VLA observations identify the currently active source in Terzan 5 as the neutron star transient EXO 1745-248

Published in:
The astronomer's telegram

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 04 Nov 2020
VLA observations identify the currently active source in Terzan 5 as the neutron star transient EXO 1745-248

Distributed as an Instant Email Notice Transients

Credential Certification: Gregory R Sivakoff (sivakoff@ualberta.ca)

Subjects: Radio, X-ray, Binary, Globular Cluster, Neutron Star, Transient

Referred to by ATel #: 7430, 7470

Following the recent detection of a transient outburst in Terzan 5, and initial Swift X-ray follow-up (ATels #7240, #7242, #7247), we triggered radio observations with the VLA to identify and classify the source via its radio emission. VLA observations were taken from 10:14 UT to 10:43 UT on 2015 March 19 (MJD=57100.43639) with the array in its relatively-extended B-configuration using two 2048-MHz basebands centred at 9.0 and 11.0 GHz. The total exposure time on source was 26 min. Compared to existing VLA data, a transient source was detected and was consistent with an unresolved point source down to the beam size of 1.75 x 0.54 arcseconds (at a position angle of 146.6 deg) at 10.0 GHz.

We therefore fit a point source model in the image plane, yielding flux densities of 23_{-5}^{+1} microJy/beam averaging the two bands together. This corresponds to a radio luminosity ($L_R = \nu L_\nu$) of $1.0_{-0.2}^{+0.2} \times 10^{28}$ (d/5.9 kpc)2 erg/s at 10 GHz. The source was well-detected in the lower 9 GHz baseband (flux density 27_{-7}^{+1} microJy/beam) but only marginally detected in the upper 11 GHz baseband (flux density 16_{-8}^{+1} microJy/beam). This is consistent with a steep spectral slope, but the uncertainties are extremely large and include a flat spectral slope; our measured spectral index (defined by $S_\nu \nu^\alpha$) is $-2.7_{-2.8}^{+2.8}$.

The source position in the combined image was

RA (J2000) = 17:48:05.231 +/- 0.008 (267.021794 deg; +/-0.11 arcsec)
DEC (J2000) = -24:46:47.73 +/- 0.14 (-24.779925 deg; +/-0.14 arcsec),

where the errors only indicate the statistical errors from the source fitting procedure. We note that nominal systematic uncertainties are estimated to be of order 10% of the beam size, i.e., 0.18 x 0.05 arcseconds. The source position is within 0.4 arcseconds of the published location of EXO 1745-248 (CXOGb J174805.2-244647 = CX 3; Heinke et al. 2006), but is 2.5 arcseconds away from the only other close, previously identified faint X-ray source (CXOGb J174805.1-244645 = CX 24; Heinke et al. 2006). We therefore confirm the previously suggested identification based on the X-ray location (ATel #7247) that EXO 1745-248 is the currently outbursting source in Terzan 5.
The increasing Swift/BAT flux suggests that the source remains in the hard spectral state, and that the radio emission is therefore likely to arise from compact jets.

On 2015 March 17 17:41 UT, the X-ray luminosity of the source was $\sim 1.6 \times 10^{36} \left(\frac{d}{5.9 \text{ kpc}}\right)^2 \text{ erg/s}$, which given the measured spectrum corresponds to $\sim 1 \times 10^{36} \left(\frac{d}{5.9 \text{ kpc}}\right)^2 \text{ erg/s}$. Assuming that the spectrum has not changed since its first detection, we use the Swift BAT count rates (15-50 keV) for the entire globular cluster to estimate the X-ray luminosities at the time of our radio observations to be $\sim 2.4 \times 10^{36} \left(\frac{d}{5.9 \text{ kpc}}\right)^2 \text{ erg/s}$ and $\sim 1.5 \times 10^{36} \left(\frac{d}{5.9 \text{ kpc}}\right)^2 \text{ erg/s}$. We compare the radio and X-ray luminosity of this source with the two atoll neutron stars with well established tracks in the L_R-L_X "fundamental plane" (e.g., Chomiuk et al. 2013), both of which are less radio-luminous than accreting millisecond X-ray pulsars / transitional millisecond pulsars. The current outburst of EXO 1745-248 is more consistent with the neutron star track of 4U 1728-34 (Migliari et al. 2003) than that of Aql X-1 (Tudose et al. 2009). We note that EXO 1745-248 is (about 2.5 - 3 times) less radio luminous than both known neutron star tracks; however, given the non-simultaneous nature of our radio and X-ray measurements, further observations are needed to compare these sources.

We strongly encourage simultaneous multi-wavelength observations at all frequencies.

We thank the NRAO staff for rapid scheduling of these VLA observations.

[Telegram Index]

R. E. Rutledge, Editor-in-Chief rrutledge@astronomerstelegram.org
Derek Fox, Editor dfox@astronomerstelegram.org
Mansi M. Kasliwal, Co-Editor mansi@astronomerstelegram.org