Search for heavy long-lived multi-charged particles in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector

Published in:
European Physical Journal C

DOI:
10.1140/epjc/s10052-015-3534-2

Citation for published version (APA):
Search for heavy long-lived multi-charged particles in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector

ATLAS Collaboration⋆
CERN, 1211 Geneva 23, Switzerland

Received: 17 April 2015 / Accepted: 19 June 2015 / Published online: 8 August 2015
© CERN for the benefit of the ATLAS collaboration 2015. This article is published with open access at Springerlink.com

Abstract A search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data collected in 2012 at $\sqrt{s} = 8$ TeV from pp collisions corresponding to an integrated luminosity of 20.3 fb$^{-1}$ are examined. Particles producing anomalously high ionisation, consistent with long-lived massive particles with electric charges from $|q| = 2e$ to $|q| = 6e$ are searched for. No signal candidate events are observed, and 95% confidence level cross-section upper limits are interpreted as lower mass limits for a Drell–Yan production model. The mass limits range between 660 and 785 GeV.

Contents

1 Introduction 1
2 The ATLAS detector 2
3 Simulated Monte Carlo samples 2
4 Candidate and event selection 2
4.1 Ionisation estimators 3
4.2 Trigger and event selection 3
4.3 Candidate track preselection 4
4.4 Tight selection 4
4.5 Final selection 4
5 Background estimation 5
6 Signal efficiency 7
7 Systematic uncertainties 8
7.1 Background estimation uncertainty 8
7.2 Trigger efficiency uncertainty 8
7.3 Uncertainties due to selection 8
7.4 Summary of systematic uncertainties 9
8 Results 9
9 Conclusion 10
References 10

1 Introduction

This article describes a search for heavy long-lived1 multi-charged particles (MCPs) in $\sqrt{s} = 8$ TeV pp collisions data collected in 2012 by the ATLAS detector at the CERN Large Hadron Collider (LHC). Data taken in stable beam conditions and with all ATLAS subsystems operational are used, resulting in an integrated luminosity of 20.3 fb$^{-1}$. The search is performed in the MCP mass range of 50–1000 GeV, for electric charges2 $|q| = z e$, with the charge numbers $z = 2, 3, 4, 5, 6$. The observation of such particles possessing an electric charge above the elementary charge e would be a signature for physics beyond the Standard Model. Several theories predict such particles, including the almost-commutative model [1], the walking technicolor model [2], and the left-right symmetric model [3], which predicts a doubly charged Higgs boson. Any observation of the particles predicted by the first two models could have implications for the formation of composite dark matter: the doubly charged particles (or, in general, particles with an even charge $|q| = 2n e$) could explain many results of experimental searches for dark matter [4]. No such particles have been observed so far in cosmic ray [5] or collider searches, including several recent searches at the Tevatron [6] and the LHC [7–9].

MCPs are highly ionising, and thus leave an abnormally large ionisation signal, dE/dx. A search for such particles traversing the ATLAS detector leaving a track in the inner tracking detector, and producing a signal in the muon spectrometer, is reported. A purely electromagnetic coupling, proportional to the electric charge of the MCPs, is assumed for the production model. In this model, MCPs are produced in pairs via the Drell–Yan (DY) process with only photon exchange included.

This analysis is also sensitive to fractionally charged ($z > 1$, non-integer) particles, but has not been interpreted

1 The term long-lived in this paper refers to a particle that does not decay within the ATLAS detector and penetrates its full depth.

2 Wherever a charge is quoted for the exotic particles, the charge conjugate state is also implied.
explicitly for such charges. The signal efficiency in a search for MCPs with charge numbers higher than $z = 6$ is expected to be less than 5% due to the signal particle’s low velocity. Such low efficiencies require a different approach, and corresponding model interpretations are not covered in this paper.

2 The ATLAS detector

The ATLAS detector [10] covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector (ID) comprising a silicon pixel detector (pixel), a silicon microstrip detector (SCT) and a transition radiation tracker (TRT). The pixel detector typically provides one precise space-point measurement per track from each of its three layers. The SCT consists of four times two layers of silicon sensors arranged with small stereo angle, typically providing eight measurements per track. The TRT, covering the pseudorapidity range $|\eta| < 2.0$, is a straw-based tracking detector capable of particle identification via transition radiation and ionisation energy loss measurements [11]. A typical track crosses 32 straws. Discriminators are used to compare the signal from a straw with low and high thresholds (HT) using the TRT front-end electronics. The HT is designed to discriminate between energy depositions from transition radiation photons and the energy loss of minimum ionising particles. Roughly three times the energy deposition of a minimum ionising particle is needed for a HT hit. MCPs would produce a large number of HT hits along their trajectories due to their high level of ionisation.

The ID is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, and by high-granularity lead–liquid argon (LAr) sampling electromagnetic calorimeters. An iron–scintillator tile calorimeter provides hadronic energy measurements in the central pseudorapidity region. The endcap and forward regions are instrumented with LAr calorimeters for electromagnetic and hadronic energy measurements. In this analysis, the calorimeters are used only as passive absorbers. The calorimeter system is surrounded by a muon spectrometer (MS) incorporating three superconducting toroidal magnet assemblies. The MS is instrumented with tracking detectors designed to measure the momenta of muons that traverse the ATLAS calorimeters. The resistive-plate chambers (RPC) in the barrel region ($|\eta| < 1.05$) and the thin-gap chambers (TGC) in the endcaps regions ($1.05 < |\eta| < 2.4$) provide signals for the trigger. Monitored drift tube (MDT) chambers provide typically 20–25 hits per crossing track in the pseudorapidity range $|\eta| < 2.7$, from which a high precision momentum measurement is derived.

The amount of material in the ID varies from one-half to two radiation lengths. The overall amount of material traversed by the MCP, which includes the calorimeters and the MS, may be as high as 75 radiation lengths. Muons typically lose 3 GeV penetrating the calorimeter system. The energy loss for MCPs with charge $|q| = ze$ would be z^2 times this value, i.e. up to 110 GeV for $z = 6$.

All momentum values quoted in this paper are measured by the MS, after the energy loss in the calorimeters. Charged-particle trajectories are reconstructed using standard algorithms. Since these assume particles have $z = 1$, the momenta of MCPs are underestimated by a factor z, as the track curvature is proportional to p_T / z.

3 Simulated Monte Carlo samples

Benchmark samples of simulated events with MCPs are generated for a mass of 50 GeV and for a range of masses between 100 and 1000 GeV in steps of 100 GeV, with charges ze, $z = 2, 3, 4, 5, \text{ and } 6$. Pairs of MCPs are generated via the lowest-order DY process implemented in MadGraph5 [12]. The DY production process models the kinematic distributions and determines the cross-sections used for limit setting. Typical values for the cross-sections range from hundreds of picobarns for a mass of 50 GeV down to a hundredth of a femtobarn for a mass of 1000 GeV (Fig. 8). Events are generated using the CTEQ6L1 [13] parton distribution functions, and Pythia version 8.170 [14,15] is used for hadronisation and underlying-event generation. Simulated samples with muons from $Z \rightarrow \mu\mu$ decays are generated using Pythia version 8.170 and the CT10 [16] parton distribution functions with the AU2 tune [17]. A Geant4 simulation [18,19] is used to model the response of the ATLAS detector. Each simulated hard scattering event is overlaid with simulated minimum bias events (“pile-up”) generated with Pythia in order to reproduce the observed distribution of the number of proton–proton collisions per bunch crossing. The simulated events are reconstructed and analysed in the same way as the experimental data.

4 Candidate and event selection

Because the MCPs in this search are assumed to be long-lived and therefore traverse the entire ATLAS detector, candidates are initially selected with the MS. The search, which is restricted to the $|\eta| < 2.0$ pseudorapidity range, is based on an analysis of specific ionisation losses in several sub-
detector systems and of the fraction of TRT straws on the track with a signal amplitude exceeding the HT. The search is logically divided into four steps: trigger and event selection, preselection, tight selection and final selection. The tight and final selection steps rely on the ionisation estimators, which are introduced in the following section. An event is considered to be a candidate event if it has at least one candidate MCP (a reconstructed particle, which satisfies all selection criteria).

4.1 Ionisation estimators

The average specific energy loss, dE/dx, is described by the Bethe–Bloch formula [20]. Since a particle’s energy loss increases quadratically with its charge, an MCP would leave a very characteristic signature of high ionisation in the detector. Estimates of dE/dx are evaluated for the pixel, TRT and MDT sub-detector systems. All three quantities are based on an underlying measurement of time-over-threshold: the time interval where a signal amplitude exceeds a certain threshold.

The significance of the dE/dx variable in each sub-detector is defined by comparing the observed signal, dE/dx_{track}, with that expected from a highly relativistic muon:

$$ S(dE/dx) = \frac{dE/dx_{track} - \langle dE/dx_{\mu} \rangle}{\sigma(dE/dx_{\mu})}. $$

Here \langle dE/dx_{\mu} \rangle and \sigma(dE/dx_{\mu}) represent, respectively, the mean and the root-mean-square width of the dE/dx distribution for such muons in data. For this procedure, a control sample of muons was obtained from \(Z \rightarrow \mu\mu\) events. Each muon was required to be matched to a good-quality track in the ID with \(p_T > 24\) GeV and \(|\eta| < 2.0\), be isolated, i.e. to carry at least 90% of the total \(p_T\) within the surrounding \(\Delta R < 0.2\) cone, and belong to an oppositely charged pair with dimuon mass between 81 GeV and 101 GeV. These requirements effectively suppress muons from other processes reducing such backgrounds to a negligible level.

In addition to the dE/dx estimates, the fraction of TRT hits passing the high threshold, \(f^{HT}\), is another estimator of energy loss.

In order to investigate whether the relevant variables are modelled properly, muons from \(Z \rightarrow \mu\mu\) decays are compared between data and simulation. Figure 1 shows the comparison for the MDT and TRT dE/dx significances, and Fig. 2 for the pixel dE/dx significance and \(f^{HT}\).

Details studies of energy loss vs. momentum distributions were performed for the pixel [21] and TRT [11] detectors, as well as for the relativistic rise domain of the Bethe–Bloch formula in the MDT. These results assure that the moderate ionisation levels (like for \(z = 2\) particles) are correctly described in the simulated data. The responses to the higher charge particles are well above the selection requirements (conservatively defined for the \(z = 2\) particles), and so the analysis is not sensitive to the precise mean position of the distributions, which may be shifted by any potential saturation effects.

4.2 Trigger and event selection

Events collected with a single-muon trigger [22] with a transverse momentum threshold of \(p_T/z = 36\) GeV are consid-

\[\text{Fig. 1 Normalised distributions of the dE/dx significance in the MDT, } S(\text{MDT } dE/dx) , \text{ (left) and in the TRT, } S(\text{TRT } dE/dx) , \text{ (right) for muons from } Z \rightarrow \mu\mu \text{ events in data and simulation}\]
This trigger is only sensitive to particles with velocity \(\beta = v/c > 0.6 \) due to a timing window, in which particles should reach the MS. To compensate for inefficiencies in the single-muon trigger, an additional calorimeter-based trigger with a missing transverse momentum (\(E_T^{\text{miss}} \)) threshold of 80 GeV is employed. Particles reconstructed in the MS are not accounted for in the trigger \(E_T^{\text{miss}} \) calculation, thus they contribute to the missing transverse momentum value directly. Large missing transverse momentum can also be due to an asymmetry between the energy depositions in calorimeters of the two MCPs. In case an event is selected by both of these triggers, it is assigned to the single-muon trigger or with \(p_T/z > 5 \) GeV within \(\Delta R < 0.01 \).

The preselected data sample (selected with these requirements) is completely dominated by muons, even in the presence of a possible signal.

4.4 Tight selection

The tight selection of highly ionising candidates is based on \(S(\text{pixel } dE/dx) \) for MCPs with \(z = 2 \), and on \(f^{HT} \) for MCPs with \(z \geq 3 \). As seen in Fig. 3, \(S(\text{pixel } dE/dx) \) is a powerful discriminator for particles with \(z = 2 \). The signal region is defined to be the region with significance greater than 17. For higher values of \(z \), the pixel readout saturates and the charge information for a particular pixel is lost. Therefore, to search for particles with \(z \geq 3 \), \(f^{HT} \) (see Fig. 3) is used as a discriminating variable instead. The signal region is defined by requiring \(f^{HT} \) to be above 0.45.

This tight selection using \(S(\text{pixel } dE/dx) \) or \(f^{HT} \) criteria reduces the background contribution (mainly the high-\(p_T \) muons) by almost three orders of magnitude for both the \(z = 2 \) and \(z \geq 3 \) cases, while keeping an efficiency above 95% for the signal.

4.5 Final selection

In the final step of the search, \(S(\text{MDT } dE/dx) \) and \(S(\text{TRT } dE/dx) \) are used as additional discriminating variables to separate the signal and background. Figure 4 shows the distributions of these variables for simulated muons from \(Z \rightarrow \mu\mu \) production compared to those of signal particles for different charges (\(z = 2, 3 \) and 6) and for a mass between 96% and 98% for all MCP charge values considered.

In order to reduce the background of high ionisation signals from two or more tracks firing the same TRT straws or MDT tubes, each candidate is required not to have an adjacent track with \(p_T/z > 5 \) GeV within \(\Delta R < 0.01 \).

The preselected data sample (selected with these requirements) is completely dominated by muons, even in the presence of a possible signal.
of 600 GeV. It demonstrates good separation between signal and background, which increases with increasing charge. The $S(MDT\ dE/dx)$ distribution shape broadens with charge because of a larger track curvature, which hinders the track reconstruction algorithms from finding all hits on the track, thus decreasing the accuracy of the ionisation loss measurement. The detailed response for these higher charge particles may not be perfectly modelled by the simulation due to saturation effects. However, since these detectors do not lose signal at saturation, their dE/dx response would certainly be higher than that of $z = 2$ particles.

The dE/dx significance strongly depends on the particle’s charge and on its velocity (for a given velocity, it does not depend on the particle’s mass). For the MCPs under study, the variation of velocity ($0.6 \leq \beta < 1$) leads to a change in dE/dx significances by up to 30%.

Two-dimensional distributions of $S(MDT\ dE/dx)$ versus $S(TRT\ dE/dx)$ are shown for data and simulated signal events in Fig. 5 for candidates passing the tight selection as $z = 2$ (left) and $z \geq 3$ (right), and also satisfying all previous selection criteria. As seen, the sub-detector system signatures are different for the two preselected samples, and thus the final signal regions are chosen differently. They are defined by $S(MDT\ dE/dx) > 5$ and $S(TRT\ dE/dx) > 5$ for candidates selected as $z = 2$ and by $S(MDT\ dE/dx) > 7.2$ and $S(TRT\ dE/dx) > 6$ for candidates selected as $z \geq 3$. The selection was optimised using only simulated samples and $Z \rightarrow \mu\mu$ data control samples without examining the signal region in the data.

A full summary of the analysis selections is presented in Table 1.

5 Background estimation

The background contribution to the signal region is estimated using a method which employs sidebands of the two discrim-
Fig. 5 $S(MDT \, dE/dx)$ versus $S(TRT \, dE/dx)$ after the $z = 2$ (left) or $z \geq 3$ (right) tight selection. The distributions of the data and the simulated signal samples (here for a mass of 600 GeV) are shown. The meaning of the A, B, C and D regions is discussed in the text.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Summary of event selection requirements for the event selections based on the single-muon trigger and the E_T^{miss} trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger and event selection</td>
<td>Candidate track selection</td>
</tr>
<tr>
<td>Single-muon trigger case</td>
<td>Any muon with:</td>
</tr>
<tr>
<td>≥ 1 trigger tight muon</td>
<td>$N_{\text{MDT hits}} \geq 7$</td>
</tr>
<tr>
<td>with $p_T/z > 40 , \text{GeV}$</td>
<td>$</td>
</tr>
<tr>
<td>≥ 1 reconstructed muon</td>
<td>$N_{\text{SCT hits}} \geq 6$</td>
</tr>
<tr>
<td>with $p_T/z > 75 , \text{GeV}$</td>
<td>$N_{\text{TRT hits}} \geq 10$</td>
</tr>
<tr>
<td></td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>$</td>
</tr>
<tr>
<td>E_T^{miss} trigger case</td>
<td>Any muon with:</td>
</tr>
<tr>
<td></td>
<td>$N_{\text{MDT hits}} \geq 7$</td>
</tr>
<tr>
<td></td>
<td>$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this method, the plane of $S(TRT \, dE/dx)$ and $S(MDT \, dE/dx)$ is divided into regions A, B, C and D using the final selection cuts as shown in Fig. 5. Region D is defined as the signal region, with regions A, B and C as control regions. The expected number of candidate events from background in data in region D, N_{exp}^D, is estimated from the number of observed events in data in region B after tight selection, N_{obs}^B, and the probability, f, to find a particle with $S(MDT \, dE/dx) > 5 (7.2)$ before tight selection for the $z = 2 (z \geq 3)$ search case.
The observed event yield in data in the B region, the probability f to find a particle above the respective $S(\text{MDT }dE/dx)$ value before tight selection and the expected background yield in the signal region D with its statistical uncertainty. The last column shows the observed event yield in the D region.

<table>
<thead>
<tr>
<th>z</th>
<th>N^{D}_{obs}</th>
<th>f</th>
<th>N^{D}_{exp}</th>
<th>N^{D}_{obs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>76</td>
<td>1.8×10^{-4}</td>
<td>0.013 ± 0.002</td>
<td>0</td>
</tr>
<tr>
<td>≥ 3</td>
<td>1251</td>
<td>2.1×10^{-5}</td>
<td>0.026 ± 0.003</td>
<td>0</td>
</tr>
</tbody>
</table>

Several factors contribute to the efficiency dependence on mass and charge. For low masses, the minimum p_T/z requirements are the main source of efficiency loss. At higher masses, the requirement to reach the MS with a β which satisfies the trigger timing window is the primary reason for the reduction in efficiency. Also, high ionisation loss makes particles slow down: they may not fit the trigger timing window or may lose all their kinetic energy before reaching the MS. The charge dependence of the efficiency results from the higher ionisation loss and the higher effective p_T selection, which are augmented by factors z^2 and z, respectively. For MCPs that do not reach the MS, the E_T^{miss} would be larger for heavier MCPs and therefore more likely to fire the E_T^{miss} trigger, although the probability for such events to satisfy all selection criteria is smaller since only one candidate of an MCP pair is reconstructed in the MS.

The fraction of signal events satisfying cumulative selection requirements is given in Table 3 for several examples.
A difference is assessed between the current method and an alternate method (ABCD method, as used in Ref. [8]) where the number of expected events from background is calculated from the number of events observed in the three control regions according to

$$N_{\text{exp}}^{B} = \frac{N_{A}^{B} \times N_{C}^{B}}{N_{A}^{C}}.$$ \hspace{1cm} (4)

Both methods use the same underlying idea, that the background estimate is proportional to the number of observed events in the region B, N_{A}^{B}. However, the methods to derive the proportionality constant are different, cf. Eq. (2) and Eq. (4).

Since the ABCD method gives a large statistical uncertainty in the case of zero events in one of the control regions, the cuts on S(MDT dE/dx) were loosened from 5 or 7.2 down to 3 for both the $z = 2$ and $z = 3$ selections to minimise this uncertainty, and the numbers of events expected from the background were re-estimated using the two aforementioned methods. The background estimates from the two methods were found to differ by about 25% for both the $z = 2$ and $z = 3$ cases, corresponding for both to a statistical significance of less than two sigma. Hence, a 25% systematic uncertainty on the background estimate was assigned for both the $z = 2$ and $z = 3$ cases.

7.2 Trigger efficiency uncertainty

The uncertainty on the muon trigger efficiency has two sources: a global uncertainty on the muon trigger efficiency of 1% \cite{22} and a β-dependent uncertainty. The β-dependent part originates from uncertainties on the modelling of the muon trigger timing for particles with $\beta < 1$. In order to improve the description of the trigger simulation, parameterised corrections were applied. To assess the uncertainties, the parameters of these corrections were varied. The β value of particles was varied between the true generated value and the one reconstructed in the MS from the known mass and measured momentum.\footnote{The relation between a particle’s β, p_T and mass, m, is given by $\beta = \sqrt{\left(p_T / \sin \theta \right)^2 + m^2}$.} The time interval needed for a signal particle to reach the RPC trigger planes was varied by the amount of radiation in the MC, the number of jets in an event was altered, and the relative difference of the E_T^{miss} trigger requirements. Varying the amount of radiation in the MC, the number of jets in an event was altered, and the relative difference of the E_T^{miss} trigger efficiency was taken as a systematic uncertainty.

7.3 Uncertainties due to selection

The uncertainty on the selection efficiency is evaluated by varying the requirement values used in the analysis. Several reasons motivate these variations. For example, the uncertainty on the amount of material in front of the MS, which is found to be about 1% \cite{26}, propagates into an uncertainty on the selection efficiency due to the slowing down

<table>
<thead>
<tr>
<th>Signal benchmark point</th>
<th>Trigger</th>
<th>Preselection</th>
<th>Tight selection</th>
<th>Final selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = 100$ GeV, $z = 2$</td>
<td>13.7 ± 0.2</td>
<td>12.8 ± 0.2</td>
<td>12.6 ± 0.2</td>
<td>11.0 ± 0.2</td>
</tr>
<tr>
<td>$m = 500$ GeV, $z = 2$</td>
<td>62.8 ± 0.4</td>
<td>42.9 ± 0.3</td>
<td>39.4 ± 0.3</td>
<td>37.1 ± 0.3</td>
</tr>
<tr>
<td>$m = 900$ GeV, $z = 2$</td>
<td>35.2 ± 0.4</td>
<td>26.6 ± 0.3</td>
<td>24.4 ± 0.3</td>
<td>22.5 ± 0.3</td>
</tr>
<tr>
<td>$m = 100$ GeV, $z = 4$</td>
<td>2.01 ± 0.09</td>
<td>1.74 ± 0.08</td>
<td>1.71 ± 0.08</td>
<td>1.66 ± 0.08</td>
</tr>
<tr>
<td>$m = 500$ GeV, $z = 4$</td>
<td>32.5 ± 0.3</td>
<td>28.7 ± 0.3</td>
<td>28.2 ± 0.3</td>
<td>26.4 ± 0.3</td>
</tr>
<tr>
<td>$m = 900$ GeV, $z = 4$</td>
<td>29.7 ± 0.4</td>
<td>22.4 ± 0.3</td>
<td>21.8 ± 0.3</td>
<td>20.4 ± 0.3</td>
</tr>
<tr>
<td>$m = 50$ GeV, $z = 6$</td>
<td>0.04 ± 0.02</td>
<td>0.03 ± 0.02</td>
<td>0.03 ± 0.02</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>$m = 100$ GeV, $z = 6$</td>
<td>0.58 ± 0.08</td>
<td>0.35 ± 0.05</td>
<td>0.32 ± 0.04</td>
<td>0.28 ± 0.04</td>
</tr>
<tr>
<td>$m = 500$ GeV, $z = 6$</td>
<td>16.2 ± 0.4</td>
<td>10.3 ± 0.3</td>
<td>10.0 ± 0.2</td>
<td>9.2 ± 0.2</td>
</tr>
<tr>
<td>$m = 900$ GeV, $z = 6$</td>
<td>17.4 ± 0.6</td>
<td>9.5 ± 0.4</td>
<td>9.0 ± 0.3</td>
<td>8.0 ± 0.2</td>
</tr>
</tbody>
</table>
of particles, and its effect is covered by the effect of varying the \(p_T \) requirement. The following variations of the nominal requirements are studied: \(p_T \) value by \(\pm 3\% \) because of an uncertainty on the track \(p_T \) measurements and the uncertainty on the amount of material; \(f_{\text{HF}} \) value by \(\pm 25\% \) due to pile-up dependence, \(S(\text{pixel } dE/dx) \) by \(\pm 10\% \), \(S(\text{TRT } dE/dx) \) by \(\pm 5\% \) and \(S(\text{MDT } dE/dx) \) by \(\pm 15\% \) because of the observed disagreement of the mean and root-mean-square width of these distributions in the \(Z \to \mu \mu \) events in data and simulation, as well as of any potential mismodelling of these ionisation estimators.

For all other variables the variations have no observable effect in any of the signal samples. The total systematic uncertainties on the efficiency arising from these variations range between 1\% and 17\%, where the larger uncertainty corresponds to lower-mass signal samples. This uncertainty is dominated by the effect of the \(p_T \) requirement variation, which the lightest MCPs are most sensitive to.

The uncertainties due to the choice of parton distribution functions and due to higher orders corrections propagate into a small uncertainty on the selection efficiency, which lies well within its statistical uncertainty.

7.4 Summary of systematic uncertainties

The contributions from the separate sources of systematic uncertainty on the signal efficiency are shown in Table 4 for several charges and mass points. The uncertainties on the luminosity and due to limited Monte Carlo samples size are also shown. Since the expected number of events from background is close to zero, the 25\% uncertainty on this number has a very small effect on the calculation of the upper limit on the cross-section. Thus, the trigger and selection efficiencies are the main sources of uncertainty. An additional statistical uncertainty to take into account the limited size of the Monte Carlo samples is added. The samples with a mass of 50 GeV and charge numbers \(z = 5, z = 6 \) were produced with a selection at the generator level requiring \(p_T/z > 20 \) GeV in order to decrease this uncertainty. Generally, it is about 3\%, although it makes a significant contribution (up to 60\%) for high-charge and low-mass samples.

The uncertainty on the integrated luminosity is 2.8\%. It is derived, following the same methodology as that detailed in Ref. [27], from a calibration of the luminosity scale derived from beam-separation scans performed in November 2012.

8 Results

No signal candidate events are found for either the \(z = 2 \) or the \(z \geq 3 \) selections. The results are consistent with the expectation of \(0.013 \pm 0.002(\text{stat.}) \pm 0.003(\text{syst.}) \) and \(0.026 \pm 0.003(\text{stat.}) \pm 0.007(\text{syst.}) \) background events, respectively. Since the number of signal events expected from background is very small and consistent with the observation of zero candidate events, observed and expected limits are virtually identical. The limits are computed with MCLimit [28]. It uses the CLs method [29] to discriminate between the background-only hypothesis and the signal-plus-background hypothesis, and determines exclusion limits for various MCP scenarios. The signal selection efficiency, luminosity, their uncertainties and number of observed events are taken as input for pseudo-experiments, resulting in an observed limit at 95\% confidence level (CL).

The measurement excludes the DY model of MCP pair-production over wide ranges of tested masses. Figure 8 shows the observed 95\% CL cross-section limits as a function of mass for the five different charges. At the lowest mass values the cross-section limit ranges from 7 fb for \(z = 2 \) to 1.4 pb for \(z = 6 \). The most stringent cross-section limits are obtained for masses of about 400 GeV and range from 0.4 to 1.6 fb. In addition, the theoretical cross-section is shown for the

<table>
<thead>
<tr>
<th>Signal benchmark point</th>
<th>Trigger efficiency</th>
<th>Selection efficiency</th>
<th>Limited Monte Carlo samples size</th>
<th>Luminosity</th>
<th>Total uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m = 100 \text{ GeV}, z = 2)</td>
<td>6.1</td>
<td>11</td>
<td>1.8</td>
<td>2.8</td>
<td>13</td>
</tr>
<tr>
<td>(m = 500 \text{ GeV}, z = 2)</td>
<td>8.9</td>
<td>4.7</td>
<td>0.8</td>
<td>2.8</td>
<td>11</td>
</tr>
<tr>
<td>(m = 900 \text{ GeV}, z = 2)</td>
<td>9.7</td>
<td>1.8</td>
<td>1.2</td>
<td>2.8</td>
<td>10</td>
</tr>
<tr>
<td>(m = 100 \text{ GeV}, z = 4)</td>
<td>3.9</td>
<td>8.5</td>
<td>5.1</td>
<td>2.8</td>
<td>11</td>
</tr>
<tr>
<td>(m = 500 \text{ GeV}, z = 4)</td>
<td>9.7</td>
<td>2.9</td>
<td>1.1</td>
<td>2.8</td>
<td>11</td>
</tr>
<tr>
<td>(m = 900 \text{ GeV}, z = 4)</td>
<td>8.9</td>
<td>1.3</td>
<td>1.3</td>
<td>2.8</td>
<td>9.5</td>
</tr>
<tr>
<td>(m = 50 \text{ GeV}, z = 6)</td>
<td>4.0</td>
<td>13</td>
<td>60</td>
<td>2.8</td>
<td>61</td>
</tr>
<tr>
<td>(m = 100 \text{ GeV}, z = 6)</td>
<td>4.0</td>
<td>17</td>
<td>13</td>
<td>2.8</td>
<td>22</td>
</tr>
<tr>
<td>(m = 500 \text{ GeV}, z = 6)</td>
<td>11</td>
<td>4.1</td>
<td>2.0</td>
<td>2.8</td>
<td>12</td>
</tr>
<tr>
<td>(m = 900 \text{ GeV}, z = 6)</td>
<td>10</td>
<td>3.0</td>
<td>2.2</td>
<td>2.8</td>
<td>11</td>
</tr>
</tbody>
</table>
simplified Drell–Yan model. The uncertainty on the theoretical cross-section is due to the parton distribution functions choice and is estimated to be 5%. For this model, the cross-section limits can be transformed into mass exclusion regions from 50 GeV up to limits of 660, 740, 780, 785, and 760 GeV for charge numbers $z = 2, 3, 4, 5,$ and 6, respectively. Mass limits are obtained from the intersection of the observed limits and the central values of the theoretical cross-section. This result is similar to that obtained by the CMS collaboration [9] and extends the excluded region approximately 300 GeV further than in the previous ATLAS search [8].

9 Conclusion

This article reports on a search for long-lived multi-charged particles produced in proton–proton collisions with the ATLAS detector at the LHC. The search uses a data sample with a center-of-mass-energy of $\sqrt{s} = 8$ TeV and an integrated luminosity of 20.3 fb$^{-1}$. Particles with electric charges from $|q| = 2e$ to $|q| = 6e$ penetrating the full ATLAS detector and producing anomalously high ionisation signals in multiple detector elements are searched for. Less than one background event is expected and no events are observed. Upper limits are derived on the production cross-sections and are interpreted as mass exclusion limits for a Drell–Yan production model from 50 GeV up to 660, 740, 780, 785, and 760 GeV for charges $|q| = 2e, 3e, 4e, 5e,$ and $6e$, respectively.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NCS, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

References

© Springer

140 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
141 Department of Physics, Shinshu University, Nagano, Japan
142 Fachbereich Physik, Universität Siegen, Siegen, Germany
143 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
144 SLAC National Accelerator Laboratory, Stanford, CA, USA
145 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
146 (a) Department of Physics, University of Cape Town, Cape Town, South Africa; (b) Department of Physics, University of Johannesburg, Johannesburg, South Africa; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147 (a) Department of Physics, Stockholm University, Stockholm, Sweden; (b) The Oskar Klein Centre, Stockholm, Sweden
148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
149 Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA
150 Department of Physics and Astronomy, University of Sussex, Brighton, UK
151 School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan
153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
159 Department of Physics, University of Toronto, Toronto, ON, Canada
160 (a) TRIUMF, Vancouver, BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
162 Department of Physics and Astronomy, Tufts University, Medford, MA, USA
163 Centro de Investigaciones, Universidad Antonio Narino, Bogotá, Colombia
164 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
165 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b) ICTP, Trieste, Italy; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana, IL, USA
167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMB), University of Valencia and CSIC, Valencia, Spain
169 Department of Physics, University of British Columbia, Vancouver, BC, Canada
170 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
171 Department of Physics, University of Warwick, Coventry, UK
172 Waseda University, Tokyo, Japan
173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
174 Department of Physics, University of Wisconsin, Madison, WI, USA
175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
176 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
177 Department of Physics, Yale University, New Haven, CT, USA
178 Yerevan Physics Institute, Yerevan, Armenia
179 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, UK
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Novosibirsk State University, Novosibirsk, Russia
d Also at TRIUMF, Vancouver, BC, Canada
e Also at Department of Physics, California State University, Fresno, CA, USA
f Also at Department of Physics, University of Fribourg, Fribourg, Switzerland

Springer