Search for new phenomena in dijet angular distributions in proton-proton collisions at $\sqrt{s} = 8$ TeV measured with the ATLAS detector

DOI
10.1103/PhysRevLett.114.221802

Publication date
2015

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at \(\sqrt{s} = 8 \) TeV Measured with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 3 April 2015; published 4 June 2015)

A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of \(\sqrt{s} = 8 \) TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb\(^{-1}\). The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the standard model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95\% C.L.; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.

DOI: 10.1103/PhysRevLett.114.221802
PACS numbers: 13.85.Rm, 12.60.Rc

The search for an internal structure of fermions and new forces that might govern that structure is a major goal of modern particle physics. The most powerful probes are scattering experiments with large momentum transfer. Collisions of protons at the Large Hadron Collider (LHC) resulting in two energetic jets of particles (dijets) provides the largest momentum transfer currently available, and therefore the deepest probe.

The angular distribution of jets relative to the beam axis in events with high dijet invariant mass \(m_{jj} \) provides stringent tests of perturbative quantum chromodynamics (QCD) as well as theories of new phenomena. QCD calculations predict that dijet production, dominated by \(t\bar{t} \)-channel gluon exchange in the kinematic region of proton-proton (\(pp \)) collisions at the LHC, features steeply falling \(m_{jj} \) distributions and angular distributions peaked at \(\cos(\theta^*) = 1 \), where \(\theta^* \) is the polar scattering angle in the two-parton center-of-mass frame. New phenomena, such as strong gravity [1,2] or new interactions [3–6] typically predict angular distributions which are more isotropic.

Previous studies of dijet angular distributions, at the CERN SPS [7,8], the FNAL Tevatron [9,10], the CERN LHC at \(\sqrt{s} = 7 \) TeV [11–16], and by the CMS Collaboration at \(\sqrt{s} = 8 \) TeV [17], have reported results consistent with the standard model (SM). This Letter reports on studies of dijet angular distributions in \(pp \) collisions at \(\sqrt{s} = 8 \) TeV in data with an integrated luminosity of 17.3 fb\(^{-1}\) collected with the ATLAS detector in 2012.

A detailed description of the ATLAS detector is published elsewhere [18]. The detector is instrumented over almost the entire solid angle around the \(pp \) collision point, with layers of tracking detectors, calorimeters, and muon detectors.

The jets are measured using a calorimeter system composed of different detector types covering different regions in \(\eta \) [19] and depth. The electromagnetic calorimeter is composed of liquid-argon sampling calorimeters, using lead as an absorber, and is split into a barrel \((|\eta| < 1.475)\) and two end caps \((1.375 < |\eta| < 3.2)\). The hadronic calorimeter is divided into a barrel and two extended barrels \((|\eta| < 1.75)\), and two endcaps \((1.5 < |\eta| < 3.2)\). The barrel and extended barrels are sampling calorimeters with steel as absorber and scintillator tiles as the active medium, while the hadronic end caps are liquid-argon calorimeters with copper as the absorber. In the very forward regions \((3.1 < |\eta| < 4.9)\) there are liquid argon calorimeters with copper and tungsten absorbers.

The data are selected using a trigger that requires a single high-\(p_T \) [19] jet above one of eight thresholds, ranging from 25 to 220 GeV. Because of the high rate of jets at lower \(p_T \), only a fraction of the events from the lower seven thresholds are stored.

Individual jets are reconstructed using the anti-\(k_t \) jet clustering algorithm [20,21] with radius parameter \(R = 0.6 \). The inputs to this algorithm are clusters [22] of calorimeter cells with energy depositions significantly above the noise. Jet four-momenta are constructed by the vectorial addition of clusters of cells, treating each cluster as a four-momentum with zero mass. The jet four-momenta are then corrected to the jet energy scale [23] as a function of \(\eta \) and \(p_T \) for various effects, the largest of which are the hadronic shower response, detector material distribution, and pileup events [24]. This is done using a calibration scheme based on samples of simulated events and validated with test-beam [25] and collision data [22] studies.
The rapidity of a jet is defined as \(y = \frac{1}{2} \ln[(E + p_z)/(E - p_z)] \), where \(E \) is the jet energy and \(p_z \) is the momentum component along the beam axis [19]. The scattering angle between two jets can be expressed using the variable \(\chi = e^{y_1 - y_2} = e^{y_r} \), where \(y_1 \) and \(y_2 \) are the rapidities of the two jets, and \(y_r = \frac{1}{2}(y_1 - y_2) \). The rapidity boost of the dijet system with respect to the center of mass of the colliding protons is calculated as \(y_B = \frac{1}{2}(y_1 + y_2) \).

For each trigger, the event is required to have a jet with \(p_T \) sufficient to achieve a trigger efficiency greater than 99.5%. For the lowest (highest) threshold trigger, this corresponds to \(p_T > p_T^{\text{min}} = 47(333) \text{ GeV} \). Events are required to have at least two jets, each with \(p_T > 50 \text{ GeV} \); the dijet system, defined as the two jets with largest \(p_T \), is required to have \(|y_r| < 1.7, |y_B| < 1.1, \) and \(m_{jj} > 600 \text{ GeV} \) (where the \(m_{jj} \) requirement avoids the kinematic bias in the angular distributions introduced by the minimum \(p_T \) requirement).

The detector covers the angular range \(|y_r| < 1.7 \), corresponding to \(\chi < 30 \). This interval is divided into 11 bins, with boundaries at \(\chi_n = e^{(0.3 \times n)} \) for \(n = 0 \) to 10, approximating the segmentation of the calorimeter in \(\Delta \eta \). The data are further binned coarsely in \(m_{jj} \) with the expectation that low-\(m_{jj} \) bins are dominated by QCD processes and that signals associated with new physics would be found in higher dijet invariant mass bins. The bin edges are chosen to optimize the expected sensitivity to the model of contact interactions. The highest dijet mass observed is 5.5 TeV.

The SM predictions are estimated using the PYTHIA8 [26] v8.160 event generator with the AU2 [27] underlying-event tune and the CT10 [28] parton distribution functions (PDF). The simulated events are propagated through a detector simulation [29] that uses the GeANT4 [30] simulation package. Pileup conditions vary as a function of the instantaneous luminosity and are taken into account by overlaying simulated minimum-bias events generated with PYTHIA8 onto the hard-scattering process such that the observed distribution of the average number of interactions per bunch crossing is reproduced. The same reconstruction and event selection are applied to the simulated events and the data.

The PYTHIA8 calculations are primarily to leading order (LO) in QCD with simulation of higher-order contributions included in the shower modeling. Events generated by PYTHIA8 are reweighted using a factor correction calculated based on the ratio of the next-to-leading-order (NLO) cross-section calculation from NLOJET++ [31–33] v4.1.2 to the LO+shower calculation from PYTHIA8:

\[
K(\chi, m_{jj}) = \frac{\sigma_{\text{NLO}}(\chi, m_{jj})^{\text{NLOJET++}}}{\sigma_{\text{LO+shower}}(\chi, m_{jj})^{\text{PYTHIA8}}}.
\]

The \(K \) factors decrease with \(\chi \) and thus modify the shape of the angular distributions; the impact ranges from a few percent at low \(m_{jj} \) to approximately 15% for the highest \(m_{jj} \) region. Additional processes accounting for electroweak (EW) effects not included in PYTHIA8 (virtual weak boson exchange and Sudakov-type logarithms) are included as EW corrections [34]. The effect is most pronounced at high \(m_{jj} \) and low \(\chi \), and the correction factors range from unity at low \(m_{jj} \) to 0.98–1.12 in the highest \(m_{jj} \) region. The EW corrections and the NLO \(K \) factors are applied as a function of \(\chi \) and \(m_{jj} \) to the PYTHIA8 prediction.

Figure 1 shows the distributions of the data as a function of \(\chi \). The distribution in each \(m_{jj} \) region is normalized to unity, as the sensitivity to new phenomena is due to the angular distribution rather than normalization. The predicted SM distributions are also shown in Fig. 1 and describe the data well. The EW corrections substantially improve the agreement of the SM prediction with data at high \(m_{jj} \), as can be appreciated from the comparison of the theoretical uncertainties displayed as a shaded band around the SM prediction.
predictions with and without these corrections shown in Fig. 1.

Models of quark compositeness are probed by searching for evidence of new interactions between quarks at a large characteristic energy scale, \(\Lambda \). At energies below this scale, the details of the new interaction and potential mediating particles can be integrated out to form a four-fermion contact interaction model \([5,6]\) described by an effective field theory:

\[
L_{qq} = \frac{2\pi}{\Lambda^2} [\eta_{LL}(\bar{q}_L\gamma_\mu q_L)(\bar{q}_L\gamma^\mu q_L) + \eta_{RR}(\bar{q}_R\gamma_\mu q_R)(\bar{q}_R\gamma^\mu q_R) + 2\eta_{RL}(\bar{q}_R\gamma_\mu q_R)(\bar{q}_L\gamma^\mu q_L)],
\]

where the quark fields have \(L \) and \(R \) chiral projections and the coefficients \(\eta_{LL}, \eta_{RR}, \text{ and } \eta_{RL} \) turn on and off various interactions.

In this Letter, a contact interaction (CI) model with a left-chiral color-singlet \((\eta_{LL} = \pm 1) \) is used as a benchmark model, as many other models of new phenomena have similar predictions for the dijet scattering angle \(\chi \) at large \(m_{jj} \). Interference of the signal model with the SM process \(q\bar{q} \rightarrow q\bar{q} \) is also included.

Event samples were simulated with both QCD and contact interactions, taking interference into account and using the same event generator, underlying-event tune, and PDF as for the SM simulations. Events were generated for both constructive and destructive interference with \(\Lambda = 7 \text{ TeV} \) and \(\Lambda = 10 \text{ TeV} \). The \(\Lambda = 7 \text{ TeV} \) sample is then used for extrapolation to other values of \(\Lambda \), using the fact that the interference term is proportional to \(1/\Lambda^2 \) and the pure CI cross section is proportional to \(1/\Lambda^4 \). This procedure is validated with the \(\Lambda = 10 \text{ TeV} \) sample. As with the QCD prediction, a \(K \)-factor correction is computed to correct the PYTHIA LO shower prediction to a NLO calculation. Calculations at NLO are provided by CUET [35] v1.0.

Uncertainties in the SM and signal predictions include theoretical uncertainties and experimental uncertainties on the measured angular distributions. Theoretical uncertainties in the SM and signal predictions are due to the choice of PDF, renormalization and factorization scales, choice of event generator, as well as statistical uncertainties due to limited simulation sample sizes. The impact of the uncertainty in the PDF is estimated using \textsc{nlojet++} with three different PDFs: CT10, MSTW2008 \([36]\), and NNPDF23 \([37]\). These uncertainties are negligible (< 1%), as the choice of PDF largely impacts the total cross section rather than the angular distributions. The uncertainty due to the choice of renormalization and factorization scales were estimated by varying those independently up and down by a factor two in \textsc{nlojet++}. The resulting uncertainty varies with \(m_{jj} \) and \(\chi \), rising to 4% at the smallest \(\chi \) values at high \(m_{jj} \). The uncertainty due to the choice of generator is estimated by comparing the predictions from the NLO generator \textsc{powheg} \([38]\) v1.0 with those of \textsc{pythia8} with \(K \) factors applied. The largest uncertainty due to choice of generator is at the lowest \(m_{jj} \) values, where it approaches 20%, while for the highest \(m_{jj} \) values and smallest \(\chi \) it ranges from 10% to 14%. The uncertainty due to the choice of the showering model is estimated through comparison of \textsc{powheg} samples showered and hadronized with \textsc{pythia8} v8.175 to \textsc{herwig} \([39]\) v6.520.2 samples using \textsc{jimmy} \([40,41]\) v4.31. The largest value of this uncertainty is less than 1% at the highest \(m_{jj} \) values and smallest values of \(\chi \). Finally the statistical uncertainties on the \(K \) factors due to limited simulation sample size are small and set to 1%.

The experimental uncertainty is dominated by the \(\eta \) dependence of the jet energy scale calibration. This uncertainty varies from approximately 15% at small values of \(\chi \) for the highest \(m_{jj} \) values, to a few percent at lower \(m_{jj} \) values and higher \(\chi \) values. The uncertainty in the beam energy is found to introduce a negligible contribution. The total uncertainty at the lowest \(\chi \), highest \(m_{jj} \) amounts to 20%, decreasing to a few percent at high \(\chi \). The total theoretical and experimental uncertainties are shown in Fig. 1.

The \(p \) value for the SM hypothesis is (0.25) 0.30 for the (second) highest \(m_{jj} \) bin. In the absence of significant deviations from the SM prediction, upper bounds on CI contributions are calculated using a one-sided profile likelihood ratio and the CL_S technique \([42,43]\), evaluated using the asymptotic approximation \([44]\) on events with \(m_{jj} > 3.2 \text{ TeV} \); the validity of asymptotic approximation was confirmed using toy simulations. These bounds exclude a compositeness scale below 8.1 \text{ TeV} in a destructive interference scenario and below 12.0 \text{ TeV} in a constructive interference scenario. The median expected limits are 8.9 (14.1) \text{ TeV} for the destructive (constructive) interference scenario.

In summary, dijet angular distributions have been measured by the ATLAS experiment in 17.3 fb\(^{-1}\) of 8 TeV \(pp \) collisions at the LHC. Over a wide angular range and dijet invariant mass spectrum, the data are well described by QCD predictions at NLO. A model of quark compositeness is used as a benchmark for theories of new phenomena that include new forces and mediating particles; such theories predict deviations at small values of \(\chi \). A compositeness scale below 8.1 (12.0) \text{ TeV} in a destructive (constructive) interference scenario is excluded at 95% confidence level, similar to results from the CMS Collaboration \([17]\) and representing a significant enhancement in sensitivity relative to the previous limit (at 7.6 \text{ TeV} for destructive interference) from the ATLAS Collaboration \([11]\).

We would like to thank S. Dittmaier and A. Huss for providing us with the electroweak correction factors. We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We
acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFV and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COCNCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DFN, DRSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; G打ICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZ 商品, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and the Universities of Edinburgh, Newcastle, Southampton, Sheffield, and Oxford; COST and STFC, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[19] The ATLAS Collaboration uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, Φ) are used in the transverse plane, Φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = −ln |tan(θ/2)|. The transverse energy and transverse momentum are defined by E_T = E sin θ and p_T = |p| sin θ, respectively.
(ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4Department of Physics, Ankara University, Ankara, Turkey
5Istanbul Aydin University, Istanbul, Turkey
6Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
7LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
8High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
9Department of Physics, University of Arizona, Tucson, Arizona, USA
10Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
11Institute of Physics, University of Athens, Athens, Greece
12Physics Department, National Technical University of Athens, Zografou, Greece
13Institute of Physics, Austrian Academy of Sciences, Baku, Azerbaijan
14Department of Physics, University of Alabama, Huntsville, Alabama, USA
15Department of Physics, University of Arizona, Tucson, Arizona, USA
16Physics Department, University of Athens, Athens, Greece
17Physics Department, National Technical University of Athens, Zografou, Greece
18Institute of Physics, Austrian Academy of Sciences, Baku, Azerbaijan
<table>
<thead>
<tr>
<th>Institution / University / Laboratory</th>
<th>Address</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain</td>
<td></td>
<td>Spain</td>
</tr>
<tr>
<td>Institute of Physics, University of Belgrade, Belgrade, Serbia</td>
<td></td>
<td>Serbia</td>
</tr>
<tr>
<td>Department for Physics and Technology, University of Bergen, Bergen, Norway</td>
<td></td>
<td>Norway</td>
</tr>
<tr>
<td>Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA</td>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Department of Physics, Humboldt University, Berlin, Germany</td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland</td>
<td></td>
<td>Switzerland</td>
</tr>
<tr>
<td>School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Department of Physics, Bogazici University, Istanbul, Turkey</td>
<td></td>
<td>Turkey</td>
</tr>
<tr>
<td>Department of Physics, Dogus University, Istanbul, Turkey</td>
<td></td>
<td>Turkey</td>
</tr>
<tr>
<td>Department of Physics Engineering, Gaziantepe University, Gaziantepe, Turkey</td>
<td></td>
<td>Turkey</td>
</tr>
<tr>
<td>INFN Sezione di Bologna, Italy</td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy</td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>Physikalisches Institut, University of Bonn, Bonn, Germany</td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Department of Physics, Boston University, Boston, Massachusetts, USA</td>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Department of Physics, Brandeis University, Waltham, Massachusetts, USA</td>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil</td>
<td></td>
<td>Brazil</td>
</tr>
<tr>
<td>Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil</td>
<td></td>
<td>Brazil</td>
</tr>
<tr>
<td>Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil</td>
<td></td>
<td>Brazil</td>
</tr>
<tr>
<td>Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil</td>
<td></td>
<td>Brazil</td>
</tr>
<tr>
<td>Physics Department, Brookhaven National Laboratory, Upton, New York, USA</td>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>National Institute of Physics and Nuclear Engineering, Bucharest, Romania</td>
<td></td>
<td>Romania</td>
</tr>
<tr>
<td>National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania</td>
<td></td>
<td>Romania</td>
</tr>
<tr>
<td>University Politehnica Bucharest, Bucharest, Romania</td>
<td></td>
<td>Romania</td>
</tr>
<tr>
<td>West University in Timisoara, Timisoara, Romania</td>
<td></td>
<td>Romania</td>
</tr>
<tr>
<td>Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina</td>
<td></td>
<td>Argentina</td>
</tr>
<tr>
<td>Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom</td>
<td></td>
<td>UK</td>
</tr>
<tr>
<td>Department of Physics, Carleton University, Ottawa, Ontario, Canada</td>
<td></td>
<td>Canada</td>
</tr>
<tr>
<td>CERN, Geneva, Switzerland</td>
<td></td>
<td>Switzerland</td>
</tr>
<tr>
<td>Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA</td>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile</td>
<td></td>
<td>Chile</td>
</tr>
<tr>
<td>Departamento de Física, Universidad Técnica Federico Santa Maria, Valparaíso, Chile</td>
<td></td>
<td>Chile</td>
</tr>
<tr>
<td>Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China</td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Department of Modern Physics, University of Science and Technology of China, Anhui, China</td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Department of Physics, Nanjing University, Jiangsu, China</td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>School of Physics, Shandong University, Shandong, China</td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China</td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Physics Department, Tsinghua University, Beijing 100084, China</td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France</td>
<td></td>
<td>France</td>
</tr>
<tr>
<td>Nevis Laboratory, Columbia University, Irvington, New York, USA</td>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark</td>
<td></td>
<td>Denmark</td>
</tr>
<tr>
<td>INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy</td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>Dipartimento di Fisica, Università della Calabria, Rende, Italy</td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland</td>
<td></td>
<td>Poland</td>
</tr>
<tr>
<td>Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland</td>
<td></td>
<td>Poland</td>
</tr>
<tr>
<td>Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland</td>
<td></td>
<td>Poland</td>
</tr>
<tr>
<td>Physics Department, Southern Methodist University, Dallas, Texas, USA</td>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Physics Department, University of Texas at Dallas, Richardson, Texas, USA</td>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>DESY, Hamburg and Zeuthen, Germany</td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany</td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany</td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Department of Physics, Duke University, Durham, North Carolina, USA</td>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom</td>
<td></td>
<td>UK</td>
</tr>
<tr>
<td>INFN Laboratori Nazionali di Frascati, Frascati, Italy</td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany</td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Section de Physique, Université de Genève, Geneva, Switzerland</td>
<td></td>
<td>Switzerland</td>
</tr>
<tr>
<td>INFN Sezione di Genova, Italy</td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>Dipartimento di Fisica, Università di Genova, Genova, Italy</td>
<td></td>
<td>Italy</td>
</tr>
</tbody>
</table>
104a INFN Sezione di Napoli, Italy
104b Dipartimento di Fisica, Università di Napoli, Napoli, Italy
105 Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
106 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
107 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
108 Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
110 Department of Physics, New York University, New York, New York, USA
111 Ohio State University, Columbus, Ohio, USA
112 Faculty of Science, Okayama University, Okayama, Japan
113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
114 Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
115 Palacký University, RCPTM, Olomouc, Czech Republic
116 Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
117 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
118 Graduate School of Science, Osaka University, Osaka, Japan
119 Department of Physics, University of Oslo, Oslo, Norway
120 Department of Physics, Oxford University, Oxford, United Kingdom
121 INFN Sezione di Pavia, Italy
122 Dipartimento di Fisica, Università di Pavia, Pavia, Italy
123 Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
124 INFN Sezione di Pisa, Italy
125 Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
126 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
127 Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
128 Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
129 Department of Physics, University of Coimbra, Coimbra, Portugal
130 Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
131 Departamento de Física, Universidade do Minho, Braga, Portugal
132 Dep Física and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
133 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
134 Czech Technical University in Prague, Praha, Czech Republic
135 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
136 State Research Center Institute for High Energy Physics, Protvino, Russia
137 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
138 INFN Sezione di Roma, Italy
139 Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
140 INFN Sezione di Roma Tor Vergata, Italy
141 Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
142 INFN Sezione di Roma Tre, Italy
143 Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
144 Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca, Morocco
145 Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco
146 Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
147 Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
148 Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
149 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
150 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
151 Department of Physics, University of Washington, Seattle, Washington, USA
152 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
153 Department of Physics, Shinshu University, Nagano, Japan
154 Fachbereich Physik, Universität Siegen, Siegen, Germany
155 Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
156 SLAC National Accelerator Laboratory, Stanford, California, USA
157 Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
158 Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
159 Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic

221802-15
Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada

Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, Wisconsin, USA

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven, Connecticut, USA

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Deceased.

Also at Department of Physics, King’s College London, London, United Kingdom.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Novosibirsk State University, Novosibirsk, Russia.

Also at TRIUMF, Vancouver BC, Canada.

Also at Department of Physics, California State University, Fresno CA, USA.

Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.

Also at Tomsk State University, Tomsk, Russia.

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Also at Università di Napoli Parthenope, Napoli, Italy.

Also at Institute of Particle Physics (IPP), Canada.

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.

Also at Louisiana Tech University, Ruston LA, USA.

Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.

Also at Department of Physics, National Tsing Hua University, Taiwan.

Also at Department of Physics, The University of Texas at Austin, Austin TX, USA.
1Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
2Also at CERN, Geneva, Switzerland.
3Also at Georgian Technical University (GTU), Tbilisi, Georgia.
4Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
5Also at Manhattan College, New York NY, USA.
6Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
7Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
8Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
9Also at School of Physics, Shandong University, Shandong, China.
10Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
11Also at Section de Physique, Université de Genève, Geneva, Switzerland.
12Also at International School for Advanced Studies (SISSA), Trieste, Italy.
13Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA.
14Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
15Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
16Also at National Research Nuclear University MEPhI, Moscow, Russia.
17Also at Department of Physics, Stanford University, Stanford CA, USA.
18Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
19Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA.
20Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.
21Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.