Search for new phenomena in dijet angular distributions in proton-proton collisions at $\sqrt{s} = 8$ TeV measured with the ATLAS detector

DOI
10.1103/PhysRevLett.114.221802

Publication date
2015

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV Measured with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 3 April 2015; published 4 June 2015)

A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 8$ TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb$^{-1}$. The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the standard model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% C.L.; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.

DOI: 10.1103/PhysRevLett.114.221802 PACS numbers: 13.85.Rm, 12.60.Rc

The search for an internal structure of fermions and new forces that might govern that structure is a major goal of modern particle physics. The most powerful probes are scattering experiments with large momentum transfer. Collisions of protons at the Large Hadron Collider (LHC) resulting in two energetic jets of particles (dijets) provide the largest momentum transfer currently available, and therefore the deepest probe.

The angular distribution of jets relative to the beam axis in events with high dijet invariant mass (m_{jj}) provides stringent tests of perturbative quantum chromodynamics (QCD) as well as theories of new phenomena. QCD calculations predict that dijet production, dominated by t-channel gluon exchange in the kinematic region of proton-proton (pp) collisions at the LHC, features steeply falling m_{jj} distributions and angular distributions peaked at $|\cos(\theta^*)| = 1$, where θ^* is the polar scattering angle in the two-parton center-of-mass frame. New phenomena, such as strong gravity [1,2] or new interactions [3–6] typically predict angular distributions which are more isotropic.

Previous studies of dijet angular distributions, at the CERN SPS [7,8], the FNAL Tevatron [9,10], the CERN LHC at $\sqrt{s} = 7$ TeV [11–16], and by the CMS Collaboration at $\sqrt{s} = 8$ TeV [17], have reported results consistent with the standard model (SM). This Letter reports on studies of dijet angular distributions in pp collisions at $\sqrt{s} = 8$ TeV in data with an integrated luminosity of 17.3 fb$^{-1}$ collected with the ATLAS detector in 2012.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
The rapidity of a jet is defined as $y = \frac{1}{2} \ln [(E + p_y) / (E - p_y)]$, where E is the jet energy and p_y is the momentum component along the beam axis [19]. The scattering angle between two jets can be expressed using the variable $\chi = e^{(y_1-y_2)/2} = e^{y^e/2}$, where y_1 and y_2 are the rapidities of the two jets, and $y^e = \frac{1}{2}(y_1 - y_2)$. The rapidity boost of the dijet system with respect to the center of mass of the colliding protons is calculated as $\gamma_B = \frac{1}{2}(y_1 + y_2)$.

For each trigger, the event is required to have a jet with p_T sufficient to achieve a trigger efficiency greater than 99.5%. For the lowest (highest) threshold trigger, this corresponds to $p_T > p_T^\text{min} = 47(333)$ GeV. Events are required to have at least two jets, each with $p_T > 50$ GeV; the dijet system, defined as the two jets with largest p_T, is required to have $|y^e| < 1.7$, $|y_B| < 1.1$, and $m_{jj} > 600$ GeV (where the m_{jj} requirement avoids the kinematic bias in the angular distributions introduced by the minimum p_T requirement).

The detector covers the angular range $|y^e| < 1.7$, corresponding to $\chi < 30$. This interval is divided into 11 bins, with boundaries at $\chi_n = e^{(0.33n)}$ for $n = 0$ to 10, approximating the segmentation of the calorimeter in $\Delta \eta$. The data are further binned coarsely in m_{jj} with the expectation that low-m_{jj} bins are dominated by QCD processes and that signals associated with new physics would be found in higher dijet invariant mass bins. The bin edges are chosen to optimize the expected sensitivity to the model of contact interactions. The highest dijet mass observed is 5.5 TeV.

The SM predictions are estimated using the PYTHIA8 [26] v8.160 event generator with the AU2 [27] underlying-event tune and the CT10 [28] parton distribution functions (PDF). The simulated events are propagated through a detector simulation [29] that uses the GEANT4 [30] simulation package. Pileup conditions vary as a function of the instantaneous luminosity and are taken into account by overlaying simulated minimum-bias events generated with PYTHIA8 onto the hard-scattering process such that the observed distribution of the average number of interactions per bunch crossing is reproduced. The same reconstruction and event selection are applied to the simulated events and the data.

The PYTHIA8 calculations are primarily to leading order (LO) in QCD with simulation of higher-order contributions included in the shower modeling. Events generated by PYTHIA8 are reweighted using a correction factor calculated based on the ratio of the next-to-leading-order (NLO) cross-section calculation from NLOJET++ [31–33] v4.1.2 to the LO+shower calculation from PYTHIA8:

$$K(\chi, m_{jj}) = \frac{\sigma_{\text{NLO}}(\chi, m_{jj})^{\text{NLOJET++}}}{\sigma_{\text{LO+shower}}(\chi, m_{jj})^{\text{PYTHIA8}}}.$$

The K factors decrease with χ and thus modify the shape of the angular distributions; the impact ranges from a few percent at low m_{jj} to approximately 15% for the highest m_{jj} region. Additional processes accounting for electroweak (EW) effects not included in PYTHIA8 (virtual weak boson exchange and Sudakov-type logarithms) are included as EW corrections [34]. The effect is most pronounced at high m_{jj} and low χ, and the correction factors range from unity at low m_{jj} to 0.98–1.12 in the highest m_{jj} region. The EW corrections and the NLO K factors are applied as a function of χ and m_{jj} to the PYTHIA8 prediction.

Figure 1 shows the distributions of the data as a function of χ. The distribution in each m_{jj} region is normalized to unity, as the sensitivity to new phenomena is due to the angular distribution rather than normalization. The predicted SM distributions are also shown in Fig. 1 and describe the data well. The EW corrections substantially improve the agreement of the SM prediction with data at high m_{jj}, as can be appreciated from the comparison of the.
predictions with and without these corrections shown in Fig. 1.

Models of quark compositeness are probed by searching for evidence of new interactions between quarks at a large characteristic energy scale, Λ. At energies below this scale, the details of the new interaction and potential mediating particles can be integrated out to form a four-fermion contact interaction model [5,6] described by an effective field theory:

$$L_{qq} = \frac{2\pi}{\Lambda^2} \left[\eta_{LL} (\bar{q}_L \gamma_\mu q_L)(\bar{q}_L \gamma^\mu q_L) + \eta_{RR} (\bar{q}_R \gamma_\mu q_R)(\bar{q}_R \gamma^\mu q_R) + 2\eta_{RL} (\bar{q}_R \gamma_\mu q_R)(\bar{q}_L \gamma^\mu q_L) \right],$$

(1)

where the quark fields have L and R chiral projections and the coefficients η_{LL}, η_{RR}, and η_{RL} turn on and off various interactions.

In this Letter, a contact interaction (CI) model with a left-chiral color-singlet coupling ($\eta_{LL} = \pm 1$) is used as a benchmark model, as many other models of new phenomena have similar predictions for the dijet scattering angle χ at large m_{jj}. Interference of the signal model with the SM process $q\bar{q} \rightarrow q\bar{q}$ is also included.

Event samples were simulated with both QCD and contact interactions, taking interference into account and using the same event generator, underlying-event tune, and PDF as for the SM simulations. Events were generated for both constructive and destructive interference with $\Lambda = 7$ TeV and $\Lambda = 10$ TeV. The $\Lambda = 7$ TeV sample is then used for extrapolation to other values of Λ, using the fact that the interference term is proportional to $1/\Lambda^2$ and the pure CI cross section is proportional to $1/\Lambda^4$. This procedure is validated with the $\Lambda = 10$ TeV sample. As with the QCD prediction, a K-factor correction is computed to correct the PYTHIA LO + shower prediction to a NLO calculation. Calculations at NLO are provided by CUET [35] v1.0.

Uncertainties in the SM and signal predictions include theoretical uncertainties and experimental uncertainties on the measured angular distributions. Theoretical uncertainties in the SM and signal predictions are due to the choice of PDF, renormalization and factorization scales, choice of event generator, as well as statistical uncertainties due to limited simulation sample sizes. The impact of the uncertainty in the PDF is estimated using NLOJET++ with three different PDFs: CT10, MSTW2008 [36], and NNPDF23 [37]. These uncertainties are negligible (< 1%), as the choice of PDF largely impacts the total cross section rather than the angular distributions. The uncertainty due to the choice of renormalization and factorization scales were estimated by varying those independently up and down by a factor two in NLOJET++. The resulting uncertainty varies with m_{jj} and χ, rising to 4% at the smallest χ values at high m_{jj}. The uncertainty due to the choice of generator is estimated by comparing the predictions from the NLO generator POWHEG [38] v1.0 with those of PYTHIA8 with K factors applied. The largest uncertainty due to choice of generator is at the lowest m_{jj} values, where it approaches 20%, while for the highest m_{jj} values and smallest χ it ranges from 10% to 14%. The uncertainty due to the choice of the showering model is estimated through comparison of POWHEG samples showered and hadronized with PYTHIA8 v8.175 to HERWIG [39] v6.520.2 samples using JIMMY [40,41] v4.31. The largest value of this uncertainty is less than 1% at the highest m_{jj} values and smallest values of χ.

Finally the statistical uncertainties on the K factors due to limited simulation sample size are small and set to 1%.

The experimental uncertainty is dominated by the η dependence of the jet energy scale calibration. This uncertainty varies from approximately 15% at small values of χ for the highest m_{jj} values, to a few percent at lower m_{jj} values and higher χ values. The uncertainty in the beam energy is found to introduce a negligible contribution. The total uncertainty at the lowest χ, highest m_{jj} amounts to 20%, decreasing to a few percent at high χ. The total theoretical and experimental uncertainties are shown in Fig. 1.

The p value for the SM hypothesis is (0.25) 0.30 for the (second) highest m_{jj} bin. In the absence of significant deviations from the SM prediction, upper bounds on CI contributions are calculated using a one-sided profile likelihood ratio and the CLs technique [42,43], evaluated using the asymptotic approximation [44] on events with $m_{jj} > 3.2$ TeV; the validity of asymptotic approximation was confirmed using toy simulations. These bounds exclude a compositeness scale below 8.1 TeV in a destructive interference scenario and below 12.0 TeV in a constructive interference scenario. The median expected limits are 8.9 (14.1) TeV for the destructive (constructive) interference scenario.

In summary, dijet angular distributions have been measured by the ATLAS experiment in 17.3 fb$^{-1}$ of 8 TeV pp collisions at the LHC. Over a wide angular range and dijet invariant mass spectrum, the data are well described by QCD predictions at NLO. A model of quark compositeness is used as a benchmark for theories of new phenomena that include new forces and mediating particles; such theories predict deviations at small values of χ. A compositeness scale below 8.1 (12.0) TeV in a destructive (constructive) interference scenario is excluded at 95% confidence level, similar to results from the CMS Collaboration [17] and representing a significant enhancement in sensitivity relative to the previous limit (at 7.6 TeV for destructive interference) from the ATLAS Collaboration [11].

We would like to thank S. Dittmaier and A. Huss for providing us with the electroweak correction factors. We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We
acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNNR, DNSTC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; AARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[19] The ATLAS Collaboration uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the x axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln(\tan(\theta/2))$. The transverse energy and transverse momentum are defined by $E_T = E \sin \theta$ and $p_T = |\vec{p}| \sin \theta$, respectively.
Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
Institute of Physics, University of Belgrade, Belgrade, Serbia
Department for Physics and Technology, University of Bergen, Bergen, Norway
Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
Department of Physics, Humboldt University, Berlin, Germany
Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Department of Physics, Bogazici University, Istanbul, Turkey
Department of Physics, Dogus University, Istanbul, Turkey
Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
INFN Sezione di Bologna, Italy
Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
Physikalisches Institut, University of Bonn, Bonn, Germany
Department of Physics, Boston University, Boston, Massachusetts, USA
Department of Physics, Brandeis University, Waltham, Massachusetts, USA
Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
Federal University of Sao Joao del Rei (UFJ), Sao Joao del Rei, Brazil
Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
Physics Department, Brookhaven National Laboratory, Upton, New York, USA
National Institute of Physics and Nuclear Engineering, Bucharest, Romania
National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
University Politehnica Bucharest, Bucharest, Romania
West University in Timisoara, Timisoara, Romania
Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, Carleton University, Ottawa, Ontario, Canada
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
Department of Modern Physics, University of Science and Technology of China, Anhui, China
School of Physics, Nanjing University, Jiangsu, China
School of Physics, Shandong University, Shandong, China
Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China
Physics Department, Tsinghua University, Beijing 100084, China
Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington, New York, USA
Niels Bohr Institute, University of Copenhagen, København, Denmark
INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
Dipartimento di Fisica, Università della Calabria, Rende, Italy
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
Physics Department, Southern Methodist University, Dallas, Texas, USA
Physics Department, University of Texas at Dallas, Richardson, Texas, USA
DESY, Hamburg and Zeuthen, Germany
Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
Department of Physics, Duke University, Durham, North Carolina, USA
SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
Section de Physique, Université de Genève, Geneva, Switzerland
INFN Sezione di Genova, Italy
Dipartimento di Fisica, Università di Genova, Genova, Italy
PRL 114, 221802 (2015) PHYSICAL REVIEW LETTERS week ending 5 JUNE 2015

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
Department of Physics, The University of Hong Kong, Hong Kong, China
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Department of Physics, Indiana University, Bloomington, Indiana, USA
Institut für Atom- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
Universität of Iowa, Iowa City, Iowa, USA
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
INFN Sezione di Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston, Louisiana, USA
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
Department of Physics, McGill University, Montreal, Québec, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
INFN Sezione di Milano, Italy
Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
145a Department of Physics, University of Cape Town, Cape Town, South Africa
145b Department of Physics, University of Johannesburg, Johannesburg, South Africa
145c School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146a Department of Physics, Stockholm University, Sweden
146b The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Departments of Physics \& Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto, Ontario, Canada
159a TRIUMF, Vancouver, British Columbia, Canada
159b Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
160 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
161 Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
164a INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
164b ICTP, Trieste, Italy
164c Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois, Urbana, Illinois, USA
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
170 Department of Physics, University of Warwick, Coventry, United Kingdom
171 Waseda University, Tokyo, Japan
172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173 Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176 Department of Physics, Yale University, New Haven, Connecticut, USA
177 Yerevan Physics Institute, Yerevan, Armenia
178 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Deceased.
b Also at Department of Physics, King’s College London, London, United Kingdom.
c Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
d Also at Novosibirsk State University, Novosibirsk, Russia.
e Also at TRIUMF, Vancouver BC, Canada.
f Also at Department of Physics, California State University, Fresno CA, USA.
g Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
h Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.
i Also at Tomsk State University, Tomsk, Russia.
j Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
k Also at Universitá di Napoli Parthenope, Napoli, Italy.
l Also at Institute of Particle Physics (IPP), Canada.
m Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
n Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
o Also at Louisiana Tech University, Ruston LA, USA.
p Also at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
q Also at Department of Physics, National Tsing Hua University, Taiwan.
r Also at Department of Physics, The University of Texas at Austin, Austin TX, USA.