Search for new phenomena in dijet angular distributions in proton-proton collisions at $\sqrt{s} = 8$ TeV measured with the ATLAS detector

DOI
10.1103/PhysRevLett.114.221802

Publication date
2015

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):
https://doi.org/10.1103/PhysRevLett.114.221802

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at \(\sqrt{s} = 8 \) TeV Measured with the ATLAS Detector

G. Aad et al.*
(AATLAS Collaboration)
(Received 3 April 2015; published 4 June 2015)

A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of \(\sqrt{s} = 8 \) TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb\(^{-1}\). The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the standard model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% C.L.; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.

DOI: 10.1103/PhysRevLett.114.221802 PACS numbers: 13.85.Rm, 12.60.Rc

The search for an internal structure of fermions and new forces that might govern that structure is a major goal of modern particle physics. The most powerful probes are scattering experiments with large momentum transfer. Collisions of protons at the Large Hadron Collider (LHC) resulting in two energetic jets of particles (dijets) provide the largest momentum transfer currently available, and therefore the deepest probe.

The angular distribution of jets relative to the beam axis in events with high dijet invariant mass \(m_{jj}\) provides stringent tests of perturbative quantum chromodynamics (QCD) as well as theories of new phenomena. QCD calculations predict that dijet production, dominated by the vectorial addition of clusters of cells, treating each jet as a four-momentum with zero mass. The jet four-momentum is constructed by calorimeter cells with energy depositions significantly above the noise. Jet four-momenta are constructed by the vectorial addition of clusters of cells, treating each jet as a four-momentum with zero mass. The jet four-momenta are then corrected to the jet energy scale [23] as a function of \(\eta\) and \(p_T\) for various effects, the largest of which are the hadronic shower response, detector material distribution, and pileup events [24]. This is done using a calibration scheme based on samples of simulated events and validated with test-beam [25] and collision data [22] studies.

A detailed description of the ATLAS detector is published elsewhere [18]. The detector is instrumented over almost the entire solid angle around the \(pp\) collision point, with layers of tracking detectors, calorimeters, and muon detectors.

The jets are measured using a calorimeter system composed of different detector types covering different regions in \(\eta\) [19] and depth. The electromagnetic calorimeter is composed of liquid-argon sampling calorimeters, using lead as an absorber, and is split into a barrel (\(|\eta| < 1.475\)) and two endcaps (1.375 < \(|\eta|\) < 3.2). The hadronic calorimeter is divided into a barrel and two extended barrels (\(|\eta| < 1.75\)), and two endcaps (1.5 < \(|\eta|\) < 3.2). The barrel and extended barrels are sampling calorimeters with steel as absorber and scintillator tiles as the active medium, while the hadronic end caps are liquid-argon calorimeters with copper as the absorber. In the very forward regions (3.1 < \(|\eta|\) < 4.9) there are liquid argon calorimeters with copper and tungsten absorbers.

The data are selected using a trigger that requires a single high-\(p_T\) [19] jet above one of eight thresholds, ranging from 25 to 220 GeV. Because of the high rate of jets at lower \(p_T\), only a fraction of the events from the lower seven thresholds are stored.

Individual jets are reconstructed using the anti-\(k_t\) jet clustering algorithm [20,21] with radius parameter \(R = 0.6\). The inputs to this algorithm are clusters [22] of calorimeter cells with energy depositions significantly above the noise. Jet four-momenta are constructed by the vectorial addition of clusters of cells, treating each cluster as a four-momentum with zero mass. The jet four-momenta are then corrected to the jet energy scale [23] as a function of \(\eta\) and \(p_T\) for various effects, the largest of which are the hadronic shower response, detector material distribution, and pileup events [24]. This is done using a calibration scheme based on samples of simulated events and validated with test-beam [25] and collision data [22] studies.

The ATLAS detector is composed of liquid-argon sampling calorimeters, providing the largest momentum transfer currently available, and therefore the deepest probe.

The jets are measured using a calorimeter system composed of different detector types covering different regions in \(\eta\) [19] and depth. The electromagnetic calorimeter is composed of liquid-argon sampling calorimeters, using lead as an absorber, and is split into a barrel (\(|\eta| < 1.475\)) and two endcaps (1.375 < \(|\eta|\) < 3.2). The hadronic calorimeter is divided into a barrel and two extended barrels (\(|\eta| < 1.75\)), and two endcaps (1.5 < \(|\eta|\) < 3.2). The barrel and extended barrels are sampling calorimeters with steel as absorber and scintillator tiles as the active medium, while the hadronic end caps are liquid-argon calorimeters with copper as the absorber. In the very forward regions (3.1 < \(|\eta|\) < 4.9) there are liquid argon calorimeters with copper and tungsten absorbers.

The data are selected using a trigger that requires a single high-\(p_T\) [19] jet above one of eight thresholds, ranging from 25 to 220 GeV. Because of the high rate of jets at lower \(p_T\), only a fraction of the events from the lower seven thresholds are stored.

Individual jets are reconstructed using the anti-\(k_t\) jet clustering algorithm [20,21] with radius parameter \(R = 0.6\). The inputs to this algorithm are clusters [22] of calorimeter cells with energy depositions significantly above the noise. Jet four-momenta are constructed by the vectorial addition of clusters of cells, treating each cluster as a four-momentum with zero mass. The jet four-momenta are then corrected to the jet energy scale [23] as a function of \(\eta\) and \(p_T\) for various effects, the largest of which are the hadronic shower response, detector material distribution, and pileup events [24]. This is done using a calibration scheme based on samples of simulated events and validated with test-beam [25] and collision data [22] studies.

0031-9007/15/114(22)/221802(17) 221802-1 © 2015 CERN, for the ATLAS Collaboration

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
The rapidity of a jet is defined as \(y = \frac{1}{2} \ln \left[\frac{E + p_y}{E - p_y} \right] \), where \(E \) is the jet energy and \(p_y \) is the momentum component along the beam axis [19]. The scattering angle between two jets can be expressed using the variable \(\chi = e^{y_1-y_2} = e^{2y^*} \), where \(y_1 \) and \(y_2 \) are the rapidities of the two jets, and \(y^* = \frac{1}{2}(y_1 - y_2) \). The rapidity boost of the dijet system with respect to the center of mass of the colliding protons is calculated as \(y_B = \frac{1}{2}(y_1 + y_2) \).

For each trigger, the event is required to have a jet with \(p_T \) sufficient to achieve a trigger efficiency greater than 99.5%. For the lowest (highest) threshold trigger, this corresponds to \(p_T > p_T^{\text{min}} = 47(333) \text{ GeV} \). Events are required to have at least two jets, each with \(p_T > 50 \text{ GeV} \); the dijet system, defined as the two jets with largest \(p_T \), is required to have \(|y^*| < 1.7, |y_B| < 1.1 \), and \(m_{jj} > 600 \text{ GeV} \) (where the \(m_{jj} \) requirement avoids the kinematic bias in the angular distributions introduced by the minimum \(p_T \) requirement).

The detector covers the angular range \(|y^*| < 1.7 \), corresponding to \(y < 30 \). This interval is divided into 11 bins, with boundaries at \(y_n = e^{(0.3\pi n)} \) for \(n = 0 \) to 10, approximating the segmentation of the calorimeter in \(\Delta \eta \). The data are further binned coarsely in \(m_{jj} \) with the expectation that low-\(m_{jj} \) bins are dominated by QCD processes and that signals associated with new physics would be found in higher dijet invariant mass bins. The bin edges are chosen to optimize the expected sensitivity to the model of contact interactions. The highest dijet mass observed is 5.5 TeV.

The SM predictions are estimated using the PYTHIA8 [26] v8.160 event generator with the AU2 [27] underlying-event tune and the CT10 [28] parton distribution functions (PDF). The simulated events are propagated through a detector simulation [29] that uses the GEANT4 [30] simulation package. Pileup conditions vary as a function of the cross-section calculation from NLOJET++ [31–33] v4.1.2 to the LO+shower calculation from PYTHIA8:

\[
K(\chi, m_{jj}) = \frac{\sigma_{\text{NLO}}(\chi, m_{jj})^{\text{NLOJET++}}}{\sigma_{\text{LO+shower}}(\chi, m_{jj})^{\text{PYTHIA8}}}. \]

The \(K \) factors decrease with \(\chi \) and thus modify the shape of the angular distributions; the impact ranges from a few percent at low \(m_{jj} \) to approximately 15% for the highest \(m_{jj} \) region. Additional processes accounting for electroweak (EW) effects not included in PYTHIA8 (virtual weak boson exchange and Sudakov-type logarithms) are included as EW corrections [34]. The effect is most pronounced at high \(m_{jj} \) and low \(\chi \), and the correction factors range from unity at low \(m_{jj} \) to 0.98–1.12 in the highest \(m_{jj} \) region. The EW corrections and the NLO \(K \) factors are applied as a function of \(\chi \) and \(m_{jj} \) to the PYTHIA8 prediction.

Figure 1 shows the distributions of the data as a function of \(\chi \). The distribution in each \(m_{jj} \) region is normalized to unity, as the sensitivity to new phenomena is due to the angular distribution rather than normalization. The predicted SM distributions are also shown in Fig. 1 and describe the data well. The EW corrections substantially improve the agreement of the SM prediction with data at high \(m_{jj} \), as can be appreciated from the comparison of the theoretical uncertainties and statistical uncertainties added in quadrature, with a tick representing experimental uncertainties only. The theoretical uncertainties are displayed as a shaded band around the SM prediction.
predictions with and without these corrections shown in Fig. 1.

Models of quark compositeness are probed by searching for evidence of new interactions between quarks at a large characteristic energy scale, \(\Lambda \). At energies below this scale, the details of the new interaction and potential mediating particles can be integrated out to form a four-fermion contact interaction model [5,6] described by an effective field theory:

\[
L_{qq} = \frac{2\pi}{\Lambda^2} \left[\eta_{LL} (\bar{q}_L \gamma_\mu q_L)(\bar{q}_L \gamma^\mu q_L) \\
+ \eta_{RR} (\bar{q}_R \gamma_\mu q_R)(\bar{q}_R \gamma^\mu q_R) \\
+ 2\eta_{RL} (\bar{q}_R \gamma_\mu q_L)(\bar{q}_L \gamma^\mu q_R) \right],
\]

(1)

where the quark fields have \(L \) and \(R \) chiral projections and the coefficients \(\eta_{LL}, \eta_{RR}, \) and \(\eta_{RL} \) turn on and off various interactions.

In this Letter, a contact interaction (CI) model with a left-chiral color-singlet \((\eta_{LL} = \pm 1) \) is used as a benchmark model, as many other models of new phenomena have similar predictions for the dijet scattering angle \(\chi \) at large \(m_{jj} \). Interference of the signal model with the SM process \(q\bar{q} \to q\bar{q} \) is also included.

Event samples were simulated with both QCD and contact interactions, taking interference into account and using the same event generator, underlying-event tune, and PDF as for the SM simulations. Events were generated for both constructive and destructive interference with \(\Lambda = 7 \) TeV and \(\Lambda = 10 \) TeV. The \(\Lambda = 7 \) TeV sample is then used for extrapolation to other values of \(\Lambda \), using the fact that the interference term is proportional to \(1/\Lambda^2 \) and the pure CI cross section is proportional to \(1/\Lambda^2 \). This procedure is validated with the \(\Lambda = 10 \) TeV sample. As with the QCD prediction, a \(K \)-factor correction is computed to correct the PYTHIA LO + shower prediction to a NLO calculation. Calculations at NLO are provided by CUEET [35] v1.0.

Uncertainties in the SM and signal predictions include theoretical uncertainties and experimental uncertainties on the measured angular distributions. Theoretical uncertainties of \(\pm 2 \)\% of the PDFs are due to the choice of PDFs, renormalization and factorization scales, choice of event generator, and as statistical uncertainties due to limited simulation sample sizes. The impact of the uncertainty in the PDF is estimated using \(\text{NLOJET}^+ \) with three different PDFs: CT10, MSTW2008 [36], and NNPDF23 [37]. These uncertainties are negligible (<1\%), as the choice of PDF largely impacts the total cross section rather than the angular distributions. The total uncertainty due to the choice of renormalization and factorization scales were estimated by varying those independently up and down by a factor two in \(\text{NLOJET}^+ \). The resulting uncertainty varies with \(m_{jj} \) and \(\chi \), rising to 4\% at the smallest \(\chi \) values at high \(m_{jj} \). The uncertainty due to the choice of generator is estimated by comparing the predictions from the NLO generator POWHEG [38] v1.0 with those of PYTHIA8 with \(K \) factors applied. The largest uncertainty due to choice of generator is at the lowest \(m_{jj} \) values, where it approaches 20\%, while for the highest \(m_{jj} \) values and smallest \(\chi \), it ranges from 10\% to 14\%. The uncertainty due to the choice of the showering model is estimated through comparison of POWHEG samples showered and hadronized with PYTHIA8 v8.175 to HERWIG [39] v6.520.2 samples using JIMMY [40,41] v4.31. The largest value of this uncertainty is less than 1\% at the highest \(m_{jj} \) values and smallest values of \(\chi \).

Finally the statistical uncertainties on the \(K \) factors due to limited simulation sample size are small and set to 1\%.

The experimental uncertainty is dominated by the \(\eta \) dependence of the jet energy scale calibration. This uncertainty varies from approximately 15\% at small values of \(\chi \) for the highest \(m_{jj} \) values, to a few percent at lower \(m_{jj} \) values and higher \(\chi \) values. The uncertainty in the beam energy is found to introduce a negligible contribution. The total uncertainty at the lowest \(\chi \), highest \(m_{jj} \) amounts to 20\%, decreasing to a few percent at high \(\chi \). The total theoretical and experimental uncertainties are shown in Fig. 1.

The \(p \) value for the SM hypothesis is (0.25) 0.30 for the (second) highest \(m_{jj} \) bin. In the absence of significant deviations from the SM prediction, upper bounds on CI contributions are calculated using a one-sided profile likelihood ratio and the CL \(S \) technique [42,43], evaluated using the asymptotic approximation [44] on events with \(m_{jj} > 3.2 \) TeV; the validity of asymptotic approximation was confirmed using toy simulations. These bounds exclude a compositeness scale below 8.1 TeV in a destructive interference scenario and below 12.0 TeV in a constructive interference scenario. The median expected limits are 8.9 (14.1) TeV for the destructive (constructive) interference scenario.

In summary, dijet angular distributions have been measured by the ATLAS experiment in 17.3 fb\(^{-1} \) of 8 TeV \(pp \) collisions at the LHC. Over a wide angular range and dijet invariant mass spectrum, the data are well described by QCD predictions at NLO. A model of quark compositeness is used as a benchmark for theories of new phenomena that include new forces and mediating particles; such theories predict deviations at small values of \(\chi \). A compositeness scale below 8.1 (12.0) TeV in a destructive (constructive) interference scenario is excluded at 95\% confidence level, similar to results from the CMS Collaboration [17] and representing a significant enhancement in sensitivity relative to the previous limit (at 7.6 TeV for destructive interference) from the ATLAS Collaboration [11].

We would like to thank S. Dittmaier and A. Huss for providing us with the electroweak correction factors. We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We
acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNBC, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINerva, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GDRIC and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSF, Slovakia; AARS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[19] The ATLAS Collaboration uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $η = -\ln(\tan(θ/2))$. The transverse energy and transverse momentum are defined by $E_T = E \sin θ$ and $p_T = |p| \sin θ$, respectively.

104 INFN Sezione di Napoli, Italy
105 Dipartimento di Fisica, Università di Napoli, Napoli, Italy
106 Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
107 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
108 Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
110 Department of Physics, New York University, New York, New York, USA
111 Ohio State University, Columbus, Ohio, USA
112 Faculty of Science, Okayama University, Okayama, Japan
113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
114 Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
115 Palacký University, RCPTM, Olomouc, Czech Republic
116 Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
117 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
118 Graduate School of Science, Osaka University, Osaka, Japan
119 Department of Physics, University of Oslo, Oslo, Norway
120 Department of Physics, Oxford University, Oxford, United Kingdom
121 INFN Sezione di Pavia, Italy
122 Dipartimento di Fisica, Università di Pavia, Pavia, Italy
123 Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
124 INFN Sezione di Pisa, Italy
125 Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
126 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
127 Laboratorio de Instrumentação e Física Experimental de Partículas - LIP, Lisboa, Portugal
128 Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
129 Department of Physics, University of Coimbra, Coimbra, Portugal
130 Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
131 Departamento de Física, Universidade do Minho, Braga, Portugal
132 Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
133 Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
134 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
135 Czech Technical University in Prague, Praha, Czech Republic
136 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
137 State Research Center Institute for High Energy Physics, Protvino, Russia
138 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
139 INFN Sezione di Roma, Italy
140 Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
141 INFN Sezione di Roma Tor Vergata, Italy
142 INFN Sezione di Roma Tre, Italy
143 Dipartimento di Matematica e Física, Università Roma Tre, Roma, Italy
144 Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
145 Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca, Morocco
146 Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat, Morocco
147 Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
148 Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
149 Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
150 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
151 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
152 Department of Physics, University of Washington, Seattle, Washington, USA
153 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
154 Department of Physics, Shinshu University, Nagano, Japan
155 Fachbereich Physik, Universität Siegen, Siegen, Germany
156 Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
157 SLAC National Accelerator Laboratory, Stanford, California, USA
158 Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
159 Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

PRL 114, 221802 (2015) PHYSICAL REVIEW LETTERS week ending 5 JUNE 2015

221802-15
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
Also at CERN, Geneva, Switzerland.
Also at Georgian Technical University (GTU), Tbilisi, Georgia.
Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
Also at Manhattan College, New York NY, USA.
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at School of Physics, Shandong University, Shandong, China.
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
Also at Section de Physique, Université de Genève, Geneva, Switzerland.
Also at International School for Advanced Studies (SISSA), Trieste, Italy.
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA.
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
Also at National Research Nuclear University MEPhI, Moscow, Russia.
Also at Department of Physics, Stanford University, Stanford CA, USA.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA.
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.