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Abstract History matters when individual prior conditions
contain important information about the fate of individ-
uals. We present a general framework for demographic
models which incorporates the effects of history on popula-
tion dynamics. The framework incorporates prior condition
into the i-state variable and includes an algorithm for con-
structing the population projection matrix from information
on current state dynamics as a function of prior condi-
tion. Three biologically motivated classes of prior condition
are included: prior stages, linear functions of current and
prior stages, and equivalence classes of prior stages. Tak-
ing advantage of the matrix formulation of the model, we
show how to calculate sensitivity and elasticity of any demo-
graphic outcome. Prior condition effects are a source of
inter-individual variation in vital rates, i.e., individual het-
erogeneity. As an example, we construct and analyze a
second-order model of Lathyrus vernus, a long-lived herb.
We present population growth rate, the stable population
distribution, the reproductive value vector, and the elastic-
ity of A to changes in the second-order transition rates. We
quantify the contribution of prior conditions to the total het-
erogeneity in the stable population of Lathyrus using the
entropy of the stable distribution.
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Introduction

Every demographic analysis requires a classification of indi-
viduals by age, size, developmental stage, physiological
condition, or some other variable. These variables describe
individual states (i-states) such that the fate of an individual
depends only on its current state and the environment (Metz
1977; Caswell and John 1992; Metz and Diekmann 1986).
This requires the state variable to capture all the aspects of
the individual’s history that are relevant to its future fate
(Caswell et al. 1972; Caswell 2001). The task of the popu-
lation modeler is to find an i-state variable that successfully
captures past history. This is not easy; apparently reasonable
and frequently used choices of i-states may fail to capture
all the relevant information about individual history.
Confronted with this problem, the modeler might choose
a completely different i-state variable (as plant ecologists
did when giving up age-classified demography in favor
of size-classified models), or might add a dimension to
the state space (as in extending stage-classified models to
include both age and stage). Sometimes, however, it might
be difficult or impossible to measure the relevant current
characteristic, but a proxy for that characteristic might be
found in some function of the prior condition of an individ-
ual. For example, resource storage can influence vital rates
in plants but resource storage can be difficult to measure.
However, reproduction in the prior year can be used as a
proxy for resource storage in species where reproduction in
one year may deplete resource storage and reduce fertility in
the following year. If it is not possible to measure resource
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storage, one might therefore incorporate prior reproductive
status into the state variable to improve the model.

A variety of prior conditions which affect vital rates have
been found empirically. Reynolds and Burke (2011) found
that chestnuts with fast early growth died younger than
chestnuts with slow early growth. Warren et al. (2014) found
that previous breeding success and current body condition
may be among the most important determinants of breeding
propensity in female lesser scaup. Rouan et al. (2009) found
that choice of next breeding site is affected by both current
and prior breeding site in Branta canadensis. These exam-
ples show that prior condition can be a source of individual
variation in vital parameters, i.e., a source of heterogene-
ity. Some attempts have been made to include this source
of heterogeneity into population models, see Pfister and
Wang (2005), Ehrlén (2000), and Rouan et al. (2009), but
a framework for incorporating general prior conditions into
demographic models does not exist and will be presented in
this paper.

When constructing a structured population model, the i-
state variables are used to classify individuals into states in
a population vector n(t) whose entries give the densities of
each state. The population vector is projected forward by a
population projection matrix A

n( +1) = An(). (1

The matrix A can be decomposed into a matrix U, contain-
ing transition probabilities for existing individuals, and a
matrix F, describing the generation of new individuals by
reproduction:

A=U+F. @

If prior conditions influence present dynamics, the vector n
and the matrices U, F, and A must be modified to account
for these influences. Our goal in this paper is to present a
systematic method for constructing such models in which
individuals are classified by current stage and (very gener-
ally defined) prior condition. Because we are considering
effects of individual condition at just one prior time, we
refer to these as second-order matrix population models. We
will present the demographic analysis of such models at the
level of the individual, the cohort, and the population, and
show how to carry out sensitivity analyses of model results

to changes in parameters. As an example, we develop a
model and calculate the elasticity of the population growth
rate of the herbaceous perennial plant Lathyrus vernus.

Terminology Our discussion requires careful definitions of
terms in order to clarify the way that historical effects are
incorporated. We will say that the life cycle is described in
terms of stages (e.g., size classes). The prior condition of an
individual is some function of its stage at the prior time and
its stage at the current time, and thus incorporates histori-
cal information. The combination of current stage and prior
condition serves as the individual state variable for the anal-
ysis. We give an overview of the terminology used in this
paper in Table 1.

The prior condition can be any arbitrary function of prior
and current stage. Prior condition might be the stage at the
prior time, it might be defined by membership in a set of
stages at the prior time, or it might be defined as the differ-
ence between the current and the prior stages. Suppose for
example that stages are defined by size, in the hope that a
size classification would be a satisfactory i-state variable. It
might turn out that historical effects require including size
at the prior time in the i-state variable. Alternatively, the
i-state might require information only on membership in
a class of sizes (e.g., larger than average or smaller than
average); we will refer to these classes of prior stages as
equivalence classes. Or, the i-state might require informa-
tion on the change in size between the previous time and the
current time, and individuals might be classified by whether
they have grown, shrunk, or remained in the same size class.

Models based on prior stage are described in section
“Full prior stage dependence,” models based on general func-
tions of prior and current stages are described in section
“Prior condition models,” and models based on equivalence
classes of prior stage are described in section “Equivalence
classes of prior stages.” The matrices, vectors, and mathe-
matical operations used in this paper are listed in Table 2.

Model construction
We will begin by constructing the model in which the prior

condition is defined by full information on the prior stage,
which we refer to as full prior stage dependence.

Table 1 Terminology used to distinguish the state of an individual, the stage of the life cycle, and the prior condition of the individual

. The state of an individual is the information necessary to predict the response of an individual to its environment.

. The stage of an individual refers to a biologically defined category, usually a life cycle stage, which is used
to define a (possibly unsuccessful) state variable.

. The condition of an individual is a flexible term that refers to some function of the prior stage and current
stage of the individual; this historical information may be combined with the present stage to obtain a state
variable based on current stage and prior condition.
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Table 2 Mathematical notation used in this paper

Quantity Description Dimension

U Prior stage dependent cohort projection matrix s+ 1) xs(s+1)
U; Matrix with transition rates (from current to future state) for individuals with prior stage i s XS

v Prior condition dependent cohort projection matrix ST X SF

F Prior stage dependent fertility matrix s(s+ 1) xs@s+1)
F; Matrix with fertility rates (from current to future state) for individuals with prior stage i s XS

G Prior condition dependent fertility matrix ST X ST

n Prior stage model population vector n = vec(N) ss+1)x1

m Prior condition model population vector m = vec(IM) srox 1

C Matrix relating the prior stage dependent vector n to the prior condition dependent population vector m srxs(s+1)

&G, j) Matrix whose (i, j)th entry indicates the prior condition for an individual that makes an i — j transition s XS

¢k Matrix whose (i, j)th entry is one if ¢(i, j) = k and zero otherwise, in MATLAB notation ok, J)=(@==k sxs

I Identity matrix S XS

1 Vector of ones s x 1

e; The ith unit vector, with a 1 in the ith entry and zeros elsewhere Various

E;j A matrix with a 1 in the (i,j) position and zeros elsewhere Various

® Kronecker product

X(:, 1) Column i of matrix X

vecX

The vec operator, which stacks the columns of an m x n matrix X into a mn x 1 vector

Dimensions of vectors and matrices are given where relevant; s denotes the number of classes in the full second-order model and r denotes the

number of classes in the reduced second-order model
Full prior stage dependence

Creating a prior stage model requires transition and fertil-
ity rates to be measured for each possible prior stage. Since
newborns do not have a well-defined prior stage in general,
an extra prior stage must be added for newborns. If there are
s current stages, we will label the prior condition of new-
borns as stage s + 1. Individuals are thus classified by their
current stage 1, 2, ..., s and their prior stage 1, 2, ..., s+1.
The transition and fertility rates, conditional on prior stage,
are given by the matrices Uy and Fy:

Ui s x s Transitions among stages for individuals 3)
with prior stagek = 1,...,s + 1,

F; s x s Reproduction by individuals 4)
with prior stagek = 1,...,s5 + 1.

The entries of Uy, denoted by ui.‘j, are defined as

u{.‘j = P[j — i | prior stage = k], (5)
fl]j =E [offspring of stage i | prior stage = k] . 6)

It is useful to think of the state of the population as
described by a two-dimensional array N of size s x (s + 1)

Prior state

a nyjip ni2 nys+1
= ny; N n2 s+1
N= = , @)
2}
=4
@ ng1 N2 Ng,s+1

where n;; is the number of individuals whose current
stage is i and whose prior stage was j. Ehrlén (2000)
suggested that this array could be updated by multipli-
cation with a three-dimensional matrix. However, matrix
multiplication can not be used directly to project such a
two-dimensional array (this would require tensors). Instead,
the two-dimensional array is transformed into a vector by
stacking the columns on top of each other:

n(z) = vecN(r). )]

We use the tilde notation to denote vectors and matrices that
relate to the prior condition model. The entries in the popu-
lation vector n are now ordered first by prior stage and then
by current stage:

ni
Prior stage= 1
Ns1
n() = : : ©)
M1(s+1)
: Prior stage=s + 1
Ms(s+1)

The vector i is projected by a transition matrix U and
a fertility matrix F. The U and F matrices are constructed,
respectively, from the set of matrices Ui and F. The transi-
tion matrix U projects individuals into their next stage while
keeping track of their prior stage. The matrix U is written
in terms of block matrices corresponding to the blocks in n
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in Eq. 9. In MATLAB notation, the transition matrix for a
model with s = 2 is

UG 0 |GG D 0 [Us¢ 1) 0

U= 0 UG2l 0 U2 0 U2,
0 0 0 0 0 0

(10)

where Uy (:, i) refers to the ith column of the matrix Uy and
0 is a column vector of size s x 1. To understand the structure
of ﬁ, consider the (1,1) block in the upper left corner. This
block projects individuals with prior stage 1 at ¢ to prior
stage 1 at#+ 1. The only such individuals have current stage
1 at time ¢. They are projected by column 1 of Uj. All other
columns of the (1,1) block of U are zero. The other blocks
of U are filled similarly.

The blocks in the last row of U are zero because transi-
tions into the newborn stage are impossible; the matrix F
will fill up this row block. In general, for any number of
stages s,

s+1 s
fj:ZZEi-/ ® (e;'—@Uje,-), (11)
j=1i=1
where e; has size s x 1 and E;; has size (s + 1) x (s + 1)
and has a one in position (i,j) and zeros elsewhere.

The fertility matrix F is constructed from the F;. Because
individuals are always born into stage s + 1, the F; appear
in the last row of blocks in F. For the case with s = 2, the
fertility matrix is

_ 000
F=|0olo]o0 |. (12)
F|F;|F;

In general, for any number of stages s,

s+1
F=) Eqn@F, (13)

k=1
where E;4 1) has size (s + 1) x (s + 1) and has a one in
position (s + 1, k) and zeros everywhere else.

Given a set of transition matrices U; and fertility matrices

F;, Egs. 11 and 13 define the second-order matrices UandF ,
and the population projection matrix

A=U+F. (14)

These matrices are subject to all the usual demographic
analyses, including population growth, population structure,
and sensitivity analysis (see section “Case study” for an
example).

Prior condition models

A more general second-order model structure allows transi-
tions and fertility to depend on some function of current and

@ Springer

prior stages. We consider the case where this function can
be defined as a linear transformation of the full prior stage
dependent model, where the population vector is written as
m, defined by

m(s) = Cn(), (15)

for some matrix C. An example of such a prior condition is
having previously grown, shrunk, or stayed the same size.
The matrix C maps i-states defined by the combination
of (current stage X prior stage) to i-states defined by the
combination of (current stage x prior condition).

Suppose there are r distinct prior conditions. The state of
the population is now given by a s x rarray M

Prior condition
e,

Q
£
2
M= 2 S , (16)
£
(¢

ms1 - Mgy

where m;; represents the number of individuals whose cur-
rent stage is i and whose prior condition is j. As in Eq. §,
the population vector m is

m(t) = vecM(7). an

The key to the construction of the prior condition model
is to derive C from the rule defining the prior condition. To
do so, define a matrix ¢

¢(i, j) = prior condition for an individual that makes an

j — i transition. (18)
For example, if the r = 3 prior conditions are shrinking,
stasis, and growth

1 fori < j shrinking,

¢, j) =1 2 fori = j stasis, (19)
3 fori > j growth.
Next, we define a set of matrices qbk(i, j),fork=1,...,r,
given by
- 1if @G, j) =k,
k -
¢ D) = { 0 otherwise . (20)
Given the matrices ¢*, the matrix C is given by
r

C= Z (lL_l Qe ® Is) diag (vec¢k> , 1)

k=1

see Appendix A. To project the new population vector m,
we replace the matrices U and F with new matrices V and
G, respectively, so that

(@ + 1) = (V+6)m) (22)

The matrix V describes transitions of extant individuals
between the different i-states of the prior condition model
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and the matrix G describes the production of new individu-
als in the prior condition model. Substituting (15) into both
sides of Eq. 22 yields

C (fJ n F) f(r) = (\7 + G) Ch(r). (23)

Equation 23 is satisfied if V and G satisfy the following
equations:

VC = CU (24)
GC = CF. (25)

In general, the matrix C is not square and does not have
an inverse. So we use the Moore-Penrose pseudo-inverse ol
(see Abadir and Magnus (2005)) to solve for V and G:

V = CUC’, (26)
G = CFC'. 27)

If C is square and non-singular, the pseudo-inverse is the
ordinary inverse:

ch=c . (28)

If C is not square but has linearly independent rows (i.e., has
full row rank),

ch =cTcchH . (29)

If C has rows of zeroes (this happens if some combina-
tions of current stage and prior conditions are impossible),
then C will not have full rank. In this case, C' is com-
puted from the singular value decomposition, implemented
in MATLAB with the function pinv (C) and in R with the
function Ginv (C) . For example, in a size-classified model,
it is impossible to be in the smallest size class and to have
grown into it from a smaller size class. In such cases, cf
and thus also V and G have rows and columns of zeros
corresponding to the impossible combinations.

Equations 26 and 27 define the prior condition matrices
V and G and the population projection matrix

A=V+G. (30)

As in Eq. 14, the usual demographic results can be obtained
from these matrices.

Equivalence classes of prior stages

Equivalence classes of prior stages are a special case of
functions of current and prior stage. Equivalence classes are
subsets of prior conditions that depend only on the prior
stage. For example, individuals in a size-classified model
might be categorized into two equivalence classes depend-
ing on whether they were previously above or below some
threshold size.

The machinery described in the previous section, i.e.,
Egs. 21, 26, and 27, can be used to write down the equiva-
lence class model. However, there is an easier way to find

the C matrix that transforms the full prior stage dependent
population vector n to the equivalence class population vec-
tor m. We transform the population matrix N in Eq. 7 into
the equivalence class population matrix M in Eq. 16 by a
matrix B;

M = NB. 31)

The matrix B has size (s + 1) x r and its entries are

. .. ] 1ifstagei € equivalence class j,
BG, ) = { 0 otherwise. (32)
Applying the vec operator to Eq. 31 gives
m@) = B' ® L)), (33)

where we have used the following result from Roth (1934)
that vecABC = (CT ® A) vecB. Equation 33 is a special
case of Eq. 15 with

C=B"®Il). (34)

Since the rows of BT are orthogonal, the matrix B and the
matrix (BT ® I) both have full row rank and therefore C'
can be calculated from Eq. 29.

Sensitivity analysis

Sensitivity analysis provides the effect of changes in any
parameter on any model outcome. In general, these com-
putations require derivatives of scalar-, vector-, or matrix-
valued functions with respect to scalar-, vector-, or matrix-
valued arguments. Matrix calculus is a formalism which
enables us to consistently calculate such derivates. For an
introduction to matrix calculus, see Abadir and Magnus
(2005); for details see Magnus and Neudecker (1988). Eco-
logical applications of sensitivity analysis appear in Caswell
(2007, 2009, 2012).

Consider some scalar or vector output of the model, &,
which is computed from U and f‘, or from V and G. The
matrices fJ, f‘, \7, and G are in turn computed from the
matrices U; and F;. Suppose U; and F; dependona p x 1

vector of parameters @, i.e., U; = U;[@], then we use the
chain rule to write

d d¢  dvecU d¢  dvecF

_ST = : 2 Tt : = T (35
dé dvec'U dé dvec'F dé

or

d¢ d¢  dvecV dé dvecG

T S T ~ T - (36)
de dvec'V dé dvec'G df

The first terms in Eqs. 35 and 36 capture effects through sur-
vival and transitions, and the second terms capture effects
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through fertility. The elasticities, or proportional sensitivi-
ties, are given by

€& - dé
ride diag 1(5)M—leag(0). (37)

The derivatives of ﬁ, f‘, \7, and G with respect to 6
depend on how U and F depend on the U; and F; matrices.
Differentiating (11), we obtain

s+1

dvecU v dvecU;
07 =29 a7 G8)
j=1

Each term in the summation captures the effect of  through
one of the U;. The matrix QY is given by

N

Qy = Z(IS_H@ Ks,s+l® IS)(VCC (Eij)® Isz)(Eii ®I).

i=1

(39)
Similarly, differentiating (13) gives
dvecF 5 dvecF;
a0 2@ T 0
i=1

where each term captures the effect of @ through one of the
F;. The matrix Qf is given by

QIF = (Is+] &® Ks,_erl ® Is) (VCC (Es+1,i) ® Isz) : (41)

To calculate the derivatives of the prior condition matri-
ces V and G, we use the chain rule to write

dvecV dvecV dvecU
= ~ , 42
de’ dvecU do'" “2)
dvecG _ dvecG dvecF 3)
d0T  dvecF do'
Differentiating Eqs. 26 and 27, we obtain
dvecV T
- = (C') ®cC, (44)
dvecU < )
dvecG T
~ = (C") ®C. 45
dvecF < ) )
Thus,
dvecV T dvecU
_ T
o’ [<C> ®C} o’ o
dvecG T dvecF
_ T
T = [(C) ®c} T (47)

Equations 38 and 40 are substituted into Eq. 35.
Equations 46 and 47 are substituted into Eq. 36. All that
remains is to calculate the dependence of £ on U and F (or V

@ Springer

and G), and the dependence of U; and F; on the parameter 6.
These items are specific to the question under consideration,
so we provide an example in the next section.

Case study

As an example, we apply the second-order formalism to
a fully prior stage dependent model of a perennial plant.
We will construct the model and calculate the population
growth rate, the stable population vector, the reproductive
value vector, and the elasticity of the population growth rate
A to proportional changes in the demographic rates.

Our analysis is based on a study by Ehrlén (2000) of
Lathyrus vernus, a long-lived herb native to forest mar-
gins and woodlands in central and northern Europe and
Siberia. Ehrlén classified individuals into seven stages: seed
(SD), seedling (SL), very small (VS), small (SM), large
vegetative (VL), flowering (FL), and dormant (DO). Ehrlén
constructed two matrix models: a first-order model with no
historical effects and a second-order model. We construct
our second-order model from the transition and fertility
rates calculated by Ehrlén (2000) (their Table 2).

We introduce a special prior stage for newborns; the
second-order model therefore has a total of 7 x 8 = 56
states. We used Ehrlén (2000)’s demographic rates to con-
struct a transition matrix U; and a fertility matrix F; for each
of the eight prior stages. In Table 3, the transition matrix
for individuals who were previously in stage SM is shown
as an example. The first two columns of this matrix are
zero because small plants can not go back to being seeds
or seedlings. All eight transition and fertility matrices are in
the Supplementary Material.

We constructed the projection matrix, A, from the U;
and F; matrices using Eqgs. 11 and 13. The resulting 56 x
56 matrices are available in the Supplementary Material.

Table 3 The transition matrix for Lathyrus vernus individuals with
prior stage small (SM)

000 O 0 0 0
000 O 0 0 0
00 0.44 0.104 0 0 0.111

Usy =] 0 0 0.42 0.672 0.333 0.364 0.593 (51)
000 0.044 0.333 0.091 0.074
000 0.044 0.222 0.454 0.037

0 0 0.08 0.092 0.111 0.091 0.111

The columns in this matrix represent transitions out of the following
current stages from left to right: seed (SD), seedling (SL), very small
(VS), small (SM), vegetative large (VL), flowering (FL), and dormant
(DO)
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The population growth rate A is given by the dominant
eigenvalue of A,

A = 0.985. (48)

This agrees with the value reported for the second-order
model by Ehrlén (2000). Ehrlén also fitted a first-order
model to the same data and found a value just above one
(A = 1.010). The stable population vector, w, and the repro-
ductive value vector, v, which are displayed in Figs. 1 and 2,
are the right and left eigenvectors of A, respectively. The
entries of the stable population vector are denoted by w;;
for individuals with current stage i and prior stage j, analo-
gously to the entries of the population vector n in Eq. 9. The
entries of the marginal stable current stage distribution, w¢,
are given by

.

C— ~..

w; = E W
j=1

and are shown in Fig. 1b. Similarly, the entries of the marginal
stable prior stage distribution, w”, are given by

S
p_ -
W —wa
i=1

and are shown in Fig. 1c.

Individuals with the same current stage have different
vital rates if they differ in prior stage and this heterogeneity
due to prior stage affects the population growth rate A. To
quantify the relative effect of the different prior stage depen-
dent transition matrices on the population growth rate, we
calculate the elasticity of the population growth rate, A, to
changes in the U; matrices

(49)

(50)

% i=1,....8 (52)
Substituting A for £ in Eq. 37 yields

GAT LA g (veeU) (53)
evec'U;  Advec'U;
As shown in Caswell (2001),
% =w ®V], (54)

where w; and v; are the right and left eigenvectors of U;,
respectively, scaled so that

T
1
1"w; =1 foralli.

v.w; = 1 foralli, (55)

(56)

We sum the entries of Eq. 53 to get the elasticity of A
to a proportional change in all of the entries of U;. The
results are shown in Fig. 3. We note that there are large
differences among prior stages. Proportional changes in the

Fraction
o o
o - o o
- (31 N (¢}

Current stage DO

st
SD Prior stage
(a) Stable population vector

Fraction

sD SL 'S} SM VL FL DO
Marginal distribution over current stages

(b) Marginal current stage distribution

0.3

Fraction

SD SL VS SM VL FL DO NB
Marginal distribution over prior stages

(c) Marginal prior stage distribution

Fig. 1 a Stable current stage x prior stage distribution. b Marginal
current stage distribution. ¢ Marginal prior stage distribution. Notation:
seed (SD), seedling (SL), very small (VS), small (SM), vegetative large
(VL), flowering (FL), dormant (DO), and newborn prior (NB)

demography of individuals with prior stages seed, seedling,
or newborn have little effect on A. Proportional changes in
individuals who were small vegetative at the prior time have
effects an order of magnitude larger.
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Reproductive value

Current stage  SD DO

NB Prior stage

(a) Reproductive value vector

Marginal reproductive value

SD SL 'S} SM VL FL DO
Current stage

(b) Marginal current stage reproductive value vector

3.5

Marginal reproductive value

SD SL VS SM VL FL DO NB
Prior stage

(C) Marginal prior stage reproductive value vector

Fig. 2 a Reproductive value vector for each current stage X prior
stage combination. b Marginal current stage reproductive value vector.
¢ Marginal prior stage reproductive value vector. Notation: seed (SD),
seedling (SL), very small (VS), small (SM), vegetative large (VL),
flowering (FL), dormant (DO), and newborn prior (NB)

Discussion

When does history matter? Population models are based
on i-state variables chosen by some mixture of biological
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intuition, tradition, practical limitations, and formal statisti-
cal analyses. Even after a careful choice of i-state, it may
happen that individual prior conditions contain important
information about the fate of individuals. In such cases,
history matters, and the methods presented here solve the
problem of how to incorporate information about it into
matrix models.

Why stop at second-order effects, what about the effect
of the prior condition at ¢t — 2, t — 3, etc.? It is theo-
retically possible to extend the framework presented here
to include dependence on higher-order effects. However, if
the i-state variable is such that third- or even fourth-order
historical effects are important, it might better to recon-
sider the choice of i-state variable instead of including ever
increasing historical dependence.

Statistical tests for second-order effects in longitudinal
data using log-linear models have been developed by Bishop
et al. (1975) and Usher (1979). Time series of longitudinal
data are needed to perform these tests as well as for the sub-
sequent estimation of a prior condition dependent model.
Capture—mark-recapture analyses for prior stage dependent
models have been developed by Pradel (2005) and Cole
et al. (2014).

Incorporating individual history requires a decision about
what aspects of the prior condition are important. We have
presented three biologically motivated cases: prior condi-
tion as the prior stage, prior condition as an arbitrary linear
function of current and prior stages, and prior condition as
an equivalence class of prior stages. In each case, the nec-
essary information is a set of fertility and survival/transition
matrices for each prior stage. The resulting models use
block-structured matrices to project a vector of stages within
prior conditions. These matrices can be used to calculate
all the usual demographic outcomes. Because the matri-
ces are carefully constructed from U; and F;, they can be
subjected to sensitivity analysis. It is straightforward to cal-
culate the sensitivity and elasticity of any model outcome to
any parameters affecting the vital rates.

Prior condition effects are more than just a convenient
tool in constructing i-states for population models. They
are a biologically real source of inter-individual variation.
The importance of individual variation in vital parameters
to ecological processes has become increasingly evident
in recent years (Bolnick et al. 2011; Valpine et al. 2014,
Caswell 2014; Vindenes and Langangen 2015; Steiner and
Tuljapurkar 2012; Cam et al. 2016). Ignoring individual
variation in vital parameters, also referred to as individ-
ual heterogeneity, can have important consequences for the
demographic outcomes and subsequent conclusions; see for
example Vaupel et al. (1979), Rees et al. (2000), Fujiwara
and Caswell (2001), Vindenes and Langangen (2015), and
Cam et al. (2016). In his study of Lathyrus, Ehrlén (2000)
found that including heterogeneity due to prior stage had
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Fig. 3 The elasticity of A to a 0.35

proportional change in all of the
U;

Elasticity of A to change in U.

Seed

only a small effect on A, although it was sufficient to cause
the population to decrease rather than increase.

How much heterogeneity is introduced by the prior con-
dition effects in the Lathyrus example? Observations of
individual plants can identify their current stage, but not
their prior condition. The stable structure, w (Fig. 1), shows
the joint probability distribution over current and prior
stages, and the amount of heterogeneity in the stable popu-
lation can be calculated from the entropy of this distribution.
The entropy of the joint current x prior stage distribution is

H(p,c) = —Zwi, In (w;;) = 2.61. (57)
ij
This measures the overall heterogeneity in the stable pop-

ulation structure. The heterogeneity in the marginal current
stage distribution, w¢ [Eq. 49], is

N
H(c) = — Z wé In (wf) = 1.69. (58)
i=1
This is the observable heterogeneity in current stage. The
heterogeneity contributed by the unobservable prior stage,
taking into account the relationship between current and
prior stage, is

H (plc) = H(p, ¢) — H(c) = 0.92, 59)

Khinchin (1957). Thus, in this example, the prior stage con-
tributes about 35% of the total heterogeneity in the stable
population.

In this paper, we have considered only linear models in
constant environments. However, models could easily be
constructed to include density effects, by making the U; and
F; functions of density. Periodic or stochastic models could
be constructed by making the U; and/or the F; appropriate
functions of time. The analysis of the resulting models may

Seedling Very small  Small
Prior stage

Vegetative Flowering Dormant Newborn

pose interesting challenges and is an open research problem
for population ecology.
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Appendix A: Derivation of the matrix C

In this appendix, we will derive the matrix C in Eq. 21, which
transforms the fully prior stage dependent population vector,
n, into the prior condition dependent population vector, m,

m(s) = Cn(), (60)

as in Eq. 15. Recall that we defined the matrix ¢ with
elements
¢(i, j) = prior condition for an individual that makes an

Jj — itransition, 61)
and we defined a set of indicator matrices ¢k , for k =
1,...,r, given by

1if @, j) =k,
0 otherwise . (62)

ok, j) = {

In Appendix B, we show a few examples of ¢ matrices.
Recall furthermore the matrix

Prior state

Q
E ni e ni s+1
a
N= =2 : , (63)
a
?:'T;’ ng1 =+ Ng s+l
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where n;; is the number of individuals whose current stage
is i and whose prior stage was j, and the matrix

Prior condition

0
g miy - Mmiy
(¢}
M= & , (64)
Zi
o mgy -+ Mgy
[¢)]

where m;; is the number of individuals whose current stage
is i and whose prior condition was j. Finally, recall that the
population vectors are given by

fi(r) = vecN(), (65)
m(t) = vecM(t). (66)

Using the above defined matrices qSk and N, the matrix
M can be written as

M= (¢"oN) (L @¢]). (67)
k=1

The first term in the product is a matrix containing the den-
sities of individuals in all entries of N that correspond to
prior condition k, and zeros elsewhere. The second term in
the product adds the densities across each row of the matrix
¢k o N and puts these elements in the kth column of M.
Taking the vec of both sides of this equation gives

r
m=) (1), ®e ®IL) vec (¢k ° N) , (68)
1

~
Il

Il
M\

(15T+1 ® e ® I;) diag (vec¢k) n, (69)

~
Il

1

where we have used vecABC = (CT ® A) vecB (Roth
1934) and vec (A o B) = diag (vecA) vec (B). Comparison
with Eq. 60 shows that

C=Y" (1], ® e ® 1) diag (vecs* ). (70)
k=1

Appendix B: Examples of ¢ and C matrices
B.1 Examples of ¢ matrices

In this appendix, we show a few examples of the matrix ¢.

(A) When prior condition = prior stage, then
¢(i, j) = j foralli. 71)

@ Springer

For example, when s = 3, ¢ is

i=1 1 2 3

(72)

(B) When prior condition = equivalence classes of prior
stages, then

¢ (i, j) = function(j) (74)

For example, for s = 3 and for the case of the
equivalence classes j = 1 and j > 1, we get

.. 1 forj=1
$(i. j) = {2 for | — 2.3 (75)

i=1 1 2 2

(75)
(C) When prior condition = shrinkage, stasis, or growth,
then
1 fori < j shrinkage
@@, j) =1 2 fori = j stasis (76)

3 fori > j growth

For example, for s = 3, ¢ is

(77)

(D) General more complicated growth conditions. For
example, suppose the prior condition reflects the
amount of growth, so that

oG, j)=i—j+s. (78)
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For s = 4, this results in the following ¢

j=1 j=2 j=3 j=4
i=1]| 4 3 2 1
i=2| 5 4 3 2
i=3] 6 5 4 3
i=4| 17 6 5 4
(79)

B.2 An example C matrix

We consider the example in Eqs. 76 and 77 with three size
classes and three growth classes corresponding to growth,
shrinkage, and stasis. For simplicity, we consider a cohort
model with no fertility and therefore no special prior condi-
tion for newborns. The matrices ¢* are

100

¢>=1010], (81)
001
000

o>=[100 (82)
110

Substituting these into Eq. 70, and letting the sum range
from 1 to 3 only, gives the matrix C as

000
000
000
100
000
000
000
010
001

100
000
000
000
010
000
000
000
001

100
010
000
000
000
001
000
000
000

(83)

The transition matrix for the prior condition model, \7,
is given by Eq. 26 and requires the pseudo-inverse of the
matrix C, which can be found using pinv (C) in MATLAB
or Ginv (C) in R. Substitution of the pseudo-inverse of C
into Eq. 26 and a few lines of algebra result in

(84)

011
¢l =1001], (80)
000
00 0 0 0 O 0 00
SR« U 1 S
0 u3) 0 i uzy 0|5 (U3 +u3p) u3, 0
00 0 ul, 00 |53 +ul) 00
V=|0ul, 0 0 u3, 0 0 u, 0
00 3(uly+ud)| 0 0 ui 0 00
0 uj, %(”%3"‘”%3) 0 uj “?3 0 “?20
00 §(udy+ud)| 0 0 ul 0 00
00 0 0 0 O 0 00

This matrix captures the complicated dependence of transi-
tions on both current stage and prior condition. The place-
ment of the weighted sums of transition probabilities from
the U; matrices would be challenging without the metho-
dology presented here.
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