The neutron star LMXB 1RXS J180408.9-342058 transitioned to a soft X-ray state


Published in:
The astronomer's telegram

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
The neutron star LMXB 1RXS J180408.9-342058 transitioned to a soft X-ray state

ATel #7352; N. Degenaar (Cambridge), D. Altamirano (Southampton), A. Deller (ASTRON), C. Heinke (Alberta), J. Hessels (Amsterdam/ASTRON), A. Joudand (ASTRON), J. Miller-Jones (Curtin), J. Moldon (ASTRON), R. Wijnands (Amsterdam) on 7 Apr 2015; 14:53 UT

Credential Certification: Nathalie Degenaar (degenaar@ast.cam.ac.uk)

Subjects: X-ray, Neutron Star, Transient

The neutron star low-mass X-ray binary 1RXS J180408.9-342058 started an accretion outburst in 2015 January (ATel #6997) and has remained active since. Around April 3, a significant drop in the hard (15-50 keV) X-rays is seen by Swift/BAT, whereas an increase in the softer X-rays (2-10 keV) is seen by MAXI. This suggests that the source has transitioned to a soft X-ray spectral state.

Pointed Swift/XRT observations show that in February-March the source was in a hard X-ray spectral state. Radio jets were detected and the 0.5-10 keV X-ray spectrum was adequately described by a simple absorbed power-law model with a hydrogen column density of N_H~5E21 cm^{-2}, a photon index of Gamma~1.1 and an unabsorbed flux of (0.5-3)E-9 erg cm^{-2} s^{-1} (ATels #7039, #7255). At the estimated distance of 5.8 kpc (ATel #4050), this translates into a 0.5-10 keV luminosity of (0.2-1)E37 erg s^{-1}. However, Swift/XRT observations obtained on April 3 (1.1 ks) and April 6 (1.0 ks) show that the source brightened and that its X-ray spectrum softened. The 0.5-10 keV spectrum can now be described by a combination of a kT_disk=0.09+/-0.02 keV disk black body, a hotter kT_bb=0.9+/-0.1 keV black body, and a Gamma=1.75+/-0.15 power law (with N_H=(0.8+/-0.2)E21 cm^{-2}). The inferred unabsorbed flux of (1-5)E-8 erg cm^{-2} s^{-1} translates into a luminosity of (4-6)E37 erg s^{-1} at 5.8 kpc (0.5-10 keV). These two Swift/XRT observations show two absorption features around ~7 and ~8 keV that could possibly correspond to ionized iron and may indicate the presence of an accretion disk wind. These properties are indeed characteristic of a soft X-ray spectral state.

Swift/XRT monitoring of 1RXS J180408.9-342058 is ongoing. Multi-wavelength observations are encouraged.
ATel #7352: The neutron star LMXB 1RXS J180408.9-342058 transitioned to a soft X-ray state