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Bias in Point Estimates and
Standard Errors of Mokken’s
Scalability Coefficients

Renske E. Kuijpers1, L. Andries van der Ark2,
Marcel A. Croon3, and Klaas Sijtsma3

Abstract

Mokken scale analysis uses three types of scalability coefficients to assess the quality of (a) pairs
of items, (b) individual items, and (c) an entire scale. Both the point estimates and the standard
errors of the scalability coefficients assume that the sample ordering of the item steps is identi-
cal to the population ordering, but due to sampling error, the sample ordering may be incorrect
and, consequently, the estimates and the standard errors may be biased. Two simulation studies
were used to investigate the bias of the estimates and the standard errors of the scalability coef-
ficients, as well as the coverage of the 95% confidence intervals. Distance between item steps
was the most important design factor. In addition, sample size, number of items, number of
answer categories, and item discrimination were included in the design. Bias of the standard
errors was negligible. Bias of the estimates was largest when all item steps were identical in the
population, especially for small sample sizes. Furthermore, bias of the estimates decreased as
number of answer categories increased and as item discrimination decreased. Coverage of the
95% confidence intervals was close to .950, but for small sample size coverage deteriorated.
Coverage also became poorer as number of items increased, in particular for dichotomous
items.
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Mokken scale analysis (Mokken, 1971; Sijtsma & Molenaar, 2002) is used to construct tests

and questionnaires. Among other model assessment methods, Mokken scale analysis uses an

automated item selection procedure to partition a set of items into one or more scales, such that

the items in a particular scale measure a common trait using a reasonable level of discrimination

power to be controlled by the researcher (Sijtsma & Molenaar, 2002, p. 68). The item selection
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is based on a nonparametric item response theory (NIRT) model known as the monotone homo-

geneity model (Sijtsma & Molenaar, 2002, Chapter 2). Mokken scale analysis is used to con-

struct tests in various research areas such as psychology, for assessing psychological distress

and well-being (Watson, Wang, Thompson, & Meijer, 2014), depression and anxiety (Bech,

Bille, Moller, Hellström, & Ostergaard, 2014), disability in activities of daily living (Kingston

et al., 2012), learning disability (Murray & McKenzie, 2013), and sexual sadism (Nitschke,

Osterheider, & Mokros, 2009).

Mokken scale analysis uses three types of scalability coefficients for assessing the quality of

(a) item pairs, (b) individual items, and (c) a set of items. The item selection procedure uses the

scalability coefficients as criteria for item set partitioning and as diagnostics for the strength of

the scales. To compute a scalability coefficient, the sample ordering of the item steps

(Molenaar, 1991) is needed. Because of sampling fluctuation, the sample ordering may be dif-

ferent from the population ordering, thus biasing the estimates of the scalability coefficients.

The distortion may be more serious when distance between adjacent population item steps is

small and sample size is small. Hence, scalability coefficients may either underestimate or

overestimate their parameter values. For dichotomous items, based on statistical reasoning

involving all the 2 3 2 tables, Sijtsma and Molenaar (2002, p. 56) suggested that bias is almost

negligible for N . 200 when incidental pairs of item steps are close together, say, less than .02

units, and for N . 400 when many item steps are close together. From their discussion, it is

clear that additional research may be needed to support accurate recommendations. Kuijpers,

Van der Ark, and Croon (2013) analytically derived standard errors for each of the three scal-

ability coefficients. The standard errors are based on the sample item step ordering, and a sam-

ple ordering different from the population ordering may produce positively or negatively biased

standard error estimates. Consequently, confidence intervals may have an incorrect coverage.

Simulation studies were used to assess the magnitude of the bias in the scalability coefficient

estimates, the standard error estimates, and the coverage of the confidence intervals. Because it is

expected that a smaller distance between adjacent population item steps produces more reversals

in the sample item step ordering, the authors investigated the effect of differences between sam-

ple and population item step orderings on the estimates of the scalability coefficients and their

standard errors. Bias of the estimates and the standard errors, and the coverage of the confidence

intervals were assessed under several conditions. The most important design factor was distance

between population item steps; a smaller distance was expected to increase the probability that

the sample and population item step orderings differ from each other. Other design factors were

sample size, number of items, number of answer categories, and item discrimination.

This article is organized as follows. First, the authors discuss Mokken scale analysis and the

scalability coefficients. Second, they explain the computation of the standard errors by means of

marginal modeling. Third, they discuss Simulation Study 1 and fourth, a follow-up Simulation

Study 2 that investigates surprising results from Study 1. Finally, they provide recommendations

on how to use the standard errors.

Mokken Scale Analysis

The Monotone Homogeneity Model

Mokken scale analysis is based on the monotone homogeneity model (Mokken, 1971, Chapter

4; Sijtsma & Molenaar, 2002, pp. 22-23), which is an NIRT model for measuring respondents

on an ordinal scale. Let u denote the latent variable that underlies performance on the J items in

the test. For dichotomous items, the monotone homogeneity model implies the stochastic order-

ing of u by means of total score X+, which is the sum of the J item scores, denoted Xj with
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j ¼ 1; . . . ; J , so that Xþ ¼
PJ

j = 1 Xj. For polytomous items, the monotone homogeneity model

implies a weaker stochastic ordering property; for details, see Van der Ark and Bergsma (2010).

If the monotone homogeneity model fits the data well, the stochastic ordering properties can be

used for ordering respondents on latent variable u by means of total score X+.

Fit of the monotone homogeneity model to the data is investigated by checking whether sev-

eral of the model’s manifest properties are satisfied in the data. For example, the model implies

that all interitem covariances are nonnegative in the population; hence, for a set of items to con-

stitute a scale, the interitem covariances must be nonnegative. If not, the monotone homogeneity

model is not the model that generated the data and must be rejected as an explanatory model.

Nonnegativity of interitem covariances is investigated by evaluating whether the sample values

of the J(J21)/2 item pair scalability coefficients Hij are nonnegative. The automated item selec-

tion procedure rejects item pairs having negative interitem covariances as candidates for admit-

tance to a scale. When a researcher assembles his own scale(s), due to sampling fluctuation,

sample Hij values may be negative, and coefficients’ standard errors should be used to avoid the

wrong conclusion.

Scalability Coefficients

Item steps and weighted Guttman errors. The scalability coefficients are based on the common

item step ordering in each pair of items and the weighted sum of Guttman errors that is based on

the item step ordering (Molenaar, 1991; also see Kuijpers et al., 2013). A single item j having z

+ 1 ordered answer categories has z ordered item steps: Xj �1;Xj �2; . . . ;Xj � z. It is assumed

that this ordering is the same for each respondent. A score x on item j can be considered to be

the result of passing the most popular item steps, Xj �1; . . . ;Xj �x, and failing the next, less

popular item steps, Xj� x+1, . . . , Xj� z. Let Y x
j be a binary variable, with value 1 if the respon-

dent has passed item step Xj� x and value 0 if the respondent failed item step Xj \ x; then, Xj =Px
u = 1 Y u

j .

Two items i and j together have 2z item steps; the ordering of these 2z item steps is needed

for estimating item pair coefficient Hij. To order the 2z item steps, one uses the z probabilities

that a randomly chosen respondent passes an item step of item i, P(Xi� x), and similarly the z

probabilities for item j, P(Xj� x). For item score Xj� 0, by definition we have P(Xj� 0) = 1,

and this option is ignored. If in a particular item a less popular step is passed, by definition the

more popular step is also passed.

Different respondents may pass and fail item steps in an order that is inconsistent with the

common item step ordering for the two items, so that some individuals pass a less popular item

step while failing a more popular item step. This incidence is referred to as a Guttman error

(Guttman, 1950; Molenaar, 1991). Table 1 shows an example of the joint probabilities of hav-

ing a score x on item a and a score y on item b, that is, P(Xa = x, Xb = y) with x, y = 0, 1, 2, 3.

The marginal probabilities are defined by P(Xa = x) and P(Xb = y), and the cumulative probabil-

ities by P(Xa� x) and P(Xb� y). For this example, the cumulative probabilities order the item

steps by descending popularity as

Xb � 1, Xa � 1, Xb � 2, Xb � 3, Xa � 2, Xa � 3: ð1Þ

Let index h enumerate the number of most popular item steps passed. Item-score patterns (0,0),

(0,1), (1,1), (1,2), (1,3), (2,3), and (3,3) (in Table 1, corresponding probabilities are printed in

boldface) are consistent with the Guttman (1950) model, because the h most popular item steps

in Equation 1 were passed and the remaining 2z2h less popular steps were failed. The remain-

ing item-score patterns are inconsistent with the Guttman model, and to arrive at any of these
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patterns, one or more Guttman errors are made. For example, someone who obtained item-score

pattern (0,3), failed the more popular item step Xa� 1 but passed the less popular item steps

Xb� 2 and Xb� 3.

Molenaar (1991) proposed weighing the sample frequencies of the Guttman errors (in Table

1, weights are shown within parentheses) depending on the degree to which the item step order-

ing was violated according to the Guttman model. The weight for a particular item-score pattern

(Xi = x, Xj = y), denoted w
xy
ij , is equal to the number of item step pairs for which the less popular

step is passed and the more popular step is failed; see Ligtvoet, Van der Ark, Te Marvelde, and

Sijtsma (2010) and Kuijpers et al. (2013) for the computation of the weights. Because the

weights play a crucial role in the potential bias in the scalability coefficients and the standard

errors, the computation is reiterated here.

Consider indicator vector q
xy
ij = (q

xy
ij(1), q

xy
ij(2), . . . , q

xy
ij(2z)), whose elements correspond to the 2z

ordered item steps of item pair (i, j) and assume elements to have value 1 if an item step was

passed to obtain item-score pattern (Xi = x, Xj = y), and value 0 otherwise. Following Equation

1, the 2z item steps are ordered by descending popularity. Then, weight w
xy
ij equals

w
xy
ij =

X2z

u = 2

q
xy
ij(u)

Xu�1

v = 1

j1� q
xy
ij(v)j

 !
: ð2Þ

For each pair of 0s and 1s, Equation 2 counts how often a score 0 precedes a score 1 in vector

q
xy
ij . For example, for item-score pattern (1,2), the first three item steps in Equation 1 were

passed. These are the three most popular steps, implying q12
ab = (1,1,1,0,0,0), and because 0

scores do not precede 1 scores, weight w12
ab = 0. For item-score pattern (0,3), item steps Xb� 1,

Xb� 2, and Xb� 3 were passed, so that vector q03
ab = (1,0,1,1,0,0). In this example, a 0 score

precedes a 1 score twice, and thus weight w03
ab = 2.

Different random samples produce item step orderings different from the population order-

ing, resulting in sample weights different from population weights. For example, for two differ-

ent random samples containing 200 observations each, drawn from the population values in

Table 1, Table 2 shows the joint frequencies for the two samples. In the first sample (Table 2,

upper panel), the estimated item step ordering is identical to the population item step ordering

(Table 1). As the estimated ordering is identical to the population ordering, the sample weights

equal the population weights. In the second sample (Table 2, lower panel), the estimated item

step ordering and the corresponding weights are different from the population values. Using

weights different from population weights may result in biased estimates and standard errors.

Table 1. Cross-Tabulation of Probability of Obtaining Particular Item-Score Patterns.

Xb

Xa 0 1 2 3 P(Xa = x) P(Xa� x)

0 .044 (0) .013 (0) .019 (1) .025 (2) .101 1.000
1 .023 (1) .060 (0) .106 (0) .267 (0) .456 .899
2 .011 (4) .028 (2) .193 (1) .145 (0) .377 .443
3 .002 (7) .012 (4) .042 (2) .010 (0) .066 .066

P(Xb = y) .080 .113 .360 .447 1.000
P(Xb� y) 1.000 .920 .807 .447

Note. Probabilities of item-score patterns that are in agreement with the Guttman model are printed in boldface.

Guttman weights are shown within parentheses.
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Molenaar (1991) showed that when two item steps have equal popularities, scalability coeffi-

cients have the same value irrespective of the sample ordering of the two item step popularities.

This implies that whenever the item step ordering contains ties, the scalability coefficient has

the same value irrespective of the item step popularity that occurs first in the ordering.

Scalability coefficients and their standard errors. For item pair (i, j), scalability coefficient Hij

expresses the strength of the association between items i and j corrected for the marginal distri-

butions of their item scores (Van der Ark, Croon, & Sijtsma, 2008a, 2008b). Coefficient Hij

compares the sum of weighted observed Guttman errors for item pair (i, j), denoted by Fij, with

the sum of weighted Guttman errors expected given marginal independence, denoted by Eij,

and subtracts the ratio Fij=Eij from 1:

Hij = 1� Fij

Eij

= 1�

P
x

P
y

w
xy
ij n

xy
ijP

x

P
y

w
xy
ij e

xy
ij

: ð3Þ

Here, n
xy
ij denotes the observed frequency of Guttman errors, and e

xy
ij denotes the corresponding

expected bivariate frequency given marginal independence. Given the monotone homogeneity

model, in the population 0 �Hij� 1 (Mokken, 1971, pp. 148–153; Sijtsma & Molenaar, 2002,

p. 59).

Item scalability coefficient Hj expresses the strength of the association between item j

and the other items in a test (Sijtsma & Molenaar, 2002, p. 36) by combining the information

from the J2 1 Hijs (i 6¼ j) in which item j is involved. For item j, coefficient Hj compares the

sum of weighted observed Guttman errors with the sum of weighted expected Guttman

errors:

Table 2. Frequency Tables for Two Samples (N = 200) Drawn From the Distribution in Table 1.

Xb

Xa 0 1 2 3 Frequency P̂(Xa� x)

0 13 (0) 1 (0) 2 (1) 4 (2) 20 1.000
1 2 (1) 10 (0) 20 (0) 64 (0) 96 .900
2 2 (4) 2 (2) 40 (1) 30 (0) 74 .420
3 0 (7) 3 (4) 6 (2) 1 (0) 10 .050

Frequency 17 16 68 99 200
P̂(Xb� y) 1.000 .915 .835 .495

0 8 (0) 1 (0) 6 (1) 4 (3) 19 1.000
1 6 (1) 12 (0) 24 (0) 51 (1) 93 .905
2 3 (3) 7 (1) 44 (0) 26 (0) 80 .440
3 0 (6) 2 (3) 5 (1) 1 (0) 8 .040

Frequency 17 22 79 82 200
P̂(Xb� y) 1.000 .915 .805 .410

Note. In Sample 1 (upper panel), the estimated item step ordering is identical to the population item step ordering. In

Sample 2 (lower panel), the estimated item step ordering is different from the population ordering, resulting in

different Guttman weights. Probabilities of item-score patterns that are in agreement with the Guttman model are

printed in boldface. Guttman weights are shown within parentheses.
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Hj = 1�

P
i 6¼j

Fij

P
i 6¼j

Eij

= 1�

P
i6¼j

P
x

P
y

w
xy
ij n

xy
ijP

i 6¼j

P
x

P
y

w
xy
ij e

xy
ij

: ð4Þ

The monotone homogeneity model implies that 0 �Hj� 1. Because Hj values close to 0 imply

that item j is weakly associated with the other items and contributes little to a reliable person

ordering, Mokken (1971, p. 184) proposed that for an item to be selected in a scale, Hj � c.0.

By default, c = .3, but the researcher may choose positive lower bound c so as to control the

quality of the scale (Sijtsma & Molenaar, 2002, p. 60). Consequently, items with Hj\c are left

out of the scale (Sijtsma & Molenaar, 2002, p. 36).

Total scale scalability coefficient H expresses the degree to which respondents can be ordered

by means of a set of items (Sijtsma & Molenaar, 2002, p. 39), and is a weighted average of the J

Hj coefficients (Mokken & Lewis, 1982). Coefficient H compares the sum of weighted observed

Guttman errors with the sum of weighted expected Guttman errors, and is defined as

H = 1�

PP
i 6¼j

Fij

PP
i 6¼j

Eij

= 1�

PP
i6¼j

P
x

P
y

w
xy
ij n

xy
ijPP

i 6¼j

P
x

P
y

w
xy
ij e

xy
ij

: ð5Þ

The monotone homogeneity model implies that 0�H� 1. Mokken (1971, p. 185) proposed

that for a sufficiently reliable person ordering, .3�H� 1. Hence, an item set for which H \ .3

does not define a scale. Furthermore, a scale is defined to be weak if .3�H \.4, moderate if

.4�H\ .5, and strong if H� .5. In the absence of Guttman errors, Hij, Hj, and H equal 1, and

their values decrease as the number of Guttman errors increases.

Biased Hij, Hj, and H coefficients may influence the composition of a Mokken scale. When

Hij or Hj is underestimated, a sufficiently discriminating item may incorrectly be left out of a

scale, and when the coefficients are overestimated, weakly discriminating items may incorrectly

be included in a scale. A biased H provides an incorrect assessment of the strength of a scale.

Hence, biased estimates and biased standard errors should be avoided.

Kuijpers et al. (2013) used a two-step method based on categorical marginal models to derive

asymptotic standard errors for each of the three scalability coefficients. First, data were col-

lected in a frequency vector n, in which the number of elements is equal to the number of item-

score patterns in the data. Under the nonrestrictive assumption that n follows a multinomial dis-

tribution, the variance–covariance matrix of n, denoted Vn, is well known (e.g., Agresti, 2013).

Second, each of the three scalability coefficients was written as a vector function of n, denoted

g(n). Let G(n) be the matrix of first partial derivatives of g(n) to n, then according to the delta

method, the variance–covariance matrix of the scalability coefficients, denoted Vg(n), is approxi-

mated by G(n)VnG(n)T. The standard errors of the scalability coefficients are obtained by tak-

ing the square root of the diagonal elements of G(n)VnG(n)T. The derivation of g(n) and G(n)

is cumbersome (for more details, see Kuijpers et al., 2013).

Simulation Study 1

Scalability coefficients were computed using the sample item step ordering. However, due to

sampling fluctuation, the ordering may be different from the population ordering, thus affecting

the estimates and the standard errors. For small sample size and small distance between item

steps, more reversals of item step pairs are expected to occur. A simulation study was conducted
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to investigate the effects of different factors on the bias of Ĥ and the bias of its standard errors,

and the coverage of the 95% confidence intervals.

Method

Simulation model. We simulated data using the graded response model (Samejima, 1969, 1972).

This model is a parametric version and hence a special case of the monotone homogeneity

model (Hemker, Sijtsma, Molenaar, & Junker, 1996). The graded response model defines the

probabilities of scoring at least x, x = 0, 1, . . . , z, on item j by means of a logistic function with

a discrimination parameter aj and z location parameters djx. For one item, the location para-

meters are ordered such that djx\dj, x + 1. In the simulation model, discrimination parameters

within an item were kept constant, and the probability of a score of at least x on item j equals

P Xj � xju
� �

=
exp a u� djx

� �� �
1 + exp a u� djx

� �� � : ð6Þ

By definition, P(Xj � 0ju) = 1.

The values of discrimination parameter a were varied such that, in combination with

u;N (0, 1) and known location parameters, population values of H either had acceptable values

H� c = .3 or unacceptable values H \ c = .3. Location parameters djx (Table 3) varied across

design cells depending on the level of design factor ‘‘Distance between item steps.’’ For each

sample of size N, N u values were randomly drawn from a normal distribution. For each set of

u values, and for each value of a, a data set was generated using Equation 6 in which the djx

values (Table 3) were inserted.

Design. The design factors were varied as follows.

Discrimination parameter (a). Discrimination parameters equaled 1, 1.5, or 2. Keeping all

other factors constant, item discrimination has a positive effect on the scalability coefficients

(e.g., Sijtsma, 1988, Chapter 3). The effect of item discrimination on the bias in point estimates

and standard errors was unknown.

Number of items (J). Number of items equaled 2 or 3; J was small so as to keep the simulation

study manageable. Small J does not limit the results, because H is a weighted mean of the

Table 3. Location Parameters djx in Equation 6.

Distance between item steps

z + 1 J j None Small Moderate Large

2 2 1 0.000 20.113 20.227 20.343
2 0.000 0.113 0.227 0.343

3 1 0.000 20.227 20.460 20.706
2 0.000 0.000 0.000 0.000
3 0.000 0.227 0.460 0.706

3 2 1 20.250 0.250 20.343 0.113 20.706 0.227 21.119 0.343
2 20.250 0.250 20.113 0.343 20.227 0.706 20.343 1.119

3 1 20.250 0.250 20.581 0.113 21.278 0.227 22.563 0.343
2 20.250 0.250 20.343 0.343 20.706 0.706 21.119 1.119
3 20.250 0.250 20.113 0.581 20.227 1.278 20.343 2.563

Note. For each distance between consecutive item steps and for items, the table shows dj1 (upper panel), and dj1 and

dj2 (lower panel). zþ 1 ¼ number of answer categories; J = number of items; j = item index.
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pairwise J(J21)/2 Hij coefficients, and therefore, we expected bias in the estimates and the stan-

dard errors and the coverage of the 95% confidence intervals to stay equal irrespective of the

number of items.

Number of answer categories (z + 1). Items were dichotomous (z + 1 = 2) or polytomous (z +

1 = 3). Polytomous items are expected to produce more errors in the sample ordering and thus

to produce more bias in the estimates of the scalability coefficients and their standard errors,

and a poorer coverage of the 95% confidence interval.

Sample size (N). Sample size was small (N = 50), medium (N = 200), large (N = 500), or

very large (N = 1,500). As N grows smaller, additional observations in the error cells have more

influence on the sample item step ordering, and more likely produce stronger bias in the point

estimates and the standard errors, and more strongly deteriorate the coverage of the 95% confi-

dence interval.

Distance between item steps. The greater the distance between two adjacent item steps, the

more likely the sample item step ordering is correct. Distance between item steps had four lev-

els, labeled None, Small, Moderate, and Large. Distance was varied by manipulating the loca-

tion parameters djx of the graded response model. The ordering of the item steps was fixed to

P(X1 � 1) . P(X2 � 1) . � � �. P(XJ � 1) . P(X1 � 2) . � � �. P(XJ � 2) . � � � . P(X1 � z)

. � � �. P(XJ � z). For this ordering, the distance between two consecutive item step probabil-

ities is denoted by D, which equaled 0 (None), .06 (Small), .12 (Moderate), and .18 (Large).

Table 4 shows the resulting cumulative item step probabilities. Once item step probabilities

were fixed, we determined the corresponding location parameters djx, such that

P Xj � x
� �

=

ð
P Xj � xju
� �

dG uð Þ ð7Þ

equaled the desired values in Table 4 for cumulative distribution G(u). Because a smaller D

value produces a smaller distance between population item step popularities, more reversals of

the item step ordering are expected to occur in the sample. Consequently, we expected greater

bias in the estimates and the standard errors of the scalability coefficients and a poorer coverage

of the 95% confidence interval.

Table 4. Theoretical Cumulative Item Step Probabilities P(Xj � x) in Equation 7.

Distance between item steps

z + 1 J j None Small Moderate Large

2 2 1 .500 .530 .560 .590
2 .500 .470 .440 .410

3 1 .500 .560 .620 .680
2 .500 .500 .500 .500
3 .500 .440 .380 .320

3 2 1 .566 .434 .590 .470 .680 .440 .770 .410
2 .566 .434 .530 .410 .560 .320 .590 .230

3 1 .566 .434 .650 .470 .800 .440 .950 .410
2 .566 .434 .590 .410 .680 .320 .770 .230
3 .566 .434 .530 .350 .560 .200 .590 .050

Note. For each distance between consecutive item steps and for items, the table shows P(Xj � 1) (upper panel), and

P(Xj � 1) and P(Xj � 2) (lower panel). z + 1 = number of answer categories; J = number of items; j = item index.
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Outcome variables. The outcome variables were bias of the estimates of scalability coefficient

H, bias of the standard errors of Ĥ , and the coverage of the 95% confidence interval. The num-

ber of replications, Q, for each design cell was 10,000.

Bias of the estimates (bias). Let Ĥq denote the sample value of H in the qth replication (q = 1,

. . . , Q), and let H denote the parameter, which was computed directly from the item step prob-

abilities using linear programming. Bias, based on Q replications, was

bias =
1

Q

XQ

q = 1

Ĥq � H
� �

: ð8Þ

Bias of the standard errors (bias.se). The authors first computed the standard deviation of the

estimates of H, denoted sd(Ĥ), across the Q replications. Let �H = ½1=(Q� 1)�
PQ

q = 1 Ĥq, then

sd Ĥ
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Q� 1

XQ

q = 1

Ĥq � �H
� �2

vuut : ð9Þ

Standard deviation sd(Ĥ) estimates the variability of Ĥ across replications and serves as a

gold standard for the standard error. Let se(Ĥq) denotes the estimated standard error of the qth

estimate of H. Then, the bias of the standard errors equals

bias:se =
1

Q

XQ

q = 1

½se Ĥq

� �
� sd Ĥ

� �
�: ð10Þ

Coverage of the 95% confidence interval. The authors first constructed a confidence interval for

each qth replication, using Ĥq61:963se(Ĥq). Then, the coverage was defined by the proportion

of replications for which the 95% confidence interval contains the population value of H.

Table 5 shows parameter H, which was varied across design cells. Sample size does not

affect parameter H. The simulation study was programmed in R (R Core Team, 2014), using

the R-package mokken (Van der Ark, 2007, 2012) to compute Ĥ and the standard error of Ĥ

for each sample across the 10,000 replications.

Results

The bias of Ĥ was less than .05 in all conditions (Figure 1). Compared with the other item step

distances, for D = 0, the bias of Ĥ was slightly larger for both J = 2 (left panel) and J = 3 (right

Table 5. Simulation Study 1: Population Values for Coefficient H, for All a and All Distances Between
Item Steps.

a = 1 a = 1.5 a = 2

z + 1 J N S M L N S M L N S M L

2 2 .174 .190 .207 .225 .293 .329 .366 .404 .394 .449 .504 .558
3 .174 .195 .217 .240 .293 .340 .386 .431 .394 .465 .531 .592

3 2 .190 .197 .220 .240 .327 .344 .388 .425 .444 .470 .531 .581
3 .190 .207 .236 .258 .327 .363 .415 .451 .444 .496 .566 .612

Note. a = discrimination parameter; z + 1 = number of answer categories; J = number of items; N = no distance

between item steps (D = 0); S = small distance between item steps (D = .06); M = moderate distance between item

steps (D = .12), L = large distance between item steps (D = .18).
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panel). As expected, an increase of number of items J did not affect bias of Ĥ . For all four dis-

tances between item steps D, Figure 1 shows that the bias of Ĥ decreased as sample size N

increased. For D = 0 (None) and D = .6 (Small), bias was considerably larger for N = 50 than

for the other sample sizes. Also, an increase of item discrimination led to greater bias (Figure

2). Inconsistent with the expectation that bias increases as number of answer categories z + 1

increases, bias of Ĥ was larger for z + 1 = 2 than for z + 1 = 3.

For most conditions, the bias of Ĥ and the bias of the standard errors of Ĥ equaled 0

or nearly 0. The conditions for D = 0 showed the largest bias and the poorest coverage; for

D = 1.5, Table 6 shows the bias of Ĥ and of its standard errors and the coverage of the 95%

confidence intervals. We predicted bias of the standard errors to increase as the number of

Figure 2. Bias in sample Ĥ for J = 2 for varying a and varying number of answer categories.

Figure 1. Bias in sample Ĥ for J = 2 (left panel) and J = 3 (right panel), a = 1.5 for the four distances
between item steps.
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answer categories increased and sample size decreased, but in all design cells, for all values of

a, bias was 0 or close to 0.

Coverage of the 95% confidence intervals was almost equal to .950 in all conditions. To

accurately interpret the values of the coverage, a 95% Agresti–Coull confidence interval was

derived (Agresti & Coull, 1998). The interval was equal to [.946, .954]. In some conditions,

coverage was just below the Agresti–Coull interval, but we consider these deviations negligi-

ble. Only for N = 50, irrespective of the value of discrimination parameter a, coverage was sub-

stantively smaller than expected.

Simulation Study 2

Study 1 showed that, compared with J = 2, bias was unaffected for J = 3, but these small test

lengths seemed insufficient for ruling out bias effects for larger sets of items. Study 1 also

showed that, inconsistent with the expectation, bias of Ĥ decreased as number of answer cate-

gories increased. Thus, for larger number of items (J = 10) and larger number of answer cate-

gories (z + 1 = 5), the authors investigated the bias of Ĥ and sd(Ĥ), and the coverage of the

95% confidence interval.

Study 1 showed that for D . 0, bias of Ĥ and the standard errors was negligible, and cover-

age was close to .950. Hence, Study 2 was done only for D = 0. The design was similar to that

of Study 1, but to keep the study manageable, design factors were not fully crossed. Table 7

shows the H parameters; note that parameter values were unaffected by number of items.

Table 6. Results of Simulation Study 1 for D = 0 and D = 1.5.

z + 1 = 2 z + 1 = 3

J N bias bias.se Cov. bias bias.se Cov.

2 50 .044 .000 .929 .023 2.003 .924
200 .021 .002 .947 .011 .000 .945
500 .013 .002 .948 .008 .000 .943

1,500 .007 .001 .952 .004 .000 .947
3 50 .041 2.002 .927 .022 2.001 .932

200 .020 .001 .943 .012 .000 .941
500 .013 .001 .939 .008 .000 .941

1,500 .007 .001 .943 .005 .000 .942

Note. Coverage values outside the 95% Agresti–Coull interval [.946, .954] are printed in boldface. J = number of

items; N = sample size; z + 1 = number of answer categories; bias = bias of estimates of H; bias.se = bias of standard

errors of Ĥ; Cov. = coverage of 95% confidence interval.

Table 7. Simulation Study 2: Population Values for Coefficient H.

a

z + 1 1 1.5 2

2 .174 .293 .394
3 .190 .327 .444
5 .212 .369 .502

Note. z + 1 = number of answer categories; a = discrimination parameter.
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Table 8 shows results for a = 1.5. Independent of a, bias of Ĥ and bias of the standard errors

of Ĥ were unaffected as number of items J increased from three to 10; bias found in Study 2

was comparable with bias found in Study 1. When number of answer categories increased from

three to five, bias of Ĥ decreased, especially for N = 50. This outcome again contradicted the

expectation that bias increases as number of answer categories increases, and was consistent for

each a value.

Figure 3 shows the coverage for J = 10 for varying a. Coverage of the 95% confidence inter-

val was substantially worse for J = 10 than for J = 3. None of the values lay in the Agresti–

Coull interval. These results contradict the expectation that the coverage remains the same as

number of items increases. Compared with polytomous items, coverage of the 95% confidence

interval was worse for dichotomous items. Hence, contrary to the expectation, coverage

improved as number of answer categories increased. Consistent with Study 1, coverage was

considerably better for larger N than for N = 50. However, in contrast to Study 1, in Study 2

item discrimination a did affect coverage; as a decreased, coverage improved.

Discussion

The estimates and the standard errors of Mokken’s scalability coefficients are based on the

assumption that the sample item step ordering is identical to the population ordering. A viola-

tion of this assumption may bias the estimates and standard errors of scalability coefficients and

coverage of the corresponding confidence intervals may be incorrect. The two simulation stud-

ies showed that bias of Ĥ was negligible, suggesting that the heuristic guidelines the authors

discussed in the introduction (Sijtsma & Molenaar, 2002, p. 56) may have been too strict. Only

if item steps are identical or sample size is small (N \ 200), one may expect a small positive

bias. Straat, Van der Ark, and Sijtsma (2014) recommended that for item selection, samples

should at least have a size between 250 and 500 when item quality is high, and between 1,250

and 1,750 when item quality is low. For these sample sizes, the authors found that bias of Ĥ

was negligible; hence, the marginal modeling approach may be accurate.

Table 8. Results of Simulation Study 2 for D = 0; for J = 10 (Left Panel) and z + 1 = 5 (Right Panel).

J = 10 z + 1 = 5

z + 1 N bias bias.se Cov. J N bias bias.se Cov.

2 50 .040 2.001 .901 2 50 .016 2.003 .920
200 .020 .000 .902 200 .008 .000 .939
500 .013 .000 .893 500 .005 .000 .944

1,500 .007 .000 .896 1,500 .003 .000 .944
3 50 .023 2.002 .921 3 50 .013 2.003 .928

200 .012 .000 .927 200 .007 .000 .944
500 .008 .000 .929 500 .005 .000 .946

1,500 .005 .000 .933 1,500 .003 .000 .944
10 50 .016 2.001 .931

200 .007 .000 .937
500 .005 .000 .937

1,500 .003 .000 .941

Note. Coverage values outside the 95% Agresti–Coull interval [.946, .954] are printed in boldface. J = number of

items; z + 1 = number of answer categories; N = sample size; bias = bias of estimates of H; bias.se = bias of standard

errors of Ĥ; Cov. = coverage of 95% confidence interval.
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Inconsistent with the expectations, bias of Ĥ decreased as number of answer categories

increased. The decrease of bias was persistent when number of answer categories was raised to

five (Study 2). Possibly, compared with a small number of item steps, a larger number of answer

categories and item steps causes a reversal of adjacent item steps to have a smaller influence on

bias. For all other conditions in Study 2, bias results were comparable with those in Study 1.

Bias of the standard errors of Ĥ was negligible; hence, categorical marginal modeling is accu-

rate for deriving standard errors of scalability coefficients. The availability of the standard errors

in the R-package mokken renders them readily accessible.

For most conditions, coverage of the 95% confidence intervals was slightly under .950. For

small N, large J, and high item discrimination a, coverage was slightly poorer. For dichotomous

items, coverage dropped under 90% for large J, especially when a was high. Hence, for large J,

point estimates and standard errors were unbiased, but coverage of the confidence intervals

based on the point estimates and standard errors was poor. Because for correct coverage Wald-

based confidence intervals require a symmetric distribution, this unexpected result may have

been caused by a skewed Ĥ distribution, for which some evidence was found in a post hoc anal-

ysis. For the design cell producing the worst coverage, the distribution of Ĥ was positively

skewed; skewness was computed using the R-package e1071 (Meyer, Dimitriadou, Hornik,

Weingessel, & Leisch, 2014) and equaled .144. Skewness was approximately 0 for design cells

that resulted in a correct coverage. The Kolmogorov–Smirnov test was significant in all cases,

suggesting for large J that the distribution of Ĥ deviates from standard normality, possibly

affecting coverage of the 95% confidence intervals.

The coverage of 95% confidence intervals, even if not perfect, may be adequate for practical

use, but may be improved if asymmetric confidence intervals are used. The Wald-based 95%

confidence interval used in this study (i.e., Ĥq61:963se(Ĥq)) is symmetric by definition,

whereas confidence intervals such as likelihood profile confidence intervals or score confidence

intervals (e.g., Lang, 2008), or bootstrap confidence intervals (e.g., Efron & Tibshirani, 1993)

can be asymmetric and may improve coverage. This is a topic for further research.

The automated item selection procedure (Sijtsma & Molenaar, 2002, Chapter 4) in Mokken

scale analysis only uses the sample scalability coefficients for selecting items into scales.

Figure 3. Coverage of 95% confidence intervals for J = 10 for varying number of answer categories.
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However, ignoring standard errors of sample coefficients may be a source of selection error

(Kuijpers et al., 2013). Future research may systematically investigate the influence of standard

errors on the automatic item selection procedure in Mokken scale analysis. A next step would

be to implement the standard errors in the automatic item selection procedure.
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