A search for high-mass resonances decaying to $\tau^+\tau^-$ in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

Published in: The Journal of High Energy Physics

DOI: 10.1007/JHEP07(2015)157

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
A search for high-mass resonances decaying to $\tau^+\tau^-$ in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration

E-mail: atlas.publications@cern.ch

ABSTRACT: A search for high-mass resonances decaying into $\tau^+\tau^-$ final states using proton-proton collisions at $\sqrt{s} = 8$ TeV produced by the Large Hadron Collider is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 19.5–20.3 fb$^{-1}$. No statistically significant excess above the Standard Model expectation is observed; 95% credibility upper limits are set on the cross section times branching fraction of Z' resonances decaying into $\tau^+\tau^-$ pairs as a function of the resonance mass. As a result, Z' bosons of the Sequential Standard Model with masses less than 2.02 TeV are excluded at 95% credibility. The impact of the fermionic couplings on the Z' acceptance is investigated and limits are also placed on a Z' model that exhibits enhanced couplings to third-generation fermions.

KEYWORDS: Hadron-Hadron Scattering

ArXiv ePrint: 1502.07177
1 Introduction

Searches for new heavy resonances decaying to tau lepton pairs are both theoretically and experimentally well motivated [1–6]. Heavy Z’ bosons often arise in grand unified theories and while they are typically considered to obey lepton universality, this is not necessarily a requirement. In particular, some models offering an explanation for the high mass of the top quark predict that such bosons preferentially couple to third-generation fermions [7, 8]. Models containing non-universal Z’ bosons can explain the anomalous dimuon production observed at the D0 experiment [9, 10] and the excess in semileptonic B-meson decays into tau leptons observed at the Belle and BaBar experiments [11–13]. Searches in the ditau channel are also sensitive to sgoldstino-like scalars in supersymmetric models [14, 15], hidden sector Z’ models [16] and to the anomalous tau lepton dipole moments and higher-order tau-gluon couplings [17].
In this article, a search for high-mass resonances decaying into $\tau^+\tau^-$ final states using proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s} = 8$ TeV produced by the Large Hadron Collider (LHC) \cite{Collaboration:2015aa} is presented. The data were recorded with the ATLAS detector \cite{Aad:2008zzm} and correspond to an integrated luminosity of 19.5–20.3 fb$^{-1}$. Tau leptons can decay into a charged lepton and two neutrinos ($\tau_{\text{lep}} = \tau_e$ or τ_μ), or hadronically (τ_{had}), predominantly into one or three charged pions, a neutrino and often additional neutral pions. The $\tau_{\text{had}}\tau_{\text{had}}$, $\tau_\mu\tau_{\text{had}}$ and $\tau_e\tau_{\text{had}}$ channels are analysed, accounting for 42%, 23% and 23% of the total $\tau^+\tau^-$ branching fraction, respectively. A counting experiment is performed in each channel from events that pass a high-transverse-mass requirement. Due to the different dominant background contributions and signal sensitivities, each channel is analysed separately and a statistical combination is used to maximise the sensitivity.

The Sequential Standard Model (SSM), which contains a Z' SSM boson with couplings identical to the Standard Model Z boson, is chosen as the benchmark model to optimise the analysis and to quantify the experimental sensitivity. Limits on the Z'_SSM cross section times the branching fraction in tau pairs, $\sigma(pp \rightarrow Z'_\text{SSM} + X) \cdot B(Z'_{\text{SSM}} \rightarrow \tau^+\tau^-) \equiv \sigma B_{\text{SSM}}$, are provided as a function of the resonance mass, $m_{Z'}$. The impact on the signal acceptance times efficiency from changing the Z'_SSM couplings is assessed, which allows the limits on Z'_SSM to be reinterpreted for a broad range of models. Limits are also placed on the non-universal $G(221)$ model \cite{Alcaraz:2007ee,Alcaraz:2007km,Alcaraz:2007st}, which contains a Z_{NU}' boson that can exhibit enhanced couplings to tau leptons.

Direct searches for high-mass ditau resonances have been performed by the ATLAS and CMS collaborations using 5 fb$^{-1}$ of integrated luminosity at $\sqrt{s} = 7$ TeV \cite{ATLAS:2012aa,Chatrchyan:2013aa}. The searches exclude Z'_SSM with masses below 1.4 TeV at 95% CL.\footnote{CL is used interchangeably throughout this article to refer to both confidence level (frequentist) and credibility limit (Bayesian).} For comparison, the most stringent limits on Z'_SSM in the dielectron and dimuon decay channels combined are 2.90 TeV at 95% CL from both ATLAS \cite{Aad:2013aa} and CMS \cite{Khachatryan:2015aa}. While the limits on $\sigma(pp \rightarrow Z'_\text{SSM} + X) \cdot B(Z' \rightarrow e^+e^-/\mu^+\mu^-)$ are in general stronger than those on σB_{SSM}, they may be evaded by models with weak couplings to electrons and muons. Indirect limits on Z' bosons with non-universal flavour couplings have been set using measurements from LEP and LEP II \cite{Barate:1999aa} and translate to a lower bound on the Z' mass of 1.09 TeV at 95% CL. Indirect limits have also been placed on the non-universal $G(221)$ model \cite{Alcaraz:2007ee,Alcaraz:2007km,Alcaraz:2007st,Alcaraz:2007st}. The strongest exclude Z'_{NU} with a mass lower than 1.8 TeV at 95% CL.

This article is structured as follows. Section 2 provides an overview of the ATLAS detector. The event samples used in the analysis, recorded by the ATLAS detector or simulated using the ATLAS simulation framework, are described in section 3. The reconstruction of physics objects within the event samples is described in section 4. A description of the selection criteria used to define Z' signal regions is given in section 5. Section 6 describes the estimation of background contributions, followed by a description of systematic uncertainties in section 7. In section 8, the impact of altering the Z' couplings on the signal acceptance is described and the non-universal $G(221)$ model is introduced. A presentation of the results is given in section 9, followed by concluding remarks in section 10.
2 ATLAS detector

The ATLAS detector at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer incorporating large superconducting toroid magnets.

The inner-detector system is immersed in a 2 T axial magnetic field and provides charged-particle tracking in the range $|\eta| < 2.5$. A high-granularity silicon pixel detector covers the vertex region and typically provides three measurements per track. It is followed by a silicon microstrip tracker, which usually provides four pairs of measurements per track. These silicon detectors are complemented by a transition radiation tracker (TRT), which enables radially extended track reconstruction up to $|\eta| = 2.0$. The TRT also provides electron/pion discrimination based on the fraction of hits (typically 30 in total) above a higher energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. Within the region $|\eta| < 3.2$, EM calormetry is provided by high-granularity barrel and endcap liquid-argon (LAr) EM calorimeters with lead absorbers, with an additional thin LAr presampler covering $|\eta| < 1.8$ to correct for upstream energy loss. Hadronic calorimetry is provided by a steel/scintillator-tile calorimeter, segmented into three barrel structures within $|\eta| < 1.7$, and two copper/LAr hadronic endcap calorimeters. Coverage in the forward region is achieved by copper/LAr and tungsten/LAr calorimeter modules optimised for EM and hadronic measurements, respectively.

The muon spectrometer comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field generated by superconducting air-core toroids. The precision chamber system covers the region $|\eta| < 2.7$ with three layers of monitored drift tubes, complemented by cathode strip chambers in the forward region, where the background is highest. The muon trigger system covers the range $|\eta| < 2.4$ with resistive plate chambers in the barrel, and thin gap chambers in the endcap regions.

A three-level trigger system is used to select interesting events [30]. The Level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz. This is followed by two software-based trigger levels which together reduce the event rate to a maximum of 1 kHz.

3 Event samples

The data used in this search were recorded with the ATLAS detector in pp collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV during the 2012 run of the LHC. Only data taken with pp collisions in stable beam conditions and with all ATLAS subsystems operational are used, resulting in an integrated luminosity of 20.3 fb$^{-1}$. For the analysis of the $\tau^+\tau^-$ signal, ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. The geometrical distance between objects is defined as $\Delta R = \sqrt{(\Delta\phi)^2 + (\Delta\eta)^2}$.

\footnote{ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. The geometrical distance between objects is defined as $\Delta R = \sqrt{(\Delta\phi)^2 + (\Delta\eta)^2}$.}
channel, a small fraction of data from the initial running period are discarded as the trigger conditions are not accounted for by the simulation, resulting in an integrated luminosity of 19.5 fb$^{-1}$. The $\tau_{\text{had}}\tau_{\text{had}}$ channel uses events passing a single-tau trigger with a transverse momentum (p_T) threshold of 125 GeV, designed to select hadronic tau decays. The $\tau_{\mu}\tau_{\text{had}}$ channel uses events passing a single-muon trigger, either with a p_T threshold of 24 GeV including an isolation requirement or with a threshold of 36 GeV without an isolation requirement. The $\tau_{e}\tau_{\text{had}}$ channel uses events passing a single-electron trigger, either with a p_T threshold of 24 GeV including an isolation requirement, or with a threshold of 60 GeV without an isolation requirement. Events that pass the trigger are selected if they contain a vertex with at least four associated tracks, each with $p_T > 0.5$ GeV. Events may have several vertices satisfying this requirement due to multiple pp interactions occurring in the same or neighbouring bunch crossings, referred to as pile-up. The event vertex is chosen as the one with the largest sum of the squared track transverse momenta.

Monte Carlo (MC) simulation is used to estimate signal efficiencies and some background contributions. Simulated samples of events from the following background processes are used: $Z/\gamma^* \rightarrow \tau\tau$ and $Z/\gamma^*(\rightarrow \ell\ell)$+jets ($\ell = e, \mu$) enriched in high-mass events, and W+jets, $t\bar{t}$, single-top-quark (s-channel and t-channel) and diboson (WW, WZ, and ZZ) production. Each sample is produced with one of the following event generators: Pythia 8.165 [31], Sherpa 1.4.1 [32], MC@NLO 4.01 [33–35], AcerMC 3.8 [36], Herwig 6.520 [37] or PowHeg-Box 1.0 [38–41]. The most consistent set of available samples was chosen. The $Z/\gamma^* \rightarrow \tau\tau$ process is generated at leading order so that the sample can also be reweighted to describe the Z' signal. The combination of $t\bar{t}$ and single-top-quark production are referred to as top. In some cases the generators are interfaced to the following external software for parton showering, hadronisation and multiple parton interactions: Pythia 8, Pythia 6.421 [42] or Herwig (which is itself interfaced to Jimmy 4.31 [43] for multiple parton interactions). The tau lepton decay is performed by either Pythia 8, Sherpa or Tauola [44]. For Pythia 8, the sophisticated tau decay option is used, which provides fully modelled hadronic currents with spin correlations for tau-lepton decays [45]. In all samples other than those generated with Sherpa, final-state photon radiation is performed by Photos [46]. The CTEQ6L1 [47] and CT10 [48] parton distribution functions (PDFs) and the AU2, AUET2, AUET2B [49] and CT10 [32] MC tunes are used. A summary is given in table 1.

The contributions from simulated processes are normalised using theoretical cross sections. The Z/γ^* cross section is calculated up to next-to-next-to-leading order (NNLO) in QCD including next-to-leading order (NLO) electroweak corrections using FEWZ 3.1 [50] configured with the MSTW2008NNLO PDF set [51]. This cross section is used to derive mass-dependent K-factors that are used to weight the simulated Z/γ^* samples. Cross sections for the other background processes are calculated without the use of differential K-factors to at least NLO in QCD, as specified in table 1.

The contributions of the various Z' signal models are estimated by reweighting the $Z/\gamma^* \rightarrow \tau\tau$ sample using TauSpinner [60–62], which correctly accounts for spin effects in the tau decays. The algorithm relies on a leading order approximation in which spin amplitudes are used to calculate the spin density matrices for hard $2 \rightarrow 2$ Born level
Table 1. Details regarding the MC simulated samples. The following information is provided for each sample: the generator of the hard interaction, the parton shower and hadronisation (PS), multiple parton interactions (MPI) and the tau decay; the PDF set; the MC tune and the order in QCD of the cross section calculation. All cross sections are calculated at either NLO, NNLO, approximate NNLO (~NNLO) or next-to-next-to-leading logarithm (NNLL).

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
<th>PS+MPI</th>
<th>Tau decay</th>
<th>PDF set</th>
<th>MC tune</th>
<th>Cross section</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z/\gamma^* \rightarrow \tau\tau$</td>
<td>PYTHIA 8</td>
<td>PYTHIA 8</td>
<td>PYTHIA 8</td>
<td>CTEQ6L1</td>
<td>AU2</td>
<td>NNLO [50]</td>
</tr>
<tr>
<td>$W+\text{jets}$</td>
<td>SHERPA</td>
<td>SHERPA</td>
<td>SHERPA</td>
<td>CT10</td>
<td>CT10</td>
<td>NNLO [52, 53]</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>MC@NLO</td>
<td>HERWIG</td>
<td>TAUOLA</td>
<td>CT10</td>
<td>AUET2</td>
<td>~NNLO [54–56]</td>
</tr>
<tr>
<td>Single top</td>
<td>(Wt)</td>
<td>MC@NLO</td>
<td>HERWIG</td>
<td>TAUOLA</td>
<td>CT10</td>
<td>~NNLO [57]</td>
</tr>
<tr>
<td></td>
<td>(s-channel)</td>
<td>MC@NLO</td>
<td>HERWIG</td>
<td>TAUOLA</td>
<td>CT10</td>
<td>NNLL [57]</td>
</tr>
<tr>
<td></td>
<td>(t-channel)</td>
<td>ACERMC</td>
<td>PYTHIA 6</td>
<td>TAUOLA</td>
<td>CTEQ6L1</td>
<td>AUET2B</td>
</tr>
<tr>
<td>Diboson</td>
<td>HERWIG</td>
<td>HERWIG</td>
<td>TAUOLA</td>
<td>CTEQ6L1</td>
<td>AUET2</td>
<td>NLO [59]</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow \ell\ell$</td>
<td>POWHEG-BOX</td>
<td>PYTHIA 8</td>
<td>PYTHIA 8</td>
<td>CT10</td>
<td>AU2</td>
<td>NNLO [50]</td>
</tr>
</tbody>
</table>

processes. The impact of interference between Z' and Z/γ^* is typically small (as discussed in section 8.1), so it is not included. For each signal model, several mass hypotheses are considered, ranging from 500 to 2500 GeV in steps of 125 GeV.

All generated events are propagated through a detailed GEANT4 simulation [63] of the ATLAS detector and subdetector-specific digitisation algorithms [64] and are reconstructed with the same algorithms as the data. Pile-up is simulated by overlaying minimum-bias interactions generated with PYTHIA 8 (with an MC tune specific to the LHC [65]) on the generated signal and background events. The resulting events are reweighted so that the distribution of the number of minimum-bias interactions per bunch crossing agrees with data. Due to the high momenta of the tau decay products, however, pile-up has little impact on the analysis. The effective luminosity of most simulated samples is at least as large as the integrated luminosity of the data; the statistical uncertainty from the limited sample size is accounted for in the statistical analysis.

4 Physics objects

In this section the reconstruction of electrons, muons, hadronic tau decays and the missing transverse momentum is described. Preliminary selections are applied to all electrons, muons and tau candidates. Further selection is applied to some of the objects as part of the event selection described in section 5. Corrections are applied to the kinematics and efficiencies of reconstructed electrons, muons and hadronic tau decays in simulated samples so that they match the performance measured from the data.

The reconstruction, energy calibration and identification of hadronic tau decays in ATLAS is described in detail in ref. [66]. Candidates for hadronic tau decays are built from jets reconstructed using the anti-k_t algorithm [67, 68] with a radius parameter value of 0.4. The jets are calibrated to the hadronic energy scale with correction factors based on simulation and validated using test-beam and collision data [69]. Only the visible tau-
decay products (all products excluding neutrinos), $\tau_{\text{had-vis}}$, are considered when calculating kinematic properties. The calculation of the four-momentum uses clusters with $\Delta R < 0.2$ from the initial jet-axis and includes a final tau-specific calibration derived from simulated samples, which accounts for out-of-cone energy, energy lost in dead material, underlying-event and pile-up contributions and the typical composition of hadrons in hadronic tau decays. The size of the tau-specific calibration is typically a few percent. The calibrated energy scale in data and simulation have been compared and agree within the \sim1.5% uncertainty of the measurement. Candidates are required to have either one or three associated tracks (prongs) reconstructed in the inner detector. The tau charge is reconstructed from the sum of the charges of the associated tracks and is required to be ± 1. The charge misidentification probability is found to be negligible. Hadronic tau decays are identified with a multivariate algorithm that employs boosted decision trees (BDTs) to discriminate against quark- and gluon-initiated jets using shower shape and tracking information. Working points with a tau identification (ID) efficiency for 1-prong/3-prong candidates of about 55%/40% (medium) for the $\tau_{\mu\tau_{\text{had}}}$ and $\tau_{e\tau_{\text{had}}}$ channels and 65%/45% (loose) for the $\tau_{\text{had}\tau_{\text{had}}}$ channel are chosen, leading to rates of false identification for quark- and gluon-initiated jets of below a percent. The tau ID efficiency is independent of p_T and pile-up. Corrections of a few percent are applied to the efficiency in simulation. Candidates arising from the misidentification of electrons are rejected using a separate BDT. In the $\tau_{\mu\tau_{\text{had}}}$ channel, a dedicated selection is applied to suppress candidates arising from the misidentification of muons. Tau candidates are required to have $p_T > 30$ GeV and to be in the fiducial volume of the inner detector, $|\eta| < 2.47$. The transition region between the barrel and endcap EM calorimeters, with $1.37 < |\eta| < 1.52$, is excluded. In the $\tau_{\text{lep}\tau_{\text{had}}}$ channels, candidates that have the highest-p_T track in the range $|\eta| < 0.05$ are rejected. This region corresponds to a gap in the TRT, which reduces the power of electron/pion discrimination.

Muon candidates are reconstructed by combining an inner-detector track with a track from the muon spectrometer. The candidates are required to have $p_T > 10$ GeV and $|\eta| < 2.5$. Muon quality criteria are applied to achieve a precise measurement of the muon momentum and reduce the misidentification rate [70]. These quality requirements correspond to a muon reconstruction and identification efficiency greater than 95%.

Electrons are reconstructed by matching clustered energy deposits in the EM calorimeter to tracks reconstructed in the inner detector [71]. The tracks are then refitted using the Gaussian Sum Filter algorithm [72], which accounts for energy loss through bremsstrahlung. The electron candidates are required to have $p_T > 15$ GeV and to be within the fiducial volume of the inner detector, $|\eta| < 2.47$ (the EM calorimeter transition region is excluded). The candidates are required to satisfy quality criteria based on the expected calorimeter shower shape and amount of radiation in the TRT. These quality requirements correspond to an electron identification efficiency of approximately 95% [73].

Electrons and muons are considered isolated if they are away from large deposits of energy in the calorimeter and tracks with large p_T consistent with originating from the same vertex. Lepton isolation is defined using the sum of the transverse energy, E_T, deposited in calorimeter cells with $\Delta R < 0.2$ from the lepton, $E_T^{0.2}$, and the scalar sum of the p_T of tracks with $p_T > 0.5$ GeV consistent with the same vertex as the lepton and with $\Delta R < 0.3$, $p_T^{0.3}$. Muons are considered isolated if they have $p_T^{0.3}/p_T < 5%$. Isolated
electrons must have $p_T^{0.3}/p_T < 5\%$ and $E_T^{0.2} < 5\text{ GeV} + 0.7\% \times p_T$ and must pass a tighter identification requirement corresponding to an efficiency of approximately 70\%.

Geometric overlap of objects with $\Delta R < 0.2$ is resolved by selecting only one of the overlapping objects in the following order of priority: muons, electrons, tau candidates. The order is determined by the ability to identify the objects from their detector signatures. The missing transverse momentum, with magnitude E_T^{miss}, is calculated from the vector sum of the transverse momenta of all high-p_T objects reconstructed in the event, as well as a term for the remaining activity in the calorimeter [74]. Clusters associated with electrons, hadronic tau decays and jets are calibrated separately. The remaining clusters are weighted using tracking information to reduce the effect of pile-up on the E_T^{miss} resolution. A single weight is calculated for each event using all tracks that are not matched to high-p_T objects. The tracks are categorised based on whether or not they are matched to the primary vertex. The weight is then defined as the ratio of the sum of the p_T of tracks originating from the primary vertex to the sum of the p_T of all tracks.

5 Event selection

Selected events in the $\tau_{\text{had}}\tau_{\text{had}}$ channel must contain no electrons with $p_T > 15\text{ GeV}$ or muons with $p_T > 10\text{ GeV}$ and at least two tau candidates: one with $p_T > 150\text{ GeV}$ that is matched to the object that passed the trigger and the other with $p_T > 50\text{ GeV}$. This constitutes the preselection. If multiple tau candidates are selected, the two highest-p_T candidates are chosen. This decision is made before applying the BDT tau ID, to avoid kinematic biases in control regions defined by reversing the ID requirement. The tau candidates are then required to have charges of opposite sign (OS). Finally, the angle between the tau candidates in the transverse plane, $\Delta \phi(\tau_1, \tau_2)$, must be greater than 2.7 radians, as tau leptons from the decay of heavy neutral resonances are typically produced back-to-back in the transverse plane.

Selected events in the $\tau_{\text{lep}}\tau_{\text{had}}$ channels must contain exactly one isolated muon with $p_T > 30\text{ GeV}$ or one isolated electron with $p_T > 30\text{ GeV}$; no additional electrons with $p_T > 15\text{ GeV}$ or muons with $p_T > 10\text{ GeV}$; and at least one tau candidate with $p_T > 30\text{ GeV}$. This constitutes the preselection. If multiple tau candidates are selected, the highest-p_T candidate is chosen. As in the $\tau_{\text{had}}\tau_{\text{had}}$ channel, this choice is made before applying the BDT tau ID. The angle between the lepton and tau candidate in the transverse plane, $\Delta \phi(\ell, \tau)$, must be greater than 2.7 radians, and they must have opposite charge. The transverse mass is defined as:

$$m_T(p^A, p^B) = \sqrt{2p^A_T p^B_T (1 - \cos \Delta \phi(p^A, p^B))},$$

where p^A and p^B are two reconstructed physics objects with transverse momenta p^A_T and p^B_T, respectively, which subtend an angle of $\Delta \phi(p^A, p^B)$ in the transverse plane. The $W + \text{jets}$ background is suppressed by requiring the transverse mass of the lepton-E_T^{miss} system, $m_T(\ell, E_T^{\text{miss}})$, to be less than 50 GeV.

The search in all channels is performed by counting events in signal regions with total transverse mass above thresholds optimised separately for each signal mass hypothesis in
each channel to give the best expected exclusion limits. The same thresholds are found to be optimal for all channels. The total transverse mass, \(m_{\text{tot}} \), is defined as

\[
 m_{\text{tot}}(\tau_1, \tau_2, E_{\text{T}}^{\text{miss}}) = \sqrt{m_{\text{T}}^2(\tau_1, \tau_2) + m_{\text{T}}^2(\tau_1, E_{\text{T}}^{\text{miss}}) + m_{\text{T}}^2(\tau_2, E_{\text{T}}^{\text{miss}})},
\]

where \(\tau_1 \) and \(\tau_2 \) denote the reconstructed visible decay products of the two tau leptons (e, \(\mu \) or \(\tau_{\text{had-vis}} \)).

6 Background estimation

The dominant background process in the \(\tau_{\text{had}}\tau_{\text{had}} \) channel at high mass is \(Z/\gamma^* \to \tau\tau \), which is estimated using simulation. The modelling of the \(pp \to Z/\gamma^* \) process has been shown to be very reliable by using decays to electrons and muons \([24, 75]\). Additional uncertainties related to the modelling of high-\(p_T \) tau decays are also considered, as described in section 7. Multijet production makes a large contribution at low mass in the \(\tau_{\text{had}}\tau_{\text{had}} \) channel and is estimated by weighting events in data where the subleading tau candidate fails tau ID, with fake-factors that parameterise the rate for jets to pass tau ID (section 6.1). Due to the relatively large size of the sample that fails tau ID, this procedure provides high statistical precision, which is particularly crucial in the high-mass tail. The fake-factors are measured from data in a separate control region. Diboson, \(W+\text{jets}, t\bar{t}, Z/\gamma^*(\to \ell\ell)+\text{jets}, \) and single-top-quark production make minor contributions and are estimated using simulation. To improve the modelling of these background processes, events in the simulation that contain jets misidentified as hadronic tau decays are weighted by fake-rates measured in a \(W+\text{jets} \) control region in data (section 6.3).

The dominant background contributions in the \(\tau_{\text{lep}}\tau_{\text{had}} \) channels come from \(Z/\gamma^* \to \tau\tau \), which is estimated using simulation, and from processes in which a jet is misidentified as a hadronic tau decay. The latter is mainly composed of \(W+\text{jets} \) events and is estimated using fake-factors to weight events in data where the tau candidate fails ID, similarly to the procedure in the \(\tau_{\text{had}}\tau_{\text{had}} \) channel (section 6.2). Diboson, \(t\bar{t}, Z/\gamma^*(\to \ell\ell)+\text{jets} \) and single-top-quark production in which the tau candidate does not originate from a jet make minor contributions and are estimated using simulation. In the following subsections, the data-driven background estimates are described in more detail.

6.1 Multijet background in the \(\tau_{\text{had}}\tau_{\text{had}} \) channel

To estimate the multijet background in the \(\tau_{\text{had}}\tau_{\text{had}} \) channel, two control regions are used. Events in the first control region are required to pass the same selection as in the analysis, except for the subleading tau candidate, which is required to fail the BDT tau ID. The multijet contribution in the signal region is estimated by weighting these events with a tau ID fake-factor. The fake-factor, \(f_{\text{tau-ID}} \), is defined as the ratio of the number of tau candidates that pass the BDT tau ID, \(N_{\text{pass tau-ID}} \), to the number that fail, \(N_{\text{fail tau-ID}} \). The fake-factors are calculated from a second control region that is highly pure in multijet events, the multijet control region (described below), and they depend on the \(p_T \) and track.
multiplicity, \(N_{\text{track}} \), of the subleading tau candidate:

\[
f_{\text{tau-ID}}(p_T, N_{\text{track}}) \equiv \frac{N_{\text{pass tau-ID}}(p_T, N_{\text{track}})}{N_{\text{fail tau-ID}}(p_T, N_{\text{track}})}_{\text{multijet}}.
\]

The fake-factors have no significant dependence on \(\eta \). The number of multijet events in a bin of \(p_T \), \(N_{\text{track}} \) and any additional variable that is uncorrelated to the BDT tau ID, \(x \), is given by:

\[
N_{\text{multijet}}(p_T, N_{\text{track}}, x) = f_{\text{tau-ID}}(p_T, N_{\text{track}}) \times N_{\text{fail tau-ID}}(p_T, N_{\text{track}}, x).
\]

The multijet control region is designed to be as similar to the signal region as possible, while avoiding contamination from hadronic tau decays. This is achieved by loosening the tau ID requirements. Specifically, the selection for this control region is the same as for the signal region except with the following alterations. The BDT tau ID is not applied to either tau candidate. Instead of using the single-tau trigger, events are selected using single-jet triggers with thresholds ranging from 45 to 360 GeV, with all but the highest threshold trigger being prescaled. The \(p_T \) of the subleading tau candidate must be at least 40% of the \(p_T \) of the leading tau candidate (\(p_T \)-balance > 0.4) to avoid bias at low \(p_T \) due to the disproportionate fraction of events coming from the unprescaled 360 GeV jet trigger. The opposite-sign requirement on the charges of the two tau candidates is removed to increase the sample size.

Figures 1(left) and 1(right) show the fake-factors for 1-prong and 3-prong candidates, respectively. Use of these fake-factors relies on the assumption that they are insensitive to the alteration of the selection between the signal region and multijet control region. Systematic uncertainties on the fake-factors are derived by altering the selection on the \(p_T \)-balance, the charge product, and the identification of the leading-\(p_T \) tau candidate. These variations modify the fractional contribution of quark- and gluon-initiated jets in the sample, leading to large variations in the fake-factors at low \(p_T \) where the composition is mixed and little variation to the fake-factors at high \(p_T \) where the sample is quark dominated.

6.2 Jet background in the \(\tau_{\text{lep}}\tau_{\text{had}} \) channel

The background contributions originating from quark- and gluon-initiated jets that are misidentified as hadronic tau decays in the \(\tau_{\text{lep}}\tau_{\text{had}} \) channels are modelled using a fake-factor method, similar to that used in the \(\tau_{\text{had}}\tau_{\text{had}} \) channel. In contrast to the \(\tau_{\text{had}}\tau_{\text{had}} \) channel, the background is dominated by \(W + \text{jets} \) production, with a minor contribution from multijet production. To reduce the sensitivity to the differing fake-factors in \(W + \text{jets} \) and multijet events (due to a different quark/gluon fraction), events failing a very loose level of BDT tau identification (corresponding to efficiencies of 98\% and 90\% for 1-prong and 3-prong hadronic tau decays, respectively) are rejected. This significantly suppresses the gluon contribution, which typically consists of wider jets with higher hadron multiplicity which are more readily rejected by the tau ID. In the \(\tau_{\text{lep}}\tau_{\text{had}} \) channels, there is also a non-negligible contribution to the first control region (fail-ID control region) from background processes containing hadronic tau decays, which is subtracted using simulation. The fake-factors are measured in a high-purity \(W + \text{jets} \) control region and they depend on \(p_T, \eta \).
and N_{track} of the tau candidate. The W+jets control region uses the same selection as the signal region but with the medium BDT tau ID replaced by very loose BDT tau ID and the m_T requirement replaced by $70 \text{ GeV} \leq m_T \leq 200 \text{ GeV}$. A second control region enriched in multijet events is defined, which has a higher fraction of gluon-initiated jets and represent an extreme variation in the jet composition. This control region uses the same selection as the W+jets control region but the lepton is required to fail isolation, the m_T requirement is replaced by $m_T < 30 \text{ GeV}$ and $E_T^{\text{miss}} < 30 \text{ GeV}$ is required. A 30% systematic uncertainty is derived from the difference in the fake-factors in the multijet and W+jets control regions. Figures 2(left) and 2(right) show the fake-factors measured in each of the two control regions in the $\tau_\mu \tau_\text{had}$ channel, integrated across all $|\eta|$ regions, for 1-prong and 3-prong candidates, respectively. The fake-factors in the $\tau_e \tau_\text{had}$ channel are similar.

Finally, in the $\tau_\text{lep} \tau_\text{had}$ channel, two additional steps are taken to ensure E_T^{miss} is modelled well by the fake-factor estimate. Firstly, the standard E_T^{miss} reconstruction treats the selected tau candidate in the fail-ID control region as a jet rather than a hadronic tau decay. Therefore, the E_T^{miss} is recalculated in the fail-ID control region using the tau hypothesis for the selected tau candidate. Following this, a slight bias in the shape of the E_T^{miss} distribution is corrected for by reweighting in bins of the E_T^{miss} projected along the direction of the tau candidate. An additional 20% uncertainty is applied to the estimate of the jet background event yield obtained after the full event selection, derived from the difference in the estimate between applying and not applying the E_T^{miss} reweighting.

6.3 Jet background other than multijet in the $\tau_\text{had} \tau_\text{had}$ channel

In the $\tau_\text{had} \tau_\text{had}$ channel, backgrounds originating from quark- and gluon-initiated jets that are misidentified as hadronic tau decays in processes other than multijet production are
Figure 2. Tau ID fake-factors for (left) 1-prong and (right) 3-prong tau candidates, measured in the W+jets control region of the $\tau_\mu\tau_{\text{had}}$ channel, integrated across all $|\eta|$ regions. The statistical and systematic uncertainties are shown, successively added in quadrature. The fake-factors measured in the alternative multijet control region are overlaid.

estimated using simulation (predominantly W+jets). Rather than applying the tau ID to the simulated jets, they are weighted by fake-rates. This not only ensures the correct fake-rate, but enhances the statistical precision of the estimate, as events failing the tau ID are not discarded. The fake-rate for the sub-leading tau candidate, $R^{\text{sub-lead}}_{\text{tau-ID}}$, is defined as the ratio of the number of tau candidates that pass tau ID, $N_{\text{pass tau-ID}}$, to the total number of tau candidates, N_{total}. The fake-rate for the leading tau candidate, $R^{\text{lead}}_{\text{tau-ID}}$, is defined as the ratio of the number of tau candidates that pass tau ID and the single-tau trigger requirement, $N_{\text{pass tau-ID + trigger}}$, to N_{total}. The fake-rates are calculated from a second control region that is high in W+jets purity (described below), and they depend on p_T and N_{track} of the tau candidate:

$$R^{\text{lead}}_{\text{tau-ID}}(p_T, N_{\text{track}}) \equiv \frac{N_{\text{pass tau-ID + trigger}}(p_T, N_{\text{track}}) | W+\text{jets}}{N_{\text{total}}(p_T, N_{\text{track}}) | W+\text{jets}},$$

$$R^{\text{sub-lead}}_{\text{tau-ID}}(p_T, N_{\text{track}}) \equiv \frac{N_{\text{pass tau-ID}}(p_T, N_{\text{track}}) | W+\text{jets}}{N_{\text{total}}(p_T, N_{\text{track}}) | W+\text{jets}}.$$

All simulated events are assigned a weight:

$$w_{MC} = \prod_{i \in \{\text{lead, sub-lead}\}} (1 - \delta^i \left[1 - R^{\text{lead}}_{\text{tau-ID}}(p^i_T, N^i_{\text{track}}) \right])$$

where δ^i is 1 if the tau candidate originates from a jet and 0 otherwise. The tau ID and trigger selection criteria for simulated events are modified as follows: the BDT tau ID criteria for the sub-leading tau candidate is removed if the candidate originates from a jet, the BDT tau ID criteria for the leading tau candidate and the trigger requirement are removed if the leading tau candidate originates from a jet.
Figure 3. Tau identification fake-rate measured in $W(\to \mu \nu)$+jets data events for the BDT loose identification working point for (left) 1-prong and (right) 3-prong tau candidates. The fake-rate is parameterised in the charge product of the muon and fake tau candidate. Opposite-sign events are depicted by black circles and same-sign events by blue stars. The systematic uncertainty covers differences due to jet composition and is added to the statistical uncertainty in quadrature.

Events in the W+jets control region are selected by a single-muon trigger with a p_T threshold of 36 GeV. The events are required to contain one isolated muon that: has $p_T > 40$ GeV, has $E_T^{\mu}/p_T < 6\%$ and is matched to the object that passed the trigger. There must be no additional muons or electrons and at least one tau candidate with opposite charge to the muon. The remaining contamination from multijet events is suppressed by requiring $\cos \Delta \phi(\mu, E_T^{\text{miss}}) + \cos \Delta \phi(\tau_{\text{had-vis}}, E_T^{\text{miss}}) < -0.15$, which disfavours back-to-back topologies where the E_T^{miss} vector points either in the direction of the muon or the tau candidate. The leading-p_T tau candidate is used to measure the fake-rate. Figures 3(left) and 3(right) show $R_{\text{sub-lead}}$ for 1-prong and 3-prong tau candidates, respectively. The fake-rates R_{lead} (including the trigger requirement in the numerator) have a similar behaviour but are a factor of two to four lower. The requirement of opposite charge between the muon and the tau candidate enhances the contribution of the leading-order $qg \to Wq'$ process in which the tau candidate originates from a quark-initiated jet. To evaluate the systematic uncertainty from applying these fake-rates to simulated samples with different jet origin, the fake-rates are also calculated for events where the tau candidate has the same charge sign as the muon. These events have a higher fraction of gluon-initiated jets and represent an extreme variation in the jet composition, resulting in lower fake-rates as shown in figure 3(left) and figure 3(right). A 60% uncertainty is assigned to cover the range of the measured fake-rates for events with opposite- or same-sign tau candidates. The uncertainty is omitted for W+jets events as they are expected to have the same jet composition as events in the control region. The statistical uncertainty from the limited size of the W+jets control region is also considered.
7 Systematic uncertainties

Systematic effects on the contributions of signal and background processes estimated from simulation are discussed in this section. These include theoretical uncertainties on the cross sections of simulated processes and experimental uncertainties on the trigger, reconstruction and identification efficiencies; on the energy and momentum scales and resolutions; and on the measurement of the integrated luminosity. Uncertainties on the background contributions estimated from data are discussed in their respective sections.

The overall uncertainty on the Z' signal and the $Z/\gamma^* \rightarrow e\mu/\tau\tau$ background due to choice of the PDFs, α_S, and the renormalisation and factorisation scales is estimated to be 14% for a ditau mass of 1750 GeV, dominated by the PDF uncertainty [24]. The uncertainty is evaluated using 90% CL MSTW2008NNLO PDF error sets and also takes into account potential differences between the following PDFs at the same α_S: MSTW2008NNLO, CT10NNLO, NNPDF2.3 [76], ABM11 [77] and HERAPDF1.5 [78]. Additionally, for $Z/\gamma^* \rightarrow \tau\tau$, a mass-dependent systematic uncertainty of up to 4% is attributed to electroweak corrections [24]. This uncertainty is not considered for the signal as it is strongly model dependent. An uncertainty of 5% is estimated for diboson production, derived from scale, PDF and α_S variations. A 6% uncertainty on the W+jets normalisation is derived from comparisons to data in the W+jets control region used to measure jet-to-tau fake-rates in the $\tau_{\text{had}}\tau_{\text{had}}$ channel. For $t\bar{t}$ and single-top-quark production, the uncertainties from variations in the renormalisation and factorisation scales are in the range of 3–6% [57, 79, 80], while those related to the proton PDFs amount to 8% [48, 51, 81–83].

The uncertainty on the integrated luminosity is 2.8%. It is derived from a preliminary calibration of the luminosity scale derived from beam-separation scans performed in November 2012, following the same methodology as that detailed in ref. [84]. Comparisons of the efficiency of the hadronic tau trigger measured in data and in simulation are used to derive an uncertainty of 10% on the trigger efficiency. Differences between data and simulation in the reconstruction and identification efficiency and the energy scale of hadronic tau decays are taken into account. The associated uncertainties for muons and electrons are negligible for this analysis.

The systematic uncertainty on the identification efficiency of hadronic tau decays is estimated at low p_T from data samples enriched in $Z \rightarrow \tau\tau$ events, yielding an uncertainty of 2–7% depending on the number of tracks and $|\eta|$ of the tau candidate. At high p_T, there are no abundant sources of real hadronic tau decays from which an efficiency measurement could be made. Rather, the tau identification is studied in high-p_T dijet events as a function of the jet p_T, which indicates that there is no degradation in the modelling of the detector response as a function of the p_T of tau candidates. Based on the limited precision of these studies, an additional uncertainty of 14% · p_T/TeV for 1-prong tau candidates and 8% · p_T/TeV for 3-prong tau candidates is added in quadrature to the low-p_T uncertainty for candidates with $p_T > 100$ GeV. The reconstruction efficiency for 3-prong tau candidates decreases at high p_T due to track merging. An uncertainty of 50% · p_T/TeV above $p_T = 150$ GeV is assigned for 3-prong candidates, derived from data/MC comparisons of tracking performance within jets. The energy scale uncertainty for hadronic tau decays
Table 2. Uncertainties on the estimated Z'_SSM contribution ($m_{Z'_\text{SSM}} = 1750$ GeV) and the corresponding total background contribution in percent for each channel. A dash denotes that the uncertainty is not applicable. The statistical uncertainty corresponds to the uncertainty due to the limited size of the samples produced via simulation or selected in control regions. The total consists of all uncertainties added in quadrature.

<table>
<thead>
<tr>
<th>Uncertainty [%]</th>
<th>Signal</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\tau_{\text{had}}\tau_{\text{had}}$</td>
<td>$\tau_{\mu}\tau_{\text{had}}$</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>2.4</td>
<td>4</td>
</tr>
<tr>
<td>Efficiency</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Energy scale and resolution</td>
<td>2.9</td>
<td>5</td>
</tr>
<tr>
<td>Theory cross section</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Data-driven methods</td>
<td>0.2</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>11</td>
</tr>
</tbody>
</table>

The systematic uncertainty related to the tau energy scale is a function of η, p_T and the number of prongs, and is generally near 3%. Energy scale and resolution uncertainties for all objects are propagated to the E_T^{miss} calculation. The uncertainty on the E_T^{miss} due to clusters that do not belong to any reconstructed object has a minor effect.

Table 2 summarises the systematic uncertainties across all channels for the 1750 GeV Z'_SSM mass point. In the $\tau_{\text{had}}\tau_{\text{had}}$ channel the dominant uncertainties on both the signal and background come from the tau efficiency and energy scale, while in the $\tau_{\text{lep}}\tau_{\text{had}}$ channels the statistical uncertainty on the background coming from the fake-factor estimate also makes a major contribution. The uncertainties are the same for background and similar for the signal for all higher signal mass points, since the same m_T^{tot} thresholds are used. The uncertainties for the lower mass points are typically very similar, except for the tau ID efficiency, the 3-prong tau reconstruction efficiency, the Z/γ^* cross section and the statistical uncertainties, which are all a few percent lower, and the uncertainty on the tau energy scale for the signal, which can be up to 11% at low mass since the m_T^{tot} requirement is much tighter relative to the Z' mass. The small data-driven uncertainty contribution to the signal in the $\tau_{\text{had}}\tau_{\text{had}}$ channel comes from jets that are misidentified as hadronic tau decays.

8 Z' signal models

In this section, the impact on the signal acceptance times efficiency from altering the Z' couplings and from including interference between Z' and Z/γ^* is discussed. The acceptance times efficiency for a given Z' model is defined as:

$$A\varepsilon = \frac{N_S}{L_{\text{int}} \cdot \sigma B}$$
where N is the expected number of Z' events passing the full analysis selection, $\sigma \mathcal{B}$ is the Z' production cross section times $\tau^+\tau^-$ branching fraction and L_{int} is the integrated luminosity. The impact on $A\varepsilon$ is presented as a fraction of the SSM value, $A\varepsilon_{\text{SSM}}$. The corresponding impact on the acceptance alone, A, is also evaluated by replacing N with the expected number of Z' events after applying the kinematic selection directly to the generated particles before simulation. A Z' model that couples preferentially to third-generation fermions is also discussed.

8.1 Z' signal acceptance

Changing the fermionic couplings of the Z' from their SSM values can alter the signal acceptance of the analysis. Such changes are primarily due to alterations in either the tau polarisation or the total Z' decay width. Alteration of the tau polarisation changes the tau decay kinematics. Most importantly it affects the visible momentum fraction, which enters the analysis through the p_T thresholds of the reconstructed visible tau decay products and via the threshold on m_{tot}. The most extreme impact on the acceptance is seen for models that couple only to left-handed or right-handed tau leptons: Z'_L and Z'_R, respectively. Alteration of the quark couplings can impact the acceptance if it alters the tau polarisation. However, the maximum impact is much smaller than when altering the couplings to tau leptons. As the kinematic limit (due to the collision energy) for high-mass Z' production is approached, the signal exhibits an increased fraction of low-mass off-shell production. The fraction of off-shell events increases rapidly as a function of the decay width. Figure 4 shows $A\varepsilon$ for the Z'_L and Z'_R models, and two models with artificially altered decay widths: Z'_{narrow} ($\Gamma/m_{Z'} = 1\%$) and Z'_{wide} ($\Gamma/m_{Z'} = 20\%$), each divided by $A\varepsilon$ for Z'_{SSM} ($\Gamma/m_{Z'} \approx 3\%$). Interference between Z' and Z/γ^* is not included. The statistical uncertainty is typically below 5% but can be up to 14% at low mass. A smoothing is applied to reduce fluctuations.

For Z'_L and Z'_R, the largest impact is observed at low mass, where the p_T and m_{tot} thresholds are much more stringent on the signal. In this case, alteration of the tau couplings can lead to changes of up to $+50\%$ and -25%. The impact on the $\tau_{\text{had}}\tau_{\text{had}}$ and $\tau_{\text{lep}}\tau_{\text{had}}$ channels are different due to the different effect of polarisation on leptonic and hadronic tau decays. For Z'_{narrow} and Z'_{wide}, the impact is most prominent at high mass where changes of up to $+20\%$ and -45% are observed. At low mass, $A\varepsilon$ only changes for widths above 10%. The impact is the same for all channels. For all Z' models, the change in A is very similar to that in $A\varepsilon$, indicating that the efficiency is insensitive to changes in the Z' couplings.

The impact of interference between Z' and Z/γ^* is typically small. For the SSM, it leads to a reduction in the expected Z' contribution of up to 10% for $m_{Z'} \leq 2$ TeV, and up to 35% for the highest mass hypotheses. For Z'_L, Z'_R and Z'_{narrow} the impact is negligible. For Z'_{wide} the impact can be substantial and is highly dependent on the choice of the fermionic couplings. An exhaustive treatment is outside the scope of this article. Reinterpretations of the SSM results for models with large widths should specifically calculate the impact from interference.
8.2 Non-universal $G(221)$ model

The non-universal $G(221)$ model [8, 20, 21] (also known by other names such as Topflavor) is an extension of the SM, containing additional heavy gauge bosons, Z'_{NU} and W'_{NU}, that may couple preferentially to third-generation fermions. The model is motivated by the idea that the large mass of the top-quark may suggest that the third fermion generation has a dynamical behaviour different from the first two generations. Accordingly, the SM weak SU(2) gauge group is split into two parts: one coupling to light fermions (the first two generations), SU(2)$_l$, and one coupling to heavy fermions (the third generation), SU(2)$_h$. The extended gauge group breaks to the SM SU(2)$_{l+h}$ at a high energy scale, u, and then eventually to U(1)$_{\text{EM}}$ at the usual electroweak scale, $v = 246$ GeV:

$$\text{SU}(2)_l \times \text{SU}(2)_h \times \text{U}(1)_Y \rightarrow \text{SU}(2)_{l+h} \times \text{U}(1)_Y \rightarrow \text{U}(1)_{\text{EM}}.$$

The mixing between SU(2)$_l$ and SU(2)$_h$ is described by the parameter $\sin^2 \phi$. The Z'_{NU} and W'_{NU} bosons are degenerate in mass; the mass is defined at tree level by $\sin^2 \phi$ and u. Large mixing between τ and μ leptons has been considered as an additional feature of the model, but is ignored here as it would lead to stronger limits via the dielectron and dimuon searches. The Z'_{NU} couples almost exclusively to left-handed fermions, and while the coupling strength differs for light and heavy fermions, it is largely insensitive to the electric charge or weak isospin, leading to almost universal couplings for all light and heavy fermions.

Figure 5(left) shows the Z'_{NU} cross section times $\tau^+\tau^-$ branching fraction, σB_{NU}, divided by σB_{SSM}. For much of the parameter space σB_{NU} is larger than σB_{SSM}, peaking at moderate values of $\sin^2 \phi$. For extreme values of $\sin^2 \phi$ either the cross section is suppressed
Figure 5. Signal production cross section times $\tau^+\tau^-$ branching fraction for Z'_{NU}, σB_{NU}, divided by σB_{SSM} (left) and acceptance times efficiency for Z'_{NU}, $A\varepsilon_{\text{NU}}$, divided by $A\varepsilon_{\text{SSM}}$ for the (middle) $\tau_{\text{had}}\tau_{\text{had}}$ and (right) $\tau_{\text{lep}}\tau_{\text{had}}$ channels, as a function of $\sin^2\phi$ and $m_{Z'}$.

by weakened couplings to light quarks ($\sin^2\phi \sim 0$) or the branching fraction is suppressed by weakened couplings to tau leptons ($\sin^2\phi \sim 1$). Figures 5(middle) and 5(right) show the Z'_{NU} acceptance times efficiency, $A\varepsilon_{\text{NU}}$, divided by $A\varepsilon_{\text{SSM}}$, for the $\tau_{\text{had}}\tau_{\text{had}}$ and $\tau_{\text{lep}}\tau_{\text{had}}$ channels, respectively. In general $A\varepsilon_{\text{NU}}$ is lower than $A\varepsilon_{\text{SSM}}$. At low mass this is mainly due to the left-handed couplings, which result in softer visible tau decays. Near $\sin^2\phi \sim 0$ and $\sin^2\phi \sim 1$, the acceptance loss comes mainly from the significantly increased decay width, which causes a large fraction of the signal to be produced off shell.

9 Results and discussion

A summary of the expected number of events remaining after successively applying each selection requirement, up to the m_{T}^{tot} threshold, for the signal and dominant background processes is given in table 3. Figures 6(left) and 6(right) show the m_{T}^{tot} distribution after event selection in the $\tau_{\text{had}}\tau_{\text{had}}$ and $\tau_{\text{lep}}\tau_{\text{had}}$ channels, respectively. The numbers of observed and expected events (including their total uncertainties) after applying the m_{T}^{tot} thresholds in all channels are summarised in table 4. In all cases, the number of observed events is consistent with the expected Standard Model background. Therefore, upper limits are set on the production of a high-mass resonance decaying to $\tau^+\tau^-$ pairs. The acceptance and acceptance times efficiency for Z'_{SSM} is shown in figure 7.

The statistical combination of the channels employs a likelihood function constructed as the product of Poisson-distributed random numbers describing the total number of events observed in each channel. The probability in each channel is evaluated for the observed number of data events given the signal-plus-background expectation. Systematic uncertainties on the expected number of events are incorporated into the likelihood via nuisance parameters constrained by Gaussian distributions. Correlations between signal and background and across channels are taken into account. A signal-strength parameter
\[\tau \text{had} \tau \text{had} \text{ channel} \]

<table>
<thead>
<tr>
<th>Selection</th>
<th>(Z/\gamma^* \to \tau\tau)</th>
<th>Multijet</th>
<th>(W/Z/\gamma^* + \text{jets})</th>
<th>Top + diboson</th>
<th>(Z'_\text{SSM})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preselection</td>
<td>276(18)</td>
<td>611(5)</td>
<td>64(1)</td>
<td>24(2)</td>
<td>10.1(2)</td>
</tr>
<tr>
<td>OS</td>
<td>270(18)</td>
<td>316(4)</td>
<td>53(1)</td>
<td>21(2)</td>
<td>9.5(2)</td>
</tr>
<tr>
<td>(\Delta\phi(\tau_1, \tau_2) > 2.7)</td>
<td>117(2)</td>
<td>209(3)</td>
<td>35(1)</td>
<td>11(2)</td>
<td>9.2(2)</td>
</tr>
</tbody>
</table>

\[\tau \text{lep} \tau \text{had} \text{ channel} \]

<table>
<thead>
<tr>
<th>Selection</th>
<th>(Z/\gamma^* \to \tau\tau)</th>
<th>Jet \to \tau \text{ fake}</th>
<th>(Z/\gamma^* \to \ell\ell)</th>
<th>Top + diboson</th>
<th>(Z'_\text{SSM})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preselection</td>
<td>46 800(300)</td>
<td>154 670(130)</td>
<td>17 340(250)</td>
<td>12 330(70)</td>
<td>14.3(2)</td>
</tr>
<tr>
<td>OS</td>
<td>46 300(300)</td>
<td>111 270(120)</td>
<td>16 180(240)</td>
<td>11 830(70)</td>
<td>13.9(2)</td>
</tr>
<tr>
<td>(m_T < 50 \text{ GeV})</td>
<td>29 490(230)</td>
<td>22 660(60)</td>
<td>11 240(210)</td>
<td>808(16)</td>
<td>8.5(2)</td>
</tr>
</tbody>
</table>

Table 3. Number of expected signal (\(m_{Z'_\text{SSM}} = 1750 \text{ GeV} \)) and background events in the \(\tau \text{had} \tau \text{had} \) and \(\tau \text{lep} \tau \text{had} \) channels after successively applying each selection criterion. The statistical uncertainty in the least significant digit(s) is shown in parentheses.

Figure 6. The \(m_{T}^{\text{jet}} \) distribution after event selection in the (left) \(\tau \text{had} \tau \text{had} \) and (right) \(\tau \text{lep} \tau \text{had} \) channels. The estimated contributions from SM processes are stacked and appear in the same order as in the legend. The expected contributions from three \(Z'_\text{SSM} \) signals with masses of 750, 1250 and 1750 GeV are shown, stacked on the total SM expectation. The events observed in data are overlaid. The hatched area indicates the uncertainty on the total estimated background. The bins have a constant width of (left) 0.153 and (right) 0.184 in \(\log(m_{T}^{\text{jet}}) \). The last bin includes overflow events. The inset shows the ratio of the observed events over the total expected SM contribution. The statistical uncertainty from the observed events and the expected SM contribution are shown on the points and by the yellow band, respectively. The red band depicts the total systematic and statistical uncertainties on the SM contribution added in quadrature.
Table 4. Number of expected \(Z'\) signal (\(N_S\)), background (\(N_B\)) and observed (\(N\)) events in the \(\tau_{\text{had}}\tau_{\text{had}}\) and \(\tau_{\text{lep}}\tau_{\text{had}}\) channels. The signal mass (\(m_{Z'}\)) and corresponding \(m_{\text{tot}}^T\) thresholds are given in units of GeV. The total uncertainty (statistical and systematic added in quadrature) in the least significant digit(s) is shown in parentheses.

<table>
<thead>
<tr>
<th>(m_{Z'}) [GeV]</th>
<th>(m_{\text{tot}}^T)</th>
<th>(N_S)</th>
<th>(N_B)</th>
<th>(N)</th>
<th>(N_S)</th>
<th>(N_B)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>400</td>
<td>1030(170)</td>
<td>70(8)</td>
<td>56</td>
<td>570(90)</td>
<td>49(6)</td>
<td>42</td>
</tr>
<tr>
<td>625</td>
<td>450</td>
<td>650(100)</td>
<td>40(5)</td>
<td>30</td>
<td>420(50)</td>
<td>29(4)</td>
<td>23</td>
</tr>
<tr>
<td>750</td>
<td>500</td>
<td>410(60)</td>
<td>24.0(30)</td>
<td>18</td>
<td>270(29)</td>
<td>18.2(23)</td>
<td>15</td>
</tr>
<tr>
<td>875</td>
<td>550</td>
<td>206(30)</td>
<td>14.6(20)</td>
<td>11</td>
<td>152(14)</td>
<td>11.2(16)</td>
<td>10</td>
</tr>
<tr>
<td>1000</td>
<td>600</td>
<td>119(17)</td>
<td>9.4(13)</td>
<td>4</td>
<td>82(8)</td>
<td>6.7(11)</td>
<td>6</td>
</tr>
<tr>
<td>1125</td>
<td>700</td>
<td>60(9)</td>
<td>4.0(6)</td>
<td>0</td>
<td>45(5)</td>
<td>2.5(4)</td>
<td>2</td>
</tr>
<tr>
<td>1250</td>
<td>750</td>
<td>35(6)</td>
<td>2.8(5)</td>
<td>0</td>
<td>27.0(29)</td>
<td>1.78(32)</td>
<td>1</td>
</tr>
<tr>
<td>1375</td>
<td>800</td>
<td>20.8(34)</td>
<td>1.93(32)</td>
<td>0</td>
<td>15.7(16)</td>
<td>1.24(23)</td>
<td>1</td>
</tr>
<tr>
<td>1500</td>
<td>850</td>
<td>13.4(22)</td>
<td>1.32(24)</td>
<td>0</td>
<td>9.6(10)</td>
<td>0.96(20)</td>
<td>1</td>
</tr>
<tr>
<td>1625</td>
<td>850</td>
<td>8.4(14)</td>
<td>1.32(24)</td>
<td>0</td>
<td>6.5(7)</td>
<td>0.96(20)</td>
<td>1</td>
</tr>
<tr>
<td>1750</td>
<td>850</td>
<td>5.4(9)</td>
<td>1.32(24)</td>
<td>0</td>
<td>4.0(4)</td>
<td>0.96(20)</td>
<td>1</td>
</tr>
<tr>
<td>1875</td>
<td>850</td>
<td>3.6(6)</td>
<td>1.32(24)</td>
<td>0</td>
<td>2.70(27)</td>
<td>0.96(20)</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>850</td>
<td>2.4(4)</td>
<td>1.32(24)</td>
<td>0</td>
<td>1.85(18)</td>
<td>0.96(20)</td>
<td>1</td>
</tr>
<tr>
<td>2125</td>
<td>850</td>
<td>1.54(28)</td>
<td>1.32(24)</td>
<td>0</td>
<td>1.19(12)</td>
<td>0.96(20)</td>
<td>1</td>
</tr>
<tr>
<td>2250</td>
<td>850</td>
<td>1.02(19)</td>
<td>1.32(24)</td>
<td>0</td>
<td>0.81(8)</td>
<td>0.96(20)</td>
<td>1</td>
</tr>
<tr>
<td>2375</td>
<td>850</td>
<td>0.66(12)</td>
<td>1.32(24)</td>
<td>0</td>
<td>0.52(5)</td>
<td>0.96(20)</td>
<td>1</td>
</tr>
<tr>
<td>2500</td>
<td>850</td>
<td>0.43(8)</td>
<td>1.32(24)</td>
<td>0</td>
<td>0.330(34)</td>
<td>0.96(20)</td>
<td>1</td>
</tr>
</tbody>
</table>

Bayesian 95% credibility upper limits are set on \(\sigma B_{\text{SSM}}\) as a function of \(m_{Z'}\), using the Bayesian Analysis Toolkit [85]. Figures 8(left) and 8(right) show the limits for the individual channels and for the combination, respectively. The resulting 95% CL lower limit on the mass of a \(Z'\) decaying to \(\tau^+\tau^-\) pairs is 2.02 TeV, with an expected limit of 1.95 TeV. The observed and expected limits in the individual channels are, respectively: 1.89 and 1.80 TeV (\(\tau_{\text{had}}\tau_{\text{had}}\)); 1.59 and 1.59 TeV (\(\tau_{\mu}\tau_{\text{had}}\)); and 1.55 and 1.65 TeV (\(\tau_{e}\tau_{\text{had}}\)). Alteration of the \(Z'\) couplings can impact the signal acceptance as described in section 8.1. These changes translate linearly to the limits on \(\sigma B_{\text{SSM}}\). Limits on the \(Z'_L\) and \(Z'_R\) models are shown in figure 8 (right). The impact of the choice of the prior on the signal-strength parameter is evaluated by also considering the reference prior [86]. Use of the reference prior improves the limit on \(\sigma B_{\text{SSM}}\) by a maximum of 10%, corresponding to an increase of 20 GeV in the observed mass limit.
Figure 7. Acceptance (dashed lines with empty markers) and acceptance times efficiency (solid lines with filled markers) for Z'_{SSM} as a function of the Z'_{SSM} mass. Contributions from the individual channels and the full analysis are given.

Figure 8. Bayesian 95% credibility upper limits on the cross section times ditau branching fraction for a Z' in the Sequential Standard Model. The figure shows (left) an overlay of the observed (solid lines with filled markers) and expected (dashed lines with empty markers) limits in each channel and for the combination, and (right) the combined limit with 1σ and 2σ uncertainty bands and an overlay of the impact of the Z'_L/Z'_R models. The width of the Z'_{SSM} theory band represents the theoretical uncertainty from the PDF error set, the choice of PDF as well as the strong coupling constant.
Figure 9. Observed 95% CL exclusion in the non-universal $G(221)$ parameter space from the combination of the $\tau_{\text{had}}\tau_{\text{had}}$ and $\tau_{\text{lep}}\tau_{\text{had}}$ channels (blue). Indirect limits at 95% CL from fits to electroweak precision measurements (EWPT) [27], lepton flavour violation (LFV) [28], CKM unitarity [29] and the original Z-pole data [8] are overlaid.

Limits on the non-universal $G(221)$ model are also calculated. The signal contributions in the $\tau_{\text{had}}\tau_{\text{had}}$ and $\tau_{\text{lep}}\tau_{\text{had}}$ channels are rescaled by $\sigma B_{\text{NU}}/\sigma B_{\text{SSM}} \cdot A_{\text{NU}}/A_{\text{SSM}}$ (as derived in section 8.2). In addition, the systematic uncertainties are re-evaluated for each point in parameter space. Figure 9 shows the region in the Z' parameter space excluded at 95% credibility: Z'_{NU} bosons with masses below 1.3–2.1 TeV are excluded in the range $0.03 < \sin^2 \phi < 0.5$ assuming no μ-τ mixing. Indirect limits are also overlaid.

10 Conclusion

A search for high-mass ditau resonances was performed using 19.5–20.3 fb$^{-1}$ of data collected with the ATLAS detector in pp collisions at $\sqrt{s} = 8$ TeV at the LHC. The $\tau_{\text{had}}\tau_{\text{had}}$, $\tau_{\mu}\tau_{\text{had}}$ and $\tau_{e}\tau_{\text{had}}$ channels are analysed. The observed number of events in regions with high total transverse mass are consistent with the SM expectations. Limits are set on the cross section times branching fraction for such resonances. The resulting lower limit on the mass of a Z' decaying to $\tau^+\tau^-$ in the Sequential Standard Model is 2.02 TeV at 95% credibility, in agreement with the expected limit of 1.95 TeV in the absence of a signal. The impact on the Z' acceptance from altering the Z' couplings and the total decay width is found to be significant, and can be up to 50%. The impact from interference between Z' and Z/γ^* is only important when the total decay width of the Z' is large. Limits on the non-universal $G(221)$ model are also established, where Z' bosons with masses below 1.3–2.1 TeV are excluded in the range $0.03 < \sin^2 \phi < 0.5$ assuming no μ-τ mixing.
Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INfn, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.) and in the Tier-2 facilities worldwide.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

Belle collaboration, A. Bozek et al., Observation of $B^+ \rightarrow D^* \tau^+ \nu_{\tau}$ and evidence for $B^+ \rightarrow D^0 \tau^+ \nu_{\tau}$ at Belle, *Phys. Rev. D* **82** (2010) 072005 [arXiv:1005.2302] [inSPIRE].

Y. Wu69, T.R. Wyatt84, B.M. Wyne66, S. Xella36, D. Xu33a, L. Xu33b,ak, B. Yabsley151, S. Yacobi146,ab,al, R. Yakabe67, M. Yamada66, Y. Yamaguchi118, A. Yamamoto68, S. Yamamoto156, T. Yamanak, Y. Yamazaki103, Y. Yan22, H. Yang3b, H. Yang174, Y. Yang152, S. Yanush93, L. Yao33a, W.-M. Yao15, Y. Yasu66, E. Yatsenko42, K.H. Yan21, J. Ye40, S. Ye25, I. Yeletskikh65, A.L. Yen57, E. Yildirim42, K. Yorita172, R. Yoshida6, K. Yoshihara122, C. Young144, C.J.S. Young30, S. Yousef22, D.R. Yu15, J. Yu8, J.M. Yu89, J. Yu114, L. Yuan67, A. Yurkewicz108, I. Yusuf28,om, B. Zabinski39, R. Zaidan63, A.M. Zaitsev130,aa, A. Zaman149, S. Zambito23, L. Zanello133a,133b, D. Zanzi68, C. Zeitnitz176, M. Zeman128, A. Zeni3a, K. Zengel23, O. Zenin130, T. Zenis145a, D. Zerwas117, D. Zhang89, F. Zhang174, J. Zhang6, L. Zhang132, R. Zhang33b, X. Zhang33d, Z. Zhang117, X. Zhao40, Y. Zhao33d,117, Z. Zhao33b, A. Zhchemhugov65, J. Zhong120, B. Zhou89, C. Zhou45, L. Zhou35, L. Zhou40, N. Zhou164, C.G. Zhu33d, H. Zhu33a, J. Zhu89, Y. Zhu33b, X. Zhuang133a, K. Zhuuk96, A. Zibell175, D. Zieminska61, N.I. Zimine65, C. Zimmermann83, R. Zimmermann21, S. Zimmermann48, Z. Zinonos54, M. Zinser83, M. Ziolkowski142, L. Živković133, G. Zobernig174, A. Zoccoli20a,20b, M. zur Nedden16, G. Zurzolo104a,104b and L. Zwalinski30.

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (c) Istanbul Aydin University, Istanbul; (d) Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 Institute of Physics, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Bogazici University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
(a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
69 Kyoto University of Education, Kyoto, Japan
70 Department of Physics, Kyushu University, Fukuoka, Japan
71 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
72 Physics Department, Lancaster University, Lancaster, United Kingdom
73 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
74 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
75 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
76 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
77 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
78 Department of Physics and Astronomy, University College London, London, United Kingdom
79 Louisiana Tech University, Ruston LA, United States of America
80 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
81 Fysiska institutionen, Lunds universitet, Lund, Sweden
82 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
83 Institut für Physik, Universität Mainz, Mainz, Germany
84 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
85 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
86 Department of Physics, University of Massachusetts, Amherst MA, United States of America
87 Department of Physics, McGill University, Montreal QC, Canada
88 School of Physics, University of Melbourne, Victoria, Australia
89 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
90 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
91 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
92 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
93 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
94 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
95 Group of Particle Physics, University of Montreal, Montreal QC, Canada
96 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
97 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
98 National Research Nuclear University MEPhI, Moscow, Russia
99 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
100 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
101 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
102 Nagasaki Institute of Applied Science, Nagasaki, Japan

– 40 –
138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
139 Department of Physics, University of Washington, Seattle WA, United States of America
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
141 Department of Physics, Shinshu University, Nagano, Japan
142 Fachbereich Physik, Universität Siegen, Siegen, Germany
143 Department of Physics, Simon Fraser University, Burnaby BC, Canada
144 SLAC National Accelerator Laboratory, Stanford CA, United States of America
145 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
146 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
149 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
150 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
151 School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan
153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
159 Department of Physics, University of Toronto, Toronto ON, Canada
160 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
162 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
163 Centro de Investigaciones, Universidad Antonio Nariño, Bogota, Colombia
164 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
165 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana IL, United States of America
167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microeléctrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
169 Department of Physics, University of British Columbia, Vancouver BC, Canada
170 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
171 Department of Physics, University of Warwick, Coventry, United Kingdom
172 Waseda University, Tokyo, Japan
173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
174 Department of Physics, University of Wisconsin, Madison WI, United States of America
175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
176 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany