simulated with POWHEG-1.0 (r2092) [38], while the t channel single top production is simulated using ACERMC 3.8 [39]. A top quark mass of 172.5 GeV is used. The parton shower, fragmentation, and hadronization are performed with PYTHIA-6.426 [40]. Samples of $W +$ jets, $Z +$ jets, and dibosons (WW, WZ, ZZ) with light and heavy flavor jets are generated with SHERPA 1.4 [41], assuming massive b/c quarks. Samples of $Z\bar{t}$ and $W\bar{t}$ are generated with MADGRAPH-5.1.3.33 [42] interfaced to PYTHIA-6.426. The signal samples are generated for a simplified SUSY model with only a single \tilde{c} state kinematically accessible, and with BR($c \rightarrow c + \chi^0_1) = 100\%$, using MADGRAPH-5.1.5.11 interfaced to PYTHIA-6.427 for the parton shower, fragmentation, and hadronization. Signal cross sections are calculated to next-to-leading order in the strong coupling constant, adding the resummation of soft gluon emission at next-to-leading-logarithm accuracy (NLO + NLL) [43–45]. The uncertainty on each nominal cross section is defined by an envelope of predictions using different PDF sets and factorization and renormalization scales, as described in Ref. [46]. The Monte Carlo (MC)
samples are processed through a detector simulation [47]
based on GEANT4 [48]. The effects of pileup are included in
the simulation. Efficiency corrections derived from the data
are applied to the simulation to correct for lepton efficiency
as well as the tagging and mistagging rates.

The main SM process contributing to the background
after all signal region selections is Z + jets, followed by
W + jets, top quark pair, and single top production. Most
$t\bar{t}$ events contributing are $t\bar{t} \rightarrow b\bar{b}l\bar{l}qqq$ events, in which
either a τ lepton decays hadronically, or an e or μ is out
of the geometric acceptance or not reconstructed or
identified. Contributions from multijet, diboson, and asso-
ciated production of $t\bar{t}$ with W, Z are subdominant.
Noncollision backgrounds are found to be negligible.

The estimation of the main background processes is
carried out by defining a set of three data control regions
(CR) that do not overlap with each other or with the signal
regions. The CRs are kinematically close to the SRs and
each of them is enhanced in one or two of the backgrounds
that is dominant in the SRs, while having low expected
signal contamination (less than 1%). A statistical model is
set up in which the background expectation in the CRs and
SRs depends on several parameters of interest: the nor-
malizations of the dominant backgrounds, top ($t\bar{t}$ + single
top), Z + jets and W + jets, as well as on nuisance
parameters including the effect of uncertainties on the jet
energy scale (JES) and resolution, calorimeter resolution
energy clusters not associated with any physics objects,
energy scale and resolution of electrons and muons,
c-tagging and mistagging rates, pileup, and luminosity.
A profile likelihood fit of the background expectation to the
data is performed simultaneously in all CRs [49], and from
it the background normalizations are extracted. The nor-
malization factors, which are consistent with unity within
uncertainties, are then applied to the MC expectation in the
signal regions.

The first control region is populated largely by $t\bar{t}$ and
W + jets. It contains events with exactly one isolated
electron or muon with $p_T > 50$ GeV. The leading
two jets, with $p_T > 130$ and 50 GeV respectively, must be
c-tagged. To select events containing $W \rightarrow \ell\nu$, the trans-
verse mass of the (ℓ, E_T^{miss}) system is required to be
between 40 and 100 GeV. The upper bound reduces
possible signal contamination from SUSY models that
produce leptons in cascade decays. Finally, it is required
that $E_T^{miss} > 100$ GeV and $m_{CT} > 150$ GeV. The second
control region is populated by $Z \rightarrow \ell^+\ell^-$ events with two
opposite-sign, same-flavor leptons, where the minimum
p_T requirement is 70 GeV for the leading lepton and
7(6) GeV for the subleading lepton (muon). The trans-
verse momenta of the leptons are added vectorially to the
E_T^{miss} to mimic the $Z \rightarrow \nu\bar{\nu}$ decay, and the modulus of the
resulting two-vector is required to be larger than 100 GeV.
The leading two jets are required to be c-tagged and their
p_T must each be above 50 GeV. The invariant mass $m_{\ell\ell}$ of
the two leptons is required to be between 75 and 105 GeV
(Z-mass interval). A third control region, populated
almost exclusively by dileptonic $t\bar{t}$ events, contains events
with two opposite-sign, different-flavor leptons, where the
leading lepton has $p_T > 25$ GeV and the subleading lepton
p_T is above 7(6) GeV for electrons (muons). It is required
that $E_T^{miss} > 50$ GeV and $m_{\ell\ell} > 50$ GeV. The leading two
jets are required to be c-tagged and have $p_T > 50$ GeV. In
all CRs, events with additional lepton candidates beyond
the required number of signal leptons are vetoed using
the same lepton requirements used to veto events in the SRs.

The subdominant background contributions from
dibosons, $Zt\bar{t}$ and $Wt\bar{t}$ are estimated by MC simulation.
Finally, the residual multijet background is estimated
using a data-driven technique based on the smearing of
jets in a low-E_T^{miss} data sample with jet response func-
tions [50].

The experimental and theoretical uncertainties affecting
the main backgrounds are correlated between control and
signal regions, and the data observed in control regions
constrain the uncertainties on the expected yields in the
signal regions. The residual uncertainty due to the theo-
retical modeling of the top-production background is about
7%. It is evaluated using additional MC samples generated
with ACERMC (where initial- and final-state radiation
parameters are varied) an alternative fragmentation model
(HERWIG), an alternative generator (MC@NLO), and by
using diagram subtraction rather than diagram removal
to account for the interference between $t\bar{t}$ and single top
W-channel production [51]. After the fit, the residual
uncertainties on the W + jets and Z + jets theoretical
modeling account for less than 20% of the total uncertainty.

The dominant contributions to the residual uncertainty on
the total background are from c-tagging (~20%), normali-
ation uncertainties related to the numbers of events in the
CRs (10%–20%), and JES (~10%).

For the SUSY signal processes, theoretical uncertainties
on the cross section due to the choice of renormalization
and factorization scales and from PDFs are found to be
between 14% and 16% for \tilde{c} masses between 100
and 550 GeV. Prior to the fit, the detector-related uncertainties
with largest impact on the signal event yields are those
for c-tagging (typically 15%–30%) and JES (typically
10%–30%).

Table I reports the observed number of events and the
SM predictions for each SR. The data are found to be below
the SM background expectations, but consistent with
them given the uncertainties. Figure 1 shows the measured
m_{CT} and $m_{\ell\ell}$ distributions in the $m_{CT} > 150$ GeV region
compared to the SM predictions. Monte Carlo estimates
are shown after the normalizations extracted from the
profile likelihood fit are applied. For illustrative purposes,
the distributions expected for the simplified model with
$(\tilde{c}, m_{\tilde{c}}^2)$ masses of (400, 200) GeV and (550, 50) GeV are
also shown.
TABLE I. Expected and observed number of events for an integrated luminosity of 20.3 fb⁻¹ at √s = 8 TeV. Top, Z + jets and W + jets contributions are estimated using the fit described in the text. For comparison, the numbers obtained using MC simulations only are shown in parentheses. The row labeled “Others” reports subdominant electroweak backgrounds estimated from MC simulations. The total uncertainties are also reported.

<table>
<thead>
<tr>
<th>m_{CT} (GeV)</th>
<th>>150</th>
<th>>200</th>
<th>>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>7.4 ± 2.7 (7.1)</td>
<td>3.9 ± 1.6 (3.7)</td>
<td>1.6 ± 0.7 (1.5)</td>
</tr>
<tr>
<td>Z + jets</td>
<td>14 ± 3 (13)</td>
<td>7.7 ± 1.7 (7.0)</td>
<td>4.3 ± 1.2 (3.9)</td>
</tr>
<tr>
<td>W + jets</td>
<td>7.2 ± 4.5 (7.4)</td>
<td>4.1 ± 2.6 (4.2)</td>
<td>1.9 ± 1.2 (1.9)</td>
</tr>
<tr>
<td>Multijets</td>
<td>0.3 ± 0.3</td>
<td>0.2 ± 0.2</td>
<td>0.05 ± 0.05</td>
</tr>
<tr>
<td>Others</td>
<td>0.5 ± 0.3</td>
<td>0.4 ± 0.3</td>
<td>0.4 ± 0.3</td>
</tr>
<tr>
<td>Total</td>
<td>30±6</td>
<td>16±3</td>
<td>8.2±1.9</td>
</tr>
<tr>
<td>Data</td>
<td>19</td>
<td>11</td>
<td>4</td>
</tr>
</tbody>
</table>

Since no significant excesses are observed, the results are translated into 95% confidence-level (C.L.) upper limits on contributions from non-SM processes using the CL_s prescription [52]. Figure 2 shows the observed and expected exclusion limits at 95% C.L. on the c→χ₁⁻ mass plane, assuming a single accessible c particle with BR(c → c + χ₁⁻) = 100%. The SR with the best expected sensitivity at each point in the plot is adopted as the nominal result. In the region where the c-tagged analysis of the ATLAS t → c + χ₁⁻ search [18] provides a stronger expected limit, i.e., for mₓ₁⁻ ≲ m_W, that result is used. The region excluded by the ATLAS monojet search described in Ref. [18] is shown separately as a grey shaded area. Systematic uncertainties, other than in the c pair-production cross section, are treated as nuisance parameters and correlated when appropriate. For the SUSY scenario considered, the upper limit at 95% C.L. on the scalar-charm mass obtained in the most conservative cross-section hypothesis is 540 GeV for mₓ₁⁻ = 0 (increasing to 555 GeV for the central estimate of the signal cross section). Neutralino masses up to 200 GeV are similarly

![Figure 1](image1.png)

FIG. 1 (color online). Distributions of m_{CT} (top) and m_{c~}(bottom), and their corresponding SM predictions. Signal region selections (m_{CT} > 150 GeV for the m_{c~} distribution) are applied, other than for the variable plotted. Arrows indicate the SR requirements on m_{CT} and m_{c~}. In the ratio plots, the grey bands correspond to the combined MC statistical and experimental systematic uncertainty.

![Figure 2](image2.png)

FIG. 2 (color online). Exclusion limits at 95% C.L. in the c→χ₁⁻ mass plane. The observed (solid red line) and expected (dashed blue line) limits include all uncertainties except for the theoretical signal cross-section uncertainty (PDF and scale). The band around the expected limits show ±1σ uncertainties. The dotted lines around the observed limits represent the results obtained when moving the nominal signal cross section up or down by the ±1σ theoretical uncertainty.
excluded for $m_c < 490$ GeV. This significantly extends the results of previous flavor-blind analyses [16,17], which provide no exclusion for $m_p > 160$ GeV, nor for single light squarks with masses above 440 GeV. The signal regions are used to set limits on the effective cross sections σ_{vis} of any non-SM processes, including the effects of branching ratios, experimental acceptance, and efficiency, neglecting any possible contamination in the control regions. Values of σ_{vis} larger than 0.44 fb, 0.36 fb, and 0.23 fb are excluded at 95% C.L. for m_{CT} greater than 150, 200, and 250 GeV respectively.

In summary, this Letter reports results of a search for scalar-charm pair production in 8 TeV pp collisions at the LHC, based on 20.3 fb$^{-1}$ of ATLAS data. The selected events have large E_T^{miss} and two c-tagged jets. The results are in agreement with SM predictions for backgrounds and translate into 95% C.L. upper limits on scalar-charm and neutralino masses in a simplified model with a single accessible c state for which the exclusive decay $\tilde{c} \rightarrow c + \tilde{\chi}_1^0$ is assumed. For neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded, significantly extending previous limits.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; STFC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CSF, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMWF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MInSw and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSE, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

ATLAS uses a coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. Cylindrical coordinates (ρ, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln(\tan(\theta/2))$, while $\Delta R \equiv [(\Delta \eta)^2 + (\Delta \phi)^2]^{1/2}$.

G. Polesello and D. Tovey, Supersymmetric particle mass measurement with the boost-corrected contransverse mass, J. High Energy Phys. 03 (2010) 030.
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
INFN Sezione di Pavia, Italy
Department of Fisica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
Petersburg Nuclear Physics Institute, Gatchina, Russia
ININF Sezione di Pisa, Italy
Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisboa, Portugal
Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
Department of Physics, University of Coimbra, Coimbra, Portugal
Departamento de Fisica, Universidade do Minho, Braga, Portugal
Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
Czech Technical University in Prague, Praha, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
State Research Center Institute for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Ritsumeikan University, Kusatsu, Shiga, Japan
INFIN Sezione di Roma, Italy
Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
INFIN Sezione di Roma Tor Vergata, Italy
Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
INFIN Sezione di Roma Tre, Italy
Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco
CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
Department of Physics, University of Washington, Seattle WA, United States of America
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, UniversitätSiegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby BC, Canada
SLAC National Accelerator Laboratory, Stanford CA, United States of America
Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
Department of Physics, University of Cape Town, Cape Town, South Africa
Department of Physics, University of Johannesburg, Johannesburg, South Africa
School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Stockholm University, Sweden
The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto ON, Canada

TRIUMF, Vancouver BC, Canada

Department of Physics and Astronomy, York University, Toronto ON, Canada

Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy

ICTP, Trieste, Italy

Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana IL, United States of America

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

aDeceased.
bAlso at Department of Physics, King’s College London, London, United Kingdom.
cAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
dAlso at Novosibirsk State University, Novosibirsk, Russia.
eAlso at TRIUMF, Vancouver BC, Canada.
fAlso at Department of Physics, California State University, Fresno CA, United States of America.
gAlso at Department of Physics, University of Fribourg, Fribourg, Switzerland.
hAlso at Tomsk State University, Tomsk, Russia.
iAlso at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
jAlso at Università di Napoli Parthenope, Napoli, Italy.
kAlso at Institute of Particle Physics (IPP), Canada.
lAlso at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
mAlso at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
nAlso at Louisiana Tech University, Ruston LA, United States of America.
oAlso at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
pAlso at Department of Physics, National Tsing Hua University, Taiwan.
qAlso at Department of Physics, The University of Texas at Austin, Austin TX, United States of America.
rAlso at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
sAlso at CERN, Geneva, Switzerland.
tAlso at Georgian Technical University (GTU), Tbilisi, Georgia.