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Abstract
We study monetary policy in a New Keynesian model with heterogeneity
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1 Introduction

Traditionally, monetary policy is modeled under the assumption of homogeneous

rational expectation (e.g. Woodford (2003)). All agents are then assumed to

have perfect knowledge and use perfect model consistent expectations to forecast

future variables, such as ination and output. Surveys of consumers and profes-

sional forecasters (e.g. Mankiw et al. (2003); Carroll (2003)) as well as laboratory

experiments with human subjects (e.g. Pfajfar and Zakelj (2011); Assenza et al.

(2014)) show however, that there is considerable heterogeneity in the forecasts

of these macroeconomic variables. This raises the question whether policy im-

plications that follow from models with a representative agent having rational

expectations are accurate, or whether this assumption is so restrictive that ra-

tional expectations models do not reect reality and may lead to other, perhaps

sometimes misleading policy recommendations. In this paper we investigate mon-

etary policy in macroeconomic models under the alternative paradigm of bounded

rationality and heterogeneous expectations (Brock and Hommes, 1997). In par-

ticular, we study how monetary policy can manage a continuum of heterogeneous

expectation rules by applying the Large Type Limit (LTL) concept of Brock et al.

(2005) to the New Keynesian framework. The LTL concept also allows us to give

precise conceptualization of the idea of "strongly anchored" expectations in an

analytically tractable way.

The importance of bounded rationality and a behavioral approach to macroe-

conomics has recently been stressed in the books Akerlof and Shiller (2010) and

De Grauwe (2012). Assenza et al. (2016) model animal spirits through hetero-

geneous expectations and show the emergence and ampli�cation of boom and

bust cycles in a macroeconomic model where lenders have heterogeneous expec-

tations about the default probability of �rms. The theory of bounded rationality

and heterogeneous expectations has recently also been applied to the New Key-

nesian Dynamic Stochastic General Equilibrium (DSGE) setting in Branch and

McGough (2010), De Grauwe (2011), Massaro (2013) and in Agliari et al. (2014).

These models nicely match with empirical stylized facts of output and ination
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(De Grauwe, 2012).

We study policy implications for an ination targeting central bank (CB) under

this new paradigm and these empirically relevant heterogeneous expectations in

an otherwise standard New Keynesian framework. In addition, we study the

e�ect of the zero lower bound on the nominal interest rate when expectations are

heterogeneous. Expectations are assumed to be anchored around fundamental

values of the model, i.e., the rational expectation equilibrium values that would

arise if all agents were rational. However, not all agents expect exactly these

fundamental values. Instead, some agents have slightly higher expectations, while

other agent expect values that are somewhat lower. This heterogeneity can be

interpreted in two di�erent ways. First of all, it could be that agents make small

mistakes in their otherwise adequate predictions. Alternatively, agents base their

expectations on publicly available information, but also take their own personal

views about the economy and about animal spirits into account.

Our agents furthermore realize that their expectations may not be perfect, and

that other agents (e.g. professional forecasters) might be better at predicting the

future. For this reason agents will adjust their expectations upwards if agents

with higher expectations turned out to be right in the past. They do this to

correct for their apparent mistakes, and to bene�t from other agents that might

have better information or prediction skills. The heterogeneity in expectations will

however always be present. Our benchmark model speci�cation assumes a con-

tinuum of prediction values, normally distributed around the fundamental values.

We study ination-output dynamics under heterogeneous expectations, using the

large type limit concept, initially introduced by Brock et al. (2005) and used in

other macroeconomic settings by Anufriev et al. (2013) and Agliari et al. (2014).

We also consider the implications of discrete expectation values, by studying a

stylized example with 3 di�erent expectation values: optimists, pessimists, and

fundamentalists; and a richer model where agents only form expectations with a

precision of 0:5%.

Under these heterogeneous expectations we study monetary policy under three
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di�erent interest rate rules. In the �rst rule, the central bank responds to expected

future deviations of ination and output gap from their targets; in the second rule,

the CB can respond to contemporaneous deviations from target; and in the third

rule, the CB responds to the deviations from targets that occurred in the previous

period. These three Taylor type interest rate rules are also studied by Bullard

and Mitra (2002), who compare rational expectation results with results obtained

under adaptive learning. These authors, however, assume homogeneous agents.

In contrast, our focus is on monetary policy under heterogeneous expectations.

We �nd that whether the economy can be stabilized depends both on monetary

policy and on the anchoring of aggregate expectations. Only when expectations

are unanchored, the Taylor principle is a necessary condition for stability. When

aggregate expectations are somewhat anchored to the fundamental values of the

economy, stability can be achieved with weaker monetary policy. The forward-

looking and contemporaneous Taylor rules then work very well. If however the

CB cannot observe contemporaneous values of ination and output gap and must

instead rely on lagged values, monetary policy can easily destabilize the economy

by being too aggressive when expectations are strongly anchored.

In our benchmark model with a continuum of prediction values the funda-

mental target steady state is typically unique, and local stability implies global

stability. However, if expectations are somewhat unanchored and monetary policy

is relatively weak (i.e. the Taylor principle is just satis�ed), the system has a near

unit root, and optimistic and pessimistic expectations can be almost self-ful�lling.

Convergence to the fundamental steady state will then occur only very slowly. In

that case, a single shock can lead to persistently high or low expectations, and

it may take a long time for the economy to recover and mean revert back to the

fundamental equilibrium. Furthermore, when expectations are discrete, almost

self-ful�lling optimistic and pessimistic expectations imply the existence of addi-

tional steady states. This multiplicity of equilibria disappears as monetary policy

becomes more aggressive. Time series simulations of the benchmark model and

the model where only multiples of 0:5% are allowed look almost indistinguishable,
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and both models show high persistence when monetary policy is not very strong.

In the �nal part of the paper, we turn to the implications of the zero lower

bound of the nominal interest rate. We �nd that due to this lower bound, low

initial ination and output gap can initiate a fall in both expectations and real-

izations, that either ends when the lowest possible expectations are reached, or

goes on for ever if no lower limit on expectations exists. In the latter case, the

system has entered a deationary spiral. This change in dynamics occurs due

to the appearance of an additional steady state. Benhabib et al. (2001a,b) �rst

highlighted the appearance of an extra equilibrium when the ZLB is introduced in

a rational expectations New Keynesian framework. Evans et al. (2008), Benhabib

et al. (2014) and Hommes and Lustenhouwer (2015) furthermore �nd that the

additional steady state leads to deationary spirals for low initial conditions in

their models with boundedly rational agents.

The recent �nancial crises has highlighted the importance of both a lower

bound on the interest rate, and its relation with low, self-ful�lling expectations.

In order to fully understand liquidity traps and to come up with policy recom-

mendations it is of crucial importance to realistically model expectations. Mertens

and Ravn (2014) discuss the distinction between a liquidity trap that is driven by

low economic fundamentals, and a liquidity trap that is driven by expectations. In

Evans et al. (2008) and Benhabib et al. (2014) liquidity traps are driven by expec-

tations, but these expectations are formed by homogeneous agents. Hommes and

Lustenhouwer (2015) study liquidity traps under heterogeneous expectations in a

model with endogenous credibility of the central bank. In the current paper we

construct a di�erent heterogeneous agent model that allows us to directly study

how expectation driven liquidity traps are a�ected by a combination of policy

parameters and the magnitude of anchoring and heterogeneity in expectations.

We �nd that the central bank can prevent prolonged liquidity traps with a high

enough ination target. This lowers the values of ination and output gap from

which deationary spirals occur, and may exclude the possibility of self-ful�lling

liquidity trap steady states. Alternatively, liquidity traps can be prevented if
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expectations are strongly enough anchored to fundamental values of the economy.

The paper is organized as follows. In Section 2 the model, interest rate rules,

and expectation formation mechanisms are presented. In Section 3 the local sta-

bility of the fundamental steady state is analyzed. Section 4 considers uniqueness

and global stability and the implications of discrete expectations. Section 5 focuses

on the zero lower bound and liquidity traps, and Section 6 concludes.

2 Model Speci�cation

2.1 Economic model and interest rate rules

We use a log linearized New Keynesian model in line with Woodford (2003). Micro-

foundations for this model when expectations are heterogeneous can be found in

Hommes and Lustenhouwer (2015). The full model is described by a New Keyne-

sian Phillips curve describing ination, an IS curve describing output gap, and a

rule for the nominal interest rate. Output gap (xt) and ination (�t) are given by

xt = Etxt+1 +
1
�

(Et�t+1 � it) + ut; (1)

and

�t = �Et�t+1 + �xt + et; (2)

where �, � and � are model parameters. et and ut are shocks to the economy,

which will be white noise in our simulations. In the analytical analysis below we

abstract from these shocks, and study the deterministic skeleton of the model.

Finally, it is the nominal interest rate. We consider three di�erent interest

rate rules, where the central bank responds respectively to the expectations, the

contemporaneous values and the lagged values of ination and output gap.

The �rst interest rate rule we consider is a forward-looking Taylor type rule

given by

it = �T + �1(Et�t+1 � �T ) + �2Etxt+1: (3)
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We assume here that the central bank can observe private sector expectations.

Expectations Et�t+1 and Etxt+1 are based on period t � 1 information, and are

formed at the end of period t � 1. It is therefore not unreasonable to assume that

the CB can base its period t decision for the interest rate, it, on period t private

sector expectations.

Hommes and Lustenhouwer (2015) show that a forward-looking rule of the

form (3), can be used to minimize the following loss function under discretion

Et

1X

i=0

�i �(�t+i)2 + �(xt+i)2� ; (4)

were � � 0 is the relative weight that the central bank assigns to the minimization

of the squared output gap compared to the squared ination. Rotemberg and

Woodford (1999) show that this loss function can be derived from a second order

approximation of the utility function of a representative agents. The coe�cients

that minimize (4) are given by

�T = 0; �opt
1 = 1 +

���
� + �2 ; �opt

2 = � (5)

We will consider these coe�cients as a benchmark case.

Abstracting from shocks and plugging (3) into (1), gives the following model

xt = (1 �
�2

�
)Etxt+1 �

�1 � 1
�

(Et�t+1 � �T ); (6)

�t = �Et�t+1 + �xt: (7)

Secondly, we look at a more traditional contemporaneous Taylor rule:

it = �T + �1(�t � �T ) + �2xt: (8)

With this interest rate rule the model is given by (7) and

(1 +
�2

�
)xt = Etxt+1 +

1
�

(Et�t+1 � �T � �1(�t � �T )): (9)
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Substituting for ination, the output gap equation can be written as

xt =
�

� + �2 + ��1
Etxt+1 �

��1 � 1
� + �2 + ��1

Et�t+1 +
�1 � 1

� + �2 + ��1
�T : (10)

Since it is perhaps not very realistic that the CB can respond to contempora-

neous values of ination and output gap, the �nal interest rate rule we consider is

a Taylor rule with lagged values of ination and output gap

it = �T + �1(�t�1 � �T ) + �2xt�1: (11)

The model is then given by (7) and

xt = Etxt+1 �
�2

�
xt�1 +

1
�

(Et�t+1 � �T ) �
�1

�
(�t�1 � �T ): (12)

2.2 Heuristic switching model

We deviate from the rational expectations hypothesis, and do not assume all

agents always exactly expect the same outcome of future variables. Instead, we

assume that some heterogeneity is present, with some agents expecting values

that are a bit higher and some agents expecting values that are a bit lower. This

heterogeneity could be caused by agents making small mistakes. Alternatively, the

heterogeneity can arise because some agents think they have reasons to be more

optimistic or pessimistic in their predictions than is warranted by the publicly

available information. More speci�cally, expectations are distributed around the

rational expectations equilibrium values �x and ��, given in Appendix A.1

We furthermore assume that when agents that were more optimistic or pes-

simistic in their prediction turn out to be right, then other agents will learn from

this and adjust their expectations in the direction of the better performing agents.

Agents may, for example, think that the correct agents had additional information

available to them, or just had more skills in analyzing the economic environment.
1When either �T = 0, or � = 1 the rational expectations equilibrium values coincide with

the targets of the central bank. In that case we can alternatively interpret our expectations as
being formed by some agents that trust the central bank and expect ination and output gap
to be equal to their targets, while other agents expect that the central bank will not be able to
exactly achieve its goals, but that ination and output gap will be slightly higher or lower.

8



We implement this way of expectation formation with a heuristic switching

model as in Brock and Hommes (1997), where agents switch between simple pre-

diction rules, or heuristics. The heuristics in our model consists of deviations from

the fundamental values of the economy. The fraction of agents using the heuristic

with deviation, or bias, bh in period t is updated according to the discrete choice

model with multinomial logit probabilities (see Manski et al. (1981)) given by

nh
t =

e!Uh
t�1

PH
h=1 e!Uh

t�1
: (13)

Here H is the total number of prediction values, and Uh
t is the �tness measure

of predictor h in period t, which we will assume to be minus the last observed

squared prediction error.2 ! is the intensity of choice. The higher the intensity of

choice, the more sensitive agents become with respect to relative performance of

prediction values, and the more agents will coordinate their forecasts.

Output gap expectations are now given by a weighted average of the predictions

of all types

Et�t+1 = �� +
HX

h=1

bhnh
t = �� +

HX

h=1

bh
e�!(�t�1�bh���)2

PH
h=1 e�!(�t�1�bh���)2

: (14)

This equation can be written as

Et�t+1 = �� +
1
H

PH
h=1 bhe�!(�t�1�bh���)2

1
H

PH
h=1 e�!(�t�1�bh���)2

: (15)

Below we will �rst consider the limit of H going to in�nity. Brock et al. (2005)

show that in this case the dynamics can be closely approximated with the so

called large type limit (LTL), where there is a continuum of prediction biases. We

assume that the prediction biases bh are normally distributed around zero (so that

expectations are distributed around ��), with variance s2.

We can now approximate (15) by the LTL obtained by replacing sample means
2Uh

t�1 = �(�t�1 � Eh
t�2�t�1)2 for ination, and Uh

t�1 = �(xt�1 � Eh
t�2xt�1)2 for output gap.
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by population means:

Et�t+1 = �� +
R

be�!(�t�1�b���)2e� b2

2s2 db
R

e�!(�t�1�b���)2e� b2
2s2 db

: (16)

The large type limit can also can be interpreted in terms of Bayesian updating.

Agents then try to learn in each period about the correct value of b, with N(0; s2)

as their prior. The likelihood function (the distribution of �t�1 given the true value

of b) is normal, with a variance inversely related to the intensity of choice (!).3

This means that the intensity of choice (!) is inversely related to the perceived

noise with which agents can observe the correct value of b. This interpretation is in

line with the random utility model underlying the multinomial logit probabilities

given in (13) (see Anderson et al. (1992)).

In the online supplementary material it is shown that (16) reduces to

Et�t+1 =
��

2!s2 + 1
+

2!s2

2!s2 + 1
�t�1: (17)

Similarly, for output gap we can write

Etxt+1 =
�x

2!s2 + 1
+

2!s2

2!s2 + 1
xt�1; (18)

In the LTL model, expectations thus are a linear combination of the funda-

mental values of the economy and of past realizations. The weights on these values

determine to what extent aggregate expectations are anchored to the fundamentals

of the economy. If the weight on the fundamental values is high (near 1), aggre-

gate expectations are always close to the fundamentals of the economy. We refer

to this situation as "strongly anchored expectations". If the weight on the funda-
3After the realization of �t�1, the distribution over the biases b is updated according to (13)

to

�(b) =
e�!(�t�1�b���)2 1

s
p

2�
e� b2

2s2

R1
�1 e�!(�t�1�b���)2 1

s
p

2�
e� b2

2s2 db
=

p
2!p
2�

e�!(�t�1�b���)2 1
s
p

2�
e� b2

2s2

R1
�1

p
2!p
2�

e�!(�t�1�b���)2 1
s
p

2�
e� b2

2s2 db
:

The right hand side of this equation can be interpreted as a posterior distribution that agents
attach to the correct value of b, after observing �t�1. The prior distribution of b then equals
the assumed normal distribution of prediction values ( 1

s
p

2�
e� b2

2s2 ), and the likelihood function

equals
p

2!p
2�

e�!(�t�1�b���)2
. That is, �t�1 was generated with a normal distribution with variance

1
2! .
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mental values is low (near 0), aggregate expectations jump around considerably

in response to shocks. We refer to this situation as "unanchored expectations".

In Equation (17) and (18) it can be seen that the weight on the fundamental

values is strictly decreasing in the intensity of choice (!) and the variance of

the distribution of types (s2). The intuition for this is that a higher intensity of

choice allows more and faster changes of expectations and a higher variance of the

distribution of types makes it more likely that these changes move expectations

towards values far away from the fundamentals of the economy. Therefore, a higher

! and s2 imply that aggregate expectations move more in response to shocks and

thus become less strongly anchored.

3 Stability

When aggregate expectations equal Et�t+1 = �� and Etxt+1 = �x, ination and

output gap are equal to their rational equilibrium values. These values comprise

a steady state in the two dimensional dynamical system de�ned by (18), (17), (7)

and either (6), (10) or (12), depending on the interest rate rule.

We �nd that in our economy the core task of monetary policy should be pro-

viding a feedback mechanism that prevents optimistic or pessimistic expectations

from becoming self-ful�lling. Here, we de�ne self-ful�lling optimistic expectations

as high aggregate expectations that lead to realizations that are as high as (or

perhaps even higher than) these expectations. If monetary policy fails to provide

mean reversion of expectations, explosive drifts of ination and output gap, away

from their fundamental values �� and �x may arise. The policy feedback mechanism

must however not be so strong that it overreacts to so small uctuations in the

economy and thereby causes larger uctuations in the opposite direction.

More technically speaking, monetary policy must aim at making the above

mentioned steady state locally (and preferably also globally) stable. The speci�c

restrictions on monetary policy that result in stability depend on both the mon-

etary policy rule that is used, and on how strongly expectations are anchored to

the fundamental values of the economy. This is discussed in detail below.
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3.1 Forward-looking Taylor rule

The �rst feedback mechanism we consider is responding directly to observed expec-

tations with the forward-looking Taylor rule given by (3). By responding strongly

enough to expectations, the CB can make sure that high (low) expectations do

not lead to too high (low) realizations of ination and output gap, and therefore

cannot become self-ful�lling.

However, if the CB responds too strongly, high ination expectations lead too

very low ination realizations, which (depending on how strongly expectations are

anchored), can lead to very low expectations in the subsequent period. These

low expectations then again induce a strong policy response that leads to very

high realizations of ination, and high expectations in the subsequent period.

This process of explosive overshooting then continues with both expectations and

realizations reaching ever higher and lower values.

Proposition 1 formally states the conditions for stability of the fundamental

steady state under the forward-looking Taylor rule. As expected, there is both a

lower and an upper bound on how aggressive monetary policy responses can be.

The conditions are presented in terms of the ination policy coe�cient, �1, and

are a function of the output gap policy coe�cient, �2, and the parameters ! and

s2 (which together determine how strongly expectations are anchored). The �rst

conditions ensures that the �rst eigenvalue of the dynamical system, �1, is smaller

than +1; and the second condition ensures that the other eigenvalue, �2, is larger

than �1. Proof of Proposition 1 is given in Appendix B.1.

Proposition 1. (See Figure 1) When the CB adheres to the forward-looking Tay-

lor rule given by (3), the fundamental steady state is locally stable if and only

if

�1 > 1 �
1 + (1 � �)2!s2

2!s2 + 1

�
�

2!s2�
+

�2

�

�
; (�1 < +1); (19)
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Figure 1: Stability region of fundamental steady state under the forward-looking Tay-
lor rule. For policy parameters (�1, �2) and expectation parameters (!; s2)
between the two surfaces, the fundamental steady state is locally stable.

and

�1 < 1 +
(1 + �)2!s2 + 1

2!s2 + 1

�
(4!s2 + 1)�

2!s2�
�

�2

�

�
; (�2 > �1): (20)

Figure 1 plots the two conditions for stability from Proposition 1 as a function

of !s2 and �2. The lower surface represents Condition (19), and the upper surface

depicts Condition (20). In the �gure, it can be seen that for low values of !s2

(where aggregate expectations are strongly anchored to the fundamental values),

weak ination policy (0 < �1 < 1) does not lead to instability. For higher values of

!s2 (unanchored expectations) however, the central bank must respond strongly

enough to ination in order to satisfy (19). If we let !s2 go to in�nity, Condition

(19) reduces to �1 > 1 � (1 � �)�2
� , which is the well known Taylor principle that

must be satis�ed under rational expectations in order to obtain local determinacy.

Condition (20) also becomes more stringent as expectations become unan-

chored (higher !s2). For low values of !s2 the upper limit on �1 goes to in�nity;

and as !s2 goes to in�nity it is required that �1 < 1 + (1 + �)
�2�

� � �2
�

�
. This

condition coincides with the upper bound for local determinacy with a forward-

looking Taylor rule under rational expectations (Bullard and Mitra, 2002). We can

conclude that with a forward-looking Taylor rule, unanchored expectations (high

values of ! and s2) require the same restrictions on policy parameters as under
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RE, while when expectations are anchored the region of stable policy parameters

becomes larger.

It is further of interest whether the fundamental steady state is locally stable

under the policy coe�cients that minimize the loss function (4). Proposition 2

states that this always is the case. Its proof is given in Appendix B.2

Proposition 2. When the CB adheres to the forward-looking Taylor rule given by

(3), with �1 and �2 chosen as in (5) the fundamental steady state is always locally

stable.

3.2 Contemporaneous Taylor rule

Next, we consider the feedback mechanism of letting the interest rate respond to

contemporaneous values of ination and output (equation (8)). By responding

strongly enough to these values any potential deviations from the fundamental

values can be eliminated, including deviations caused by expectations. In that

case, self-ful�lling drifts away from the fundamental steady state cannot arise.

Furthermore no matter how strongly the central bank responds, the overshoot-

ing mechanism discussed in the previous section can never occur with a contempo-

raneous Taylor rule. That is, a strong policy response to high ination will never

lead to low realized ination. Indeed, we �nd that there is no upper bound on the

policy coe�cients for local stability of the fundamental steady state. This result

is in line with rational expectations �ndings of Bullard and Mitra (2002).4

Proposition 3 states that when the CB uses (8), all that is required is that it

responds strongly enough to ination or output, no matter how expectations are

formed. The proof is provided in Appendix B.3.
4Agliari et al. (2014) do �nd an upper limit on �1 with a contemporaneous Taylor in a model

similar to ours. The reason for this is that in their model ination expectations also depend
on lagged output gap. Looking at Equations (2) and (10) it can be seen that for large �1
and �2 the e�ect of output gap expectations on dynamics goes to zero. Since in our model
ination expectations only depend on past ination, the system then becomes one dimensional.
The fundamental steady state will now always be locally stable since the coe�cient on lagged
ination in this one dimensional system is smaller than 1 (since �1 > 1). This reasoning would
no longer hold if ination expectations also depended on lagged output gap, as in Agliari et al.
(2014).
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Proposition 3. (See Figure 2) When the CB adheres to the contemporaneous

Taylor rule given by (11), the fundamental steady state is locally stable if and only

if

�1 >
2!s2

2!s2 + 1
�

1 + (1 � �)2!s2

2!s2 + 1

�
�

(2!s2 + 1)�
+

�2

�

�
; (�1 < +1): (21)

The bottom surface of Figure 2 plots Condition (21). This surface is (both

qualitatively and quantitatively) very similar to condition (19), and again reduces

to the Taylor principle when !s2 ! 1.

3.3 Lagged Taylor rule

Finally, we consider the case where the CB cannot observe contemporaneous val-

ues of ination and output gap and instead responds to lagged values, by using

Equation (11). The feedback mechanism to expectations then is an indirect one.

If expectations are unanchored, there is a strong correlation between lagged values

and expectations of ination and output gap. In this case, responding to lagged

values results in almost the same interest rate as would have been obtained by

responding directly to observed expectations.

If, however, expectations are strongly anchored to the fundamental values,

this correlation between expectations and lagged values disappears. On the one

hand, this is not a problem since strongly anchored expectations also imply that

expectations are already stable, so that there is no need for a feedback mechanism.

However, when expectations are always fairly stable and uncorrelated with lagged

values, there is a danger of destabilizing the economy by responding too strongly

to these lagged values. This happens through a similar overshooting mechanism

as described in Section 3.1: high ination is, in the subsequent period, followed

by a strong policy response, resulting in very low ination. This again induces

a strong policy response in the period after that, resulting in very high ination,

and so on.

Proposition 4 describes the conditions for local stability under the lagged Tay-
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Figure 2: Stability region of fundamental steady state under the contemporaneous
and lagged Taylor rule. For policy parameters (�1, �2) and expectation
parameters (!; s2) between the two surfaces, the fundamental steady state
is locally stable under the lagged Taylor rule. For the contemporaneous
Taylor rule it is stable everywhere above the bottom surface.

lor rule. These conditions consist of a lower an an upper bound on the CB’s policy

response. The proof of the proposition is provided in B.4.

Proposition 4. (See Figure 2) When the CB adheres to the lagged Taylor rule

given by (8), the fundamental steady state is locally stable if and only if

�1 >
2!s2

2!s2 + 1
�

1 + (1 � �)2!s2

2!s2 + 1

�
�

(2!s2 + 1)�
+

�2

�

�
; (�1 < +1); (22)

and

�1 <
2!s2

2!s2 + 1
+

(1 + �)2!s2 + 1
2!s2 + 1

�
(4!s2 + 1)�
(2!s2 + 1)�

�
�2

�

�
; (�2 > �1): (23)

Note that Condition (22), is exactly the same as Condition (21), so that when

it comes to reacting strongly enough to ination, it does not matter whether a

contemporaneous rule or a Taylor rule with lagged values is used.

Condition (22) and (23) are both plotted in Figure 2. The upper limit on �1

clearly di�ers from the one in Figure 1, by becoming more stringent instead of less

stringent when expectations become more strongly anchored. The reason for this
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is, as described above, that when expectations become more strongly anchored

the correlation between expectations and lagged values decreases. Responding

aggressively to lagged values then no longer serves the function of providing a

feedback mechanism to deviations in expectations, but instead only destabilizes

the economy by amplifying any uctuations in the economy.

For the limiting case of no anchoring in expectations (!s2 ! 1) Condition

(23) coincides with (20), and with the rational expectations conditions found by

Bullard and Mitra (2002).

4 Multiple steady states and self-ful�lling expec-

tations

In the previous Section we analyzed local stability of the fundamental steady state.

Here we found that for unanchored expectations, local stability can be achieved

under all three interest rate rules by satisfying the conditions for rational expecta-

tions local determinacy. That is, the Taylor principle and the same upper bounds

that are presented by Bullard and Mitra (2002). When expectations are anchored

to the fundamental values of the economy, the Taylor principle is no longer a

necessary condition for local stability of the fundamental steady state. This does

however not necessarily mean that convergence to this steady state will occur

within a reasonable number of periods, or that convergence to the fundamental

steady state occurs from all initial conditions.

In this section we investigate whether almost self-ful�lling expectations (i.e.,

expectations that lead to realizations that are close to the expected values) can

hinder convergence to the fundamental steady state and how almost self-ful�lling

expectations can be ruled out by adequately chosen monetary policy. In Section

4.1 we consider the benchmark LTL model with a continuum of prediction values.

Here, almost self-ful�lling expectations take the form of a near unit root. In

Sections 4.2 and 4.3 we look at almost self-ful�lling steady states that can arise

when expectations are discrete.
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4.1 Steady states in LTL model

Proposition 5 states that in the LTL model speci�ed above, the fundamental steady

state is typically unique. The proof of Proposition 5 is given in Appendix B.5.

Proposition 5. The fundamental steady state in the LTL model is the unique

steady state under the forward-looking Taylor rule unless �1 is exactly equal to the

value of (19). For the lagged and contemporaneous Taylor rule the fundamental

steady state is unique unless �1 exactly equals the value of (21). At these knife

edge cases where one eigenvalue equals +1, there is a continuum of steady states.

Steady state output gap corresponding to ination level ~� is then given by

~x =
1
�

�
(1 �

2!s2�
2!s2 + 1

)~� �
���

2!s2 + 1

�
: (24)

From Proposition 5 it follows that if one eigenvalue equals +1, expectations

are perfectly self-ful�lling for a continuum of ination and output gap values (all

comprising a steady state). When monetary policy is slightly more aggressive

this eigenvalue is slightly smaller than +1 and the continuum of steady state

disappears. Convergence to the fundamental steady state then occurs from all

initial ination and output levels. However, as long as the eigenvalue is close to

+1 (near unit root), expectations are still almost self-ful�lling for a continuum of

non-fundamental values, and convergence to the fundamental steady state will be

very slow. This implies near random walks in ination and output when shocks

are added to the model.

Figure 3 plots the largest eigenvalue of the model with the forward-looking

Taylor rule as a function of �1, for di�erent values of �2. We here use the Woodford

(1999) calibration with � = 0:99, � = 0:157 and � = 0:024. We furthermore set

!s2 = 13:8, to match the calibration of Section 4.3. Figure 3 illustrates that

the largest eigenvalue can be close to 1 for a considerable range of values of �1,

especially when �2 is relatively high or relatively low. A near unit root therefore

occurs quite generally in our model. For higher values of !s2 all curves are shifted

upward, so that the largest eigenvalue becomes even higher, and for lower values

of !s2 all curves of Figure 3 are shifted downward. The largest eigenvalues of the
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Figure 3: Largest eigenvalue of LTL model under forward-looking Taylor rule as func-
tion of �1 for di�erent values of �2, and for !s2 = 13:8

models with the contemporaneous and lagged Taylor rule are similar and therefore

not shown.

Furthermore, the fact that the non-fundamental steady states disappear when

the eigenvalue no longer exactly equals +1 (and hence optimistic and pessimistic

expectations can no longer be perfectly self-ful�lling) is heavily dependent on the

assumption of a continuum of prediction values. When expectations are discrete,

almost self-ful�lling expectations can still lead to the existence of multiple (stable)

non-fundamental steady states. We illustrate this below, �rst with a stylized model

with 3 prediction values, and then with a quantitatively more realistic model with

41 prediction values.

4.2 Steady states in the 3-type model

First consider a stylized example with three di�erent prediction biases. Funda-

mentalists have a bias of zero and expect the rational expectations equilibrium

values: Efun
t xt+1 = �x and Efun

t �t+1 = ��. Then there are optimists and pes-

simists who have a bias of b and �b respectively. Their expectations are given

by Eopt
t xt+1 = �x + b, Eopt

t �t+1 = �� + b, Epes
t xt+1 = �x � b, and Epes

t �t+1 = �� � b.

The above speci�cation implies that the distribution of belief types is discrete

uniform with mean zero and variance 2
3b2. Note that we allow an agent to be op-
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timistic about one variable, while being pessimistic or fundamentalistic about the

other, so that the fractions of agents that are optimistic and pessimistic (denoted

respectively nz;opt
t and nz;pes

t ) may di�er between the two variables (z = x; �).

The fraction of fundamentalists of a variable equals nz;fun
t = 1 � nz;opt

t � nz;pes
t .

Aggregate expectations are given by

Etxt+1 = �x + b(nx;opt
t � nx;pes

t ); (25)

Et�t+1 = �� + b(n�;opt
t � n�;pes

t ): (26)

Finally, fractions are given by (13), with h = opt; pes; fun.

The fundamental steady state with �t = �� and xt = �x always exist in the 3-type

model, no matter what interest rate rule is chosen. The fractions of optimists and

pessimists in the fundamental steady state are for both variables equal to

�nopt = �npes =
1

2 + e!b2 : (27)

Because of the heterogeneity of our agents, these fractions will typically never

be zero, and the highest fraction of agents that can have fundamentalistic expec-

tations at any time is given by

1 � �nopt � �npes = 1 �
2

2 + e!b2 : (28)

This quantity crucially depends on the intensity of choice, !, which can be seen

as a measure of coordination of agents. When the intensity of choice equals zero

there can never be any coordination of expectations. All expectations fractions

are then always equal to 1
3 , and the model reduces to xt = �x and �t = ��. That is,

the system will always be in the fundamental steady state, and global stability is

always achieved for any speci�cation of monetary policy.

When ! goes to in�nity agents coordinate perfectly, which implies that the

fraction of fundamentalists in the fundamental steady state goes to 1. The ex-

pectations of all agents then equal those of a fully rational representative agent.

However, in�nite intensity of choice also facilitates the possibility of coordination
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Table 1: Steady States of 3-type model with ! = +1 together with conditions for
existence.

Belief �:x: Forward Looking Contemporaneous/Lagged

Fun.Fun. Always Always

Opt.Opt. �1 < 1 + �
2 � �2 �1 < 2+���2

2�+�

Pes.Pes. �1 < 1 + �
2 � �2 �1 < 2+���2

2�+�

Pes.Opt. 1 � �
2 + �2 < �1 < 1 + �

� (� � 1
2) � � + �2

2��+�2
2��� < �1 < 2 � 2� + �+�2

� (2� � 1)

Opt.Pes. 1 � �
2 + �2 < �1 < 1 + �

� (� � 1
2) � � + �2

2��+�2
2��� < �1 < 2 � 2� + �+�2

� (2� � 1)

Opt.Fun. 1 � �
2 < �1 < 1 + �

2
2����2

2�+� < �1 < 2+�+�2
2���

Pes.Fun. 1 � �
2 < �1 < 1 + �

2
2����2

2�+� < �1 < 2+�+�2
2���

Fun.Opt. �(1 � 1
2�) < �2 < �

2 (2� � 1)� � ��1 < �2 < � � ��1

Fun.Pes. �(1 � 1
2�) < �2 < �

2 (2� � 1)� � ��1 < �2 < � � ��1

on non-fundamental steady states.

Since our dynamical system is linear in expectation fractions, the system for an

arbitrary positive but �nite value of the intensity of choice, is a convex combination

of the system with zero intensity of choice, and the system with in�nite intensity

of choice. For this reason we �rst analyze this second limiting case below.

4.2.1 Steady states for in�nite intensity of choice

In what follows it will be convenient to make the following assumptions about the

model parameters: 0 < � < 2� � 1. This is not unreasonable since � is usually

calibrated around 0:99, and most calibrations of � are much lower than 1.5.

In Proposition 6 it is stated that, for ! = +1, nine di�erent stable steady

states can coexist. Proof of Proposition 6 is given in Appendix C.1.

Proposition 6. (See Table 1) When ! = +1 there are nine di�erent locally stable

steady states that each exist for some range of values of the policy parameters �1

and �2. The fundamental steady state is the only steady state that exists for all

parameter settings.

The intuition behind the multiplicity of steady states is that there can be (al-

most) self-ful�lling coordination on optimism (Opt.), on fundamentalism (Fun.),
5See e.g. Schorfheide (2008)
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Figure 4: Steady states of 3-type model from Table 1 as a function of �1 for �2 = �.
The black lines indicate the fundamental steady state and colored lines rep-
resent the non fundamental states with optimism or pessimism in ination.

or on pessimism (Pes.). Since this can happen both for ination and for output

gap there are nine combinations of heuristics on which coordination can occur.

This gives nine candidate steady states. Whether or not these steady states actu-

ally exist depends on whether expectations are su�ciently self-ful�lling to ensure

that the heuristics where agents coordinate upon are indeed the best performing

heuristics. This depends on the interest rate rule and policy parameters chosen

by the central bank.

The �rst column of Table 1 summarizes the nine steady states that can exist.

The �rst term indicates which heuristic is best performing with respect to ina-

tion, and the second with respect to output gap. The second column of Table 1

states the conditions on the monetary policy parameters �1 and �2, for which the

corresponding steady state exist under the forward-looking Taylor rule. The �nal

column gives the conditions for existence under the contemporaneous and lagged

Taylor rule. In Appendix C.1 it is illustrated how these conditions are derived.
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Figure 5: Bifurcation diagram in �1 for ! = 31709. The upper right and lower right
curves in the top panel represent a (stable) 2-cycle. All other curves depict
(stable) steady states.

Figure 4 plots the ination value of the �rst 7 steady states for di�erent values

of the parameter �1 in case �2 = �. The �nal two steady states of Table 1 do

not exist in this case. We again use the Woodford (1999) calibration, and we set

�T = 0 and b = 0:035=4. For this value of the bias, optimists expect annualized

ination and output gap to be 3:5% above their fundamental values. The �rst

panel of Figure 4 corresponds to the model with the forward-looking Taylor rule

and the second panel to the models with the contemporaneous and lagged Taylor

rules. Even though the fundamental steady state is always locally stable, it is

not the only attractor. It can be seen that if the central banks wants to achieve

uniqueness under the forward-looking rule it needs to respond with �1 > 4:5

under this calibration while under the contemporaneous and lagged Taylor rule

even more aggressive monetary policy is required.
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4.2.2 Steady states for �nite intensity of choice

As mentioned above, for strictly positive but �nite intensity of choice the system is

a convex combination of the systems with zero and in�nite intensity of choice. This

implies that the steady states presented in Table 1 still can exist for �nite intensity

of choice, but that they will exist for a smaller region of policy parameters. It is

in this case therefore only a su�cient and no longer a necessary condition for

uniqueness that the inequalities of Table 1 do not hold.

In Figure 5, a bifurcation diagram is plotted, with �1 as bifurcation parameter.

The intensity of choice is calibrated such that �nopt = �npes = 0:075, so that in the

fundamental steady state only 85% of the agents are fundamentalists.6 It can

be seen that the steady states of the previous section still exist under this lower

calibration of the intensity of choice, but that policy implications are now less

extreme then in the limiting case of in�nite intensity of choice. It can further be

seen in the �gure that, as in the LTL model, the CB can also respond too strongly

under the forward-looking Taylor rule. This leads to the existence of a two cycle,

and causes the fundamental steady state to become unstable for high values of �1.

These two issues are discussed in the online supplementary material.

4.3 41 types

The above stylized 3-type model is not very realistic in the sense that it does not

allow for di�erent gradations in optimism and pessimism. Agents are forced to

expect either exactly fundamental ination or a fairly high or fairly low number.

Some discreteness in expectations is however an empirically relevant phenomenon,

since people do not form expectations with in�nitely many decimals. Instead,

humans prefer round numbers when reporting their expectations (a phenomenon

labeled digit preference).7 It may therefore be desirable to construct a model

were e.g. only multiples of 0.5% are allowed as expectations. In such a model,

parameter settings that lead to almost self-ful�lling expectations will result in
6This requires ! = 31709
7Curtin (2010)
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Figure 6: Bifurcation diagram of 41-type model in �1 for large intensity of choice (2
million). The blue lines represent steady states at the 41 di�erent levels of
ination expectations.

multiple steady states in the same manner as in the 3-type model. While in the

3-type model conditions on self-ful�llingness are relatively weak, steady states

must be very close to self-ful�lling in a model with a large number of di�erent

biases. This model will therefore contain characteristics of both the 3-type model

and the LTL model speci�cation.

Figure 6 plots a bifurcation diagram of a model with 41 types uniformly dis-

tributed around the fundamental values. These types are located at all multiples

of 0.5% between 10% below and 10% above the fundamental value.8 The intensity

of choice is chosen relatively high (2 million) to facilitate the existence of almost

self ful�lling non-fundamental steady states. It can be seen that for each of the 41

ination prediction values there is a range of �1-values where this prediction com-

prises an almost self-ful�lling steady state. For lower intensity of choice this range

becomes smaller, just as in the 3-type model, and at some point non-fundamental

steady states only exist at a single value of �1, just as in the LTL model.

Figure 7 shows a simulated time series of ination and output gap of the
8Measured in annualized values.
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LTL model, the 3-type model, and the model with 41 types. We again use the

calibration of Woodford (1999) and set s = 0:059=4, so that the variance of the dis-

tribution of types in the LTL model, matches that of 41-type model. We calibrate

the intensity of choice at ! = 63500 to let the 41-type model match expectations

from survey data.9 At this calibration, the interquartile range of the expectations

distribution in the fundamental steady state is 1% (in annualized terms). Outside

of this steady state the interquartile range then typically is 1.5%, and less for real-

ized values close to the highest or lowest possible prediction value. This is in line

with the �ndings of Mankiw et al. (2003), who show that the interquartile range

of the Livingston Survey and the Survey of Professional Forecasters is around 1%.

Shocks to ination and output gap are white noise, and have an annualized

standard deviation of 1:5%. The interest rate rule that is used is the forward-

looking Taylor rule, with �1 = 1:5 and �2 = � = 0:157. This speci�cation mini-

mizes (4) when the weight on output gap is � = 0:007.

In the top panels of Figure 7 it can be seen that there are large drifts in ina-

tion and output gap in the LTL model, even though there is no autocorrelation

in shocks. This is due to the fact that, even though monetary policy is consider-

ably more aggressive than required by the Taylor principle, the largest eigenvalue

(0:882) is still relatively close to +1.

Turning to the the 3-type model in the middle panels of Figure 7, it can be

seen that this model nicely captures the general sentiments in terms of optimism

and pessimism that appear in the LTL speci�cation, but that the 3-type model

is not rich enough to correspond closely to the LTL model quantitatively. It

can furthermore be seen that periods of optimism about ination arise together

with periods of pessimism about output gap. This is consistent with Table 1

from which it follows that for the current policy parameter setting there are three

di�erent steady states in the 3-type model: the Fun.Fun., the Opt.Pes., and the
9Note that the magnitude of the intensity of choice depends on the units of measurement of

the data. 63500 should therefore not necessarily be seen as a high number. If we interpret the
LTL model in terms of Bayesian updating, then ! = 63500 implies that the perceived noise agents
encounter in observing true values has a standard deviation of 1:12% of annualized ination (see
footnote 3).
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Figure 7: Simulated time series under three di�erent model speci�cations with the
forward-looking Taylor rule and �T = 0, �1 = 1:5 and �2 = � = 0:157.
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Pes.Opt. steady state. This tells us that combinations of high output and low

ination expectations or vice versa are almost self-ful�lling. This implies that, in

the presence of shock, in the 3-type model there is switching between coordination

on these two levels and on the fundamental steady state, but also that in the LTL

model temporary coordination on the same three levels arises.

Finally, the dynamics of the 41-type model are almost indistinguishable from

the LTL dynamics. So even though this model consists of discrete expectations, its

simulated time series are almost the same as those of the continuous expectations

LTL model. We conclude that both the LTL model and the 3-type model show

features that are also present in the 41-type model.

5 Zero lower bound on the interest rate

In this section the e�ect of a zero lower bound (ZLB) on the nominal interest rate

is investigated. This lower bound turns out to have important consequences for

the dynamics of our models. The global stability results of the previous section

no longer hold when the ZLB is accounted for. Instead, prolonged liquidity traps

can arise in the form of pessimistic steady states or even deationary spirals with

ever decreasing ination and output gap.

Since the interest rate in our model, it is measured in percentage deviations

from steady state, this variable is equal to it = �i� = log(�) when the actual

interest rate is at its zero lower bound. In normal times the interest rate is still

given by one of the interest rate rules of Section 2.1. However, when this rule

implies that the it < �i�, then it is instead set equal to �i�. When the zero lower

bound on the interest rate is a binding constraint we say that the system is in the

"ZLB region". Otherwise the system is in the "positive interest rate region".

In the ZLB region the model is described by

xt = Etxt+1 +
1
�

Et�t+1 +
i�

�
; (29)

�t = �Et�t+1 + �xt: (30)
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5.1 LTL under the Zero Lower Bound

First, consider the benchmark LTL model with a continuum of prediction values.

When the zero lower bound is binding, the policy coe�cients �1 and �2 can no

longer provide a feedback mechanism that prevents optimistic or pessimistic ex-

pectations from becoming self-ful�lling. Low ination and output gap can then

induce a self-ful�lling deationary spiral with ever decreasing ination and output

gap. Whether this will occur or not for a given level of ination and output gap

depends on how strongly expectations are anchored to the fundamentals of the

economy, and on the ination target. Technically speaking, it depends on the

existence and position of a non-fundamental steady state in the ZLB region. This

is discussed in Proposition 7. Proof of the proposition is given in Appendix D.1.

Proposition 7. The unique ZLB steady state of the LTL model is given by

�z =
(�(1 + (1 � �)2!s2) + �(2!s2 + 1)) �� + �(2!s2 + 1)2i�

�(1 + (1 � �)2!s2) � �(2!s2 + 1)2!s2 ; (31)

and

xz =
�
(1 � �)�

�(1 + (1 � �)2!s2) + (2!s2 + 1)
�

�� + (1 + (1 � �)2!s2)(2!s2 + 1)i�

�(1 + (1 � �)2!s2) � �(2!s2 + 1)2!s2 :(32)

For

!s2 <
1
4

�r
(1 � (1 � �)

�
�

)2 + 4
�
�

� (1 � (1 � �)
�
�

)
�

; (33)

the zero lower bound is not binding when ination and output gap are equal to (31)

and (32), so that the steady state does not exist. Recovery to the positive interest

region occurs for all initial conditions in the ZLB region in this case.

If (33) does not hold, the steady state lies in the ZLB region and is an unstable

saddle-point. All initial conditions above the stable eigenvector through (�z; xz)

then imply recovery, while all initial conditions below it result in a deationary

spiral. This eigenvector has slope

�
1 � (1 � �)�

� +
p

(1 � (1 � �)�
�)2 + 4�

�

2�
: (34)
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Figure 8: Regions of recovery and a deationary spiral in the annualized (�, x)-plane
for !s2 = 13:8. The thick red line indicates the ZLB. The black dot just
below 2% ination indicates the target steady state, while the black dot at
the bottom of the �gure depicts the unstable ZLB saddle steady state from
Proposition 7. The unstable eigenvector through this saddle is depicted by
the dashed line, while the stable eigenvector is depicted by the solid black
line. For initial conditions to the left of this black line a deationary spiral
occurs, and for initial conditions to the right of this line ination and output
gap will recover and increase to the positive interest rate region

Figure 8 illustrates the "recovery region" and the "deationary spiral region"

in the (�, x)-plane. Here we set �T = 2%, and otherwise use the calibration of the

previous section, so that !s2 � 13:8. The red line in Figure 8 depicts the zero lower

bound. For values of ination and output gap above this line the nominal interest

rate is positive and convergence to the fundamental steady state (��; �x) can occur.

For combinations of ination and output gap below this line the zero lower bound

is a binding constraint. The black line indicates the stable eigenvector through

the unstable saddle steady state of Proposition 7. Combinations of ination and

output gap above (i.e. to the right of) this line are not too low, so that recovery to
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Figure 9: Stable target steady state (solid) and ZLB saddle steady state (dashed) for
di�erent levels of anchoring of expectations.

the positive interest region occurs. Ination and output gap combinations below

the black line lead to declining ination and output gap and hence a deationary

spiral.

The position of the black line depends on the position of the ZLB steady

state, which in turn depends on the anchoring of expectations and the ination

target. As can be seen in Equation (31), the ination level of the ZLB steady state

depends linearly on ��, and hence linearly on the ination target. This implies

that increasing the ination target linearly moves the black line in Figure 8 down

(to the left) and thereby linearly increases the recovery region and decreases the

deationary spiral region. So even when the ZLB is binding and the CB loses

its control over the interest rate, it can still a�ect the economy with its ination

target.

The relation between the anchoring of expectations and the size of the dea-

tionary spiral region is slightly more complex. Figure 9 shows how exactly the

position of the ZLB steady state depends on the anchoring of expectations, with

!s2 on the horizontal axis and ination on the vertical axis. The dashed curve

represents the ZLB saddle steady state, while the solid line depicts the stable

target steady state.

It can be seen in Figure 9 that for low anchoring of expectations (high !s2)
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the ZLB saddle steady state lies relatively close to the fundamental steady state.

As !s2 increase towards in�nity (unanchored expectations) the ZLB steady state

approaches its limiting value of (�z; xz) = (�i�; �1��
� i�), and a deationary spiral

becomes more likely. Decreasing !s2 initially only slowly changes the position of

the steady state. However, as expectation become more strongly anchored (low

!s2) the ination level of the steady state is rapidly decreased. This implies a

large movement of the black line in Figure 8, and a considerable decrease in the

deationary spiral region. Now, very low levels of ination and output gap are

needed for a deationary spiral to occur. When expectations become even more

strongly anchored, the ZLB saddle steady state disappears altogether, and the

fundamental steady state becomes globally stable.

5.2 ZLB with �nitely many expectation values

Above, we found that in the benchmark LTL model deationary spirals can arise

when the zero lower bound on the interest rate is introduced, and that these

deationary spirals can be prevented by strongly anchored expectations, or by a

high ination target. But how dependent are these results to the assumption of a

continuum of prediction values?

Consider the 3-type model with fundamentalists, optimists and pessimists,

and the model with 41-expectation values, discussed in Sections 4.2 and 4.3. In

these models the possible values that can be taken by expectations is limited,

and expectations cannot become unboundedly negative. In contrast with the

LTL model, a deationary spiral can therefore not occur. The Coordination on

pessimistic expectations can however occur, in the form of almost self-ful�lling

pessimistic steady states. We refer to such a steady state where the ZLB is binding

as a "liquidity trap steady state".

The most interesting case of a pessimistic steady state arises when pessimistic

expectations about at least one variable are more than self-ful�lling. That is, a

steady state can exist with pessimistic expectations, where the realized values of

ination (and/or output gap) are even lower than the expectations. If the model
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then would allow agents to decrease their expectations (for example by allowing

for a larger number of di�erent biases to choose from), this steady state would

no longer be a steady state. Instead agents would choose lower expectations for

the next period. This would decrease both ination and output gap, and lead

agents to choose even lower expectations for both variables in the period after

that, again reducing ination and output gap. This process would go on until the

lowest possible expectations are chosen about at least one variable. In this sense

reaching the steady state with the most pessimistic expectations in a model with

bounded expectation values represents a liquidity trap similar to a deationary

spiral in the LTL model.

In Section 5.2.1 we consider such a steady state in the 3-type model and analyze

its properties. We �nd that the anchoring of expectations and the level of the

ination target a�ect the possibility of a liquidity trap in a similar manner as in

the LTL model. These qualitative features also carry over to liquidity trap steady

states in a richer model with more types, like the one discussed in Section 4.3.

In Section 5.2.2 we investigate, in this quantitatively more realistic model, how

shocks in the economy can trigger self-ful�lling pessimistic coordination and how

policy can prevent this.

5.2.1 Pessimistic steady states in 3-type model

When the ZLB is introduced to the model 3-type model of Section 4.2 the interest

rate will be constraint by its lower bound when pessimistic expectations domi-

nate.10 Conditions on existence of pessimistic steady states then change compared

to Section 4.2. The most interesting liquidity trap steady state is the steady state

where most agents have pessimistic expectations about both ination and output

gap (Pes.Pes.). Proposition 8 states the conditions for existence of this pessimistic

steady state under the zero lower bound. Its proof is given in Appendix E.1

Proposition 8. When the zero lower bound is binding the liquidity trap steady
10Here it is assumed that the calibration is such that it is possible that the ZLB can become

binding in the 3-type model. In the uninteresting case that this cannot happen, the model always
behaves exactly as in Section 4.2.
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state where pessimism is the best performing heuristic for both variables exists if

and only if

�� + i� < b
�

�mx
t + min(m�

t �
�
2

; (1 + �
�
�

)m�
t �

�
2�

)
�

: (35)

Here m�
t = n�;pes

t � n�;opt
t and mx

t = nx;pes
t � nx;opt

t lie between 0 and 1 and are

increasing in the intensity of choice.

The condition in Proposition 8 is least stringent when the intensity of choice

is in�nite, and all agents are pessimistic. In this case m�
t = mx

t = 1, and the

condition reduces to �� + i� < b(1 + �
2 ). As the intensity of choice is decreased,

condition (35) becomes more stringent. In the other limiting case of ! = 0 the

condition reduces to m�
t = mx

t = 0, which can never be satis�ed.

It can also be seen in Equation (35) that the condition on existence becomes

more stringent as b, and thereby the variance of the distribution of types, decreases.

Finally, it follows from Proposition 8 that the pessimistic steady state can also

be made to disappear by increasing the ination target, and thereby ��. We can

therefore conclude that, as in the benchmark LTL model, a liquidity trap can

be prevented by expectations that are strongly anchored around the fundamental

values, or by a high ination target.11

5.2.2 Preventing liquidity traps in the 41-type model

We now turn to the question of whether relatively small shocks to the economy can

trigger self-ful�lling pessimistic expectations, and how this can be prevented with

appropriate policy measures. To study these questions we turn to the quantita-

tively more realistic model from section 4.3, with 41 multiples of 0:5% as possible

biases.

In this model, liquidity trap steady states can also exist and simulations show

that the conditions on existence of these steady states follow the same qualitative

features as those in the 3-type model. That is, the possibility of a liquidity trap
11Other liquidity trap steady states show these same qualitative features for conditions on

existence. Results are available on request.
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Figure 10: Bifurcation diagram of 41-type model in �T for ! = 63500. The upper blue
curve represents the fundamental steady state, and the lower blue curve the
liquidity trap steady state. The green curve depicts the unstable steady
state that separates their basins of attraction.

disappears if expectations are strongly anchored or if the ination target is high

enough.

Figure 10 and 11 presents bifurcation diagrams of the 41-type model with the

zero lower bound, with respectively �T and ! as bifurcation parameters. The

same calibration as in Section 4.3 is used. It can be seen that for low values of �T

and for high values of ! (weak anchoring of expectations), there exists two stable

steady states (blue): the fundamental steady state at � = ��, and a liquidity trap

steady state with low ination, where pessimistic expectations dominate. The

basin of attraction of these two steady states are separated by an unstable steady

state (green). As �T is increased or ! is decreased, the liquidity trap steady

state comes closer to the basin of attraction of the fundamental steady state, and

eventually seizes to exist. This implies that the fundamental steady state can be

made globally stable with a high enough ination target or with strongly anchored

expectations.

Figure 12 illustrates how the 41-type model is a�ected by the zero lower bound,

and how a raised ination target can be used to prevent self-ful�lling coordination

on pessimism. A similar �gure could be made for a decreased intensity of choice.

In the simulated time series the same random seed is used as in Figure 7.

The �rst column of Figure 12 shows the time series of ination, output gap
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Figure 11: Bifurcation diagram of 41-type model in ! for �T = 0. The upper blue
curve represents the fundamental steady state, and the lower blue curve
the liquidity trap steady state. The green curve depicts the unstable steady
state that separates their basins of attraction.

and the nominal interest rate for the case of �T = 0. The �rst part of the dy-

namics (where the nominal interest rate is positive) are exactly as in the top

panels of Figure 7. However, in the bottom left panel of Figure 12 it can be seen

that the wave of pessimism around period 100 results in a desired interest rate

(blue) that is below its lower bound, so that the actual interest rate (green) is

set at �i�. The combination of low ination and a nominal interest rate bounded

by its lower bound implies a high real interest rate. This reinforces the wave of

pessimism, and facilitates a self-ful�lling decline in ination and output gap ex-

pectations that comes to a halt only when the lowest possible expectations about

both variables (and thereby the liquidity trap steady state from Figure 10) are

reached. This pessimistic steady state lies quite far from the basin of attraction

of the fundamental steady state, so that even when series of positive shocks occur

(around periods 120 and 160), the economy keeps moving back to the liquidity

trap steady state.

In the middle panels of Figure 12 the annualized ination target is increased to

2%. From Figure 10 we know that the pessimistic steady state then still exists, and

we indeed observe that this steady state is reached around period 100. However,

the steady state now lies closer to the basin of attraction of the fundamental steady

state, so that recovery to the fundamental steady state occurs after a sequence
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Figure 12: Simulated time series of 41-type model with the ZLB, for di�erent values
of the ination target (�T ).

of positive shocks. A new wave of pessimism then leads to a new liquidity trap

around period 150, but after some time recovery again occurs.

Finally, the right column of Figure 12 depicts the case where the ination

target is increased to 5%. As can be seen in Figure 10, the deationary spiral

steady state does not exist for this value of the policy parameter. In the bottom

right panel of Figure 12 it can be seen that waves of pessimism still lead the zero

lower bound to become binding. However, in the absence of shocks ination and

output gap now would always start to increase towards the fundamental steady

state. Consequently, periods of low ination and low output gap are less severe,

and never last very long.
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6 Conclusion

We study a New Keynesian macroeconomic model with heterogeneity in expec-

tations. In this setup we compare three di�erent interest rate rules and obtain

a number of policy recommendations. To achieve local stability of the funda-

mental steady state, the central bank must prevent self-ful�lling coordination on

optimistic or pessimistic expectations by responding strongly enough to (lagged)

ination and output gap, or their expectations. The Taylor principle is however

only a necessary condition for local stability when expectations are unanchored.

When aggregate expectations are strongly anchored to the fundamentals of the

economy (because there is not much heterogeneity in expectations, and agents

only slowly change their predictions) the CB is able to stabilize the economy with

fairly weak monetary policy.

However, even when the fundamental steady state is locally stable, convergence

to it may be quite slow due to almost self-ful�lling expectations and correspond-

ing near unit root behavior. When expectations are discrete, these almost self-

ful�lling expectations may furthermore lead to the existence of non-fundamental

steady states where agents coordinate on optimism or pessimism. The Central

bank can mitigate these problems with more aggressive policy than otherwise re-

quired. If the CB responds to lagged values of ination and output gap (e.g.

because it cannot observe contemporaneous values) it must however take care not

to destabilize the economy with policy that is too aggressive.

When the zero lower bound on the nominal interest rate is taken into account,

convergence to the targets of the CB cannot be guaranteed just by the reaction

coe�cients of the monetary policy rule. Negative shocks can now drive the econ-

omy to a liquidity trap with a zero interest rate and low ination and output gap

(expectations). If there is no lower limit on expectation values that agents may

consider, a liquidity trap can take the form of a self-ful�lling deationary spiral

with ever decreasing ination and output gap.

We �nd that prolonged liquidity traps can be prevented by increasing the

ination target, or by increasing the anchoring of expectations. While the latter
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cannot be directly controlled by the CB, this does not mean that in the real

world the anchoring of expectation is not a�ected by the actions of the central

bank. Expectations might for example become more strongly anchored around the

fundamental values after a decade of stable ination and output gap. After such

a time of stability agents would not be inclined to expect very high or very low

ination, even after a shock. The variance of the expectation values considered by

agents, as well as the amount of switching between expectation values (intensity of

choice) would then have been reduced by the performance of the central bank. On

the other hand, if, during some years of economic turmoil, ination and output

are very volatile and stray far from their fundamental values, expectations will

become more unanchored, which makes it more likely that the economy locks into

a liquidity trap. It may then take a long time before the economy can recover

from such an (almost) self-ful�lling equilibrium.
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A Rational expectations equilibrium

Since there are no autocorrelated shocks in the model the rational expectations

equilibrium path coincides (at least under determinacy) with the perfect foresight

steady state of the model. We solve for the perfect foresight steady state values

by �lling in Etxt+1 = xt = �x and Et�t+1 = �t = �� in equations (7), (6), (10) and

(12). Under all three interest rate speci�cations, this gives

�� =
�(�1 � 1)

(1 � �)�2 + �(�1 � 1)
�T (A.1)

�x =
(1 � �)(�1 � 1)

(1 � �)�2 + �(�1 � 1)
�T (A.2)

B LTL without the ZLB

B.1 Proof Proposition 1

Under the forward-looking Taylor rule, the Jacobian in the fundamental steady

state equals

B

0

@ 1 � �2
� ��1�1

�

�(1 � �2
� ) � � ��1�1

�

1

A ;

with

B =
2!s2

2!s2 + 1
: (B.1)

The eigenvalues therefore are given by

�1;2 =
B
2

 

(1 + � �
�2

�
� �

�1 � 1
�

) �
r

(1 + � �
�2

�
� �

�1 � 1
�

)2 � 4�(1 �
�2

�
)

!

:

Local stability requires �1 < 1 and �2 > �1. By keeping only the square root on

one side of the equation and taking squares, �1 < 1 can be written as

�1 > 1 + (��B �
1
B

+ 1 + �)
�
�

+ (�B � 1)
�2

�
; (B.2)

Filling in B from (B.1) results in Condition (19).
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Similarly, �2 > �1 can be written as

�1 < 1 + (1 + � + �B +
1
B

)
�
�

� (1 + �B)
�2

�
; (B.3)

from which Condition (20) can be obtained.

B.2 Proof Proposition 2

When �1 and �2 equal the values given in (5), the eigenvalues reduce to

�1;2 =
B
2

 

(� �
�2

� + �2 ) �

s

(� �
�2

� + �2 )2

!

; (B.4)

Since � is the relative weight on output gap in the loss function and therefore is

nonnegative, �2 reduces to zero and �1 becomes

�1 = B
�

�� � (1 � �)�2

� + �2

�
: (B.5)

Both eigenvalues are therefore inside the unit circle as long as �1 < 1, which is

satis�ed since 0 < � < 1, and B < 1.

B.3 Proof Proposition 3

Under the contemporaneous Taylor rule, the Jacobian in the fundamental steady

state equals

B

0

@
�

�+�2+��1
� ��1�1

�+�2+��1

� �
�+�2+��1

� � � ��1�1
�+�2+��1

1

A

The eigenvalues therefore are given by

�1;2 =
B
2

 

(
(1 + �)� + ��2 + �

� + �2 + ��1
) �

s

(
(1 + �)� + ��2 + �

� + �2 + ��1
)2 � 4�(

�
� + �2 + ��1

)

!

:

�1 > �2 always holds, so local stability requires �1 < 1 and �2 > �1. The �rst

condition can be written as

�1 > B + (��B2 + (1 + �)B � 1)
�
�

+ (�B � 1)
�2

�
: (B.6)
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Filling in B from (B.1) gives Condition (21).

�2 > �1 be written as

�4�(
�

� + �2 + ��1
) <

4
B2 +

4
B

(1 + �)� + ��2 + �
� + �2 + ��1

; (B.7)

which is always satis�ed for �1; �2 > 0.

B.4 Proof Proposition 4

Under the lagged Taylor rule, the Jacobian in the fundamental steady state equals
0

@ B � �2
�

B
� � �1

�

�(B � �2
� ) B(� + �

� ) � ��1
�

1

A

The eigenvalues are given by

�1;2 =
1
2

 

B(1 + � +
�
�

) �
�2 + ��1

�
�
r

(B(1 + � +
�
�

) �
�2 + ��1

�
)2 � 4�B(B �

�2

�
)

!

:

Local stability again requires �1 < 1 and �2 > �1. The �rst condition can be

written as

�1 > B + (��B2 + (1 + �)B � 1)
�
�

+ (�B � 1)
�2

�
: (B.8)

�2 > �1 can be written as

�1 < B + (�B2 + (1 + �)B + 1)
�
�

� (�B + 1)
�2

�
: (B.9)

Filling in B from (B.1) in (B.8) and (B.9) results in Conditions (22) and (23)

respectively.

B.5 Proof Proposition 5

It follows from Equation (6) that in a steady state the model under the forward-

looking Taylor rule satis�es

x =
�x

2!s2+1(1 � �2
� ) � �1�1

� ( 2!s2

2!s2+1� + ��
2!s2+1 � �T )

(1 � (1 � �2
� ) 2!s2

2!s2+1)
; (B.10)
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Plugging in in (7), using the de�nitions of �x and �� and rearranging results in

�(1 � �
2!s2

2!s2 + 1
+ �

(�1 � 1)2!s2

� + 2!s2�2
) = ��

�
1 � �

2!s2

2!s2 + 1
+ �

(�1 � 1)2!s2

� + 2!s2�2

�
:(B.11)

This has as a solution � = ��, so that the fundamental steady state where

average expectations equal the rational expectations equilibrium values always

exists.

Alternatively, if the part in brackets in (B.11) is 0, any ination level is a

steady state. This is the case if and only if

�1 = 1 �
1 + (1 � �)2!s2

2!s2 + 1

�
�

2!s2�
+

�2

�

�
; (B.12)

which is exactly the value where the fundamental steady state loses stability and

one eigenvalue equals +1 (see Proposition 1).

For any ination level ~�, corresponding steady state output gap ~x then follows

from (7) and is given by (24).

Under the contemporaneous and lagged Taylor rules we can derive in the same

way from (10) (or (12)) and (7) that the fundamental steady state (� = ��) always

exists and that any ination level can comprise a steady state if and only if

�1 =
2!s2

2!s2 + 1
�

1 + (1 � �)2!s2

2!s2 + 1

�
�

(2!s2 + 1)�
+

�2

�

�
: (B.13)

which is again exactly the bifurcation value where the fundamental steady states

loses stability and one eigenvalue equals +1 (see Proposition 1). Steady state

output gap corresponding to ination ~� is again equal to (24).

C 3-type model without the ZLB

C.1 Proof Proposition 6

Each of the nine combinations of optimism, pessimism and fundamentalism about

ination and output gap comprises a steady state if and only if under that partic-

ular combination of expectations, realized ination and output gap are such that

these expectations have the highest �tness measure. In the online supplementary
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material it is shown that all nine steady states are locally stable when ! ! 1.

Consider the case where all agents are fundamentalistic with respect to output

gap and optimistic with respect to ination. Under the forward-looking Taylor

rule the model then reduces to

xt = �
�1 � 1

�
b; (C.1)

�t = �T + b � �
�1 � 1

�
b: (C.2)

Under the contemporaneous and lagged rule the model reduces to

xt = �
�1 � 1

� + �2 + ��1
b; (C.3)

�t = �T + b � �
�1 � 1

� + �2 + ��1
b: (C.4)

The steady state exists if and only if

�
b
2

< xt <
b
2

; (C.5)

and

�t > �T +
b
2

: (C.6)

The conditions on output gap reduce to the conditions given in Table 1 and the

conditions on ination are then satis�ed as well (since � < 1).

The conditions on existence of all other steady states presented in Table 1 can

derived in the same way.

D Zero lower bound LTL

D.1 Proof Proposition 7

When the zero lower bound is binding the LTL model becomes

xt =
�x

2!s2 + 1
+

2!s2

2!s2 + 1
xt�1 +

1
�

��
2!s2 + 1

+
1
�

2!s2

2!s2 + 1
�t�1 +

i�

�
; (D.1)
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�t = �
��

2!s2 + 1
+ �

2!s2

2!s2 + 1
�t�1 + �xt: (D.2)

Solving for the steady state of this model results in (31) and (32). Steady state

output gap and ination both are negative if and only if

�(1 + (1 � �)2!s2) � �(2!s2 + 1)2!s2 < 0; (D.3)

which can be rewritten as (33).

The eigenvalues of the system de�ned by (D.1) and (D.2) are given by

�1;2 =
!s2

2!s2 + 1

 

(1 + � +
�
�

) �
r�

1 + � +
�
�

�2
� 4�

!

: (D.4)

This implies that the steady state is an unstable saddle if and only if

!s2 >
1

� � 1 + �
� +

p
(1 + � + �

� )2 � 4�
; (D.5)

which, after some algebraic manipulation, reduces to (33). Therefore, when (33)

does not hold the system has a unique attractor that lies outside the ZLB re-

gion. This implies that from all initial conditions ination and output gap will

go towards this attractor and cross the zero lower bound. Recovery then always

occurs.

When (33) holds, initial conditions below the stable eigenvector through the

steady state given by (31) and (32) lead to ever decreasing ination and output

gap, while initial conditions above it lead to increasing ination and output gap,

and thereby to recovery. The slope of this eigenvector is given by (34).

E Zero lower bound 3-type model

E.1 Proof Proposition 8

In the ZLB region ination and output gap are given by

xt = nx;opt
t b � nx;pes

t b +
��
�

+
n�;opt

t b
�

�
n�;pes

t b
�

+
i�

�
; (E.1)
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�t = �(�� + n�;opt
t b � n�;pes

t b) + �xt; (E.2)

It therefore follows from (E.1) and (E.2) that pessimism remains the best per-

forming heuristic if and only if

�x + (nx;opt
t � nx;pes

t )b +
�� + n�;opt

t b � n�;pes
t b + i�

�
< �x �

b
2

; (E.3)

and

(�� + n�;opt
t b � n�;pes

t b)(� +
�
�

) + �(�x + b(nx;opt
t � nx;pes

t )) +
�
�

i� < �� �
b
2

: (E.4)

These conditions together reduce to Equation (35).
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